Zadania z ekonomii matematycznej 3 Wybrane rozwi zania
|
|
- Alicja Olejniczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zdni z ekonomii mtemtycznej 3 Wybrne rozwi zni Michª Rmsz Wersj z dni 4 grudni 011 Zdnie 1 Dl funkcji f : R n R deniujemy zbiór epif = {x, y R n R : y fx} Pokz,»e dl funkcji wypukªej f zbiór epif jest zbiorem wypukªym Zdnie Niech b d dne funkcje f, g : R n R wypukªe Pokz,»e funkcj f + gx jest wypukª Zdnie 3 Niech dn b dzie funkcj wypukª f : R n R ró»niczkowln Pokz,»e wrunkiem wystrczj cym n istnienie minimum jest zerownie si grdientu Zdnie 4 Niech dn b dzie funkcj ±ci±le wypukª f : R n R z minimum x 0 Pokz,»e minimum x 0 jest wyznczone jednozncznie Zdnie 5 Firm produkuje jedno dobro n dw rynki, które chrkteryzuj si odwrotnymi funkcjmi popytu odpowiednio p 1 q 1 i p q, gdzie q 1 to wielko± produkown n pierwszy rynek q to wielko± produkown n drugi rynek Koszt produkcji wynosi cq 1 + q Wyprowdzi wrunki optymlno±ci pierwszego rz du i pod interpretcje w terminch elstyczno±ci funkcji popytu b Rozwi z je»eli p 1 q 1 = A q 1, p q = B q orz cq = q + q Zdnie 6 Nrysuj wykres funkcji, któr jest qusi-wkl sª i 1 jest qusi-wypukª, nie jest qusi-wypukª, Funkcj f : R n R jest wypukª je»eli dl dowolnych x i dowolnego θ 0, 1 zchodzi fθ + 1 θx θf + 1 θfx Funkcj f jest ±ci±le wypukª je»eli powy»sz nierówno± jest ostr Dowód przeprowdzi przez zprzeczenie korzystj c z epigrfu lub wprost korzystj c z fktu,»e dl funkcji wypukªej pªszczyzn styczn do wykresu nie mo»e znjdow si powy»ej wykresu funkcji Elstyczno± cenow popytu Q jest zdn formuª ɛ = dq p dp Q Funkcj f : R n R jest qusi wkl sª wtedy i tylko wtedy, gdy dl dowolnego k R zbiór jest wypukªy S = {x R n : fx k} 3 nie jest wypukª, 4 nie jest wkl sª, 5 nie jest ni wkl sª ni wypukª, 6 jest wkl sª i wypukª Ile rzy wykres funkcji mo»e przeci prost poziom? Zdnie 7 Sprwdzi czy poni»sze funkcje s qusi-wkl sªe, qusiwypukªe, speªnij ob wrunki czy te»»dnego 1 Równow»n dencj dl funkcji ró»niczkowlnych Funkcj f : R n R jest qusi-wkl sª je»eli dl dowolnych u v zchodzi fv fu fuv u 0, orz qusi-wypukª je»eli fv fu fvv u 0
2 1 fx, y = x + by fx, y = x ln y 3 ux, y = xy 4 ux, y = xy Zdnie 8 Niech dn b dzie funkcj produkcji Q = fk, L jedno- Funkcj jest jednorodn stopn r je»eli fγx = γ r fx dl dowolnego x rodn stopni 1 Pokz,»e Q/L i Q/K s funkcjmi kpitªu per cpit k = K/L Zdnie 9 Niech dn b dzie funkcj produkcji Q = fk, L jednorodn stopni 1 Udowodnij,»e K Q + L Q = Q Wªsno± t jest nzywn tw Euler b Pokz,»e kr«cowe produktywno±ci MPP L = Q/ i MPP K = Q/ mo»n przedstwi jko funkcj kpitªu per cpit k = K/L c Sprwd¹ czy w/w wªsno±ci zchodz dl funkcji produkcji Cobb- Dougls fq, L = AQ α L 1 α, α 0, 1 Rozwi znie Zczynmy od punktu Wiemy,»e Q = fk, L jest jednorodn stopni 1 wi c zgodnie z denicj zchodzi rfk, L = frk, rl Ró»niczkuj c obie strony powy»szego równni wzgl dem r otrzymujemy frk, rl frk, rl fk, L = K + L, sk d podstwij c r = 1 otrzymujemy fk, L = co trzeb byªo pokz fk, L fk, L K + L, Punkt b jest prost konsekwencj punktu Mmy Q = K Q + L Q Q L = K Q L + Q Q = Q L k Q Q fk, L = fk, 1 k Poniew» f jest jednorodne stopni 1 wi c Q/ jest jednorodne stopni 0 sk d mo»emy osttecznie zpis co ko«czy zdnie Q = fk, 1 k fk, 1
3 3 Zdnie 10 Uogólnij twierdzenie Euler do przypdku funkcji n zmiennych, gdzie funkcj f jest jednorodn stopni r, tj wyk»,»e zchodzi równo± n f x i = rf x i i=1 Rozwi znie Korzystj c z denicji jendorodno±ci mmy k r f,, x n = fk,, kx n Ró»niczkuj c obie strony powy»szego równni wzgl dem k otrzymujemy n rk r 1 fk,, kx n f,, x n = x l x l l=1 Przyjmuj c w powy»szym równniu k = 1 otrzymujemy tez Zdnie 11 Niech b dzie dn jednorodn funkcj produkcji q stopni r Pokz,»e q/ x i jest funkcj jednorodn stopni r 1 Rozwi znie Niech q,, x n b dzie jednorodn funkcj produkcji stopni r Zgodnie z denicj mmy k r q,, x n = qk,, kx n Ró»niczkuj c obie strony powy»szego równni wzgl dem x l otrzymujemy k r q,, x n = qk,, kx n k x l x l sk d otrzymujemy co ko«czy zdnie k r 1 q,, x n x l = qk,, kx n x l Zdnie 1 Pokz,»e dl k»dej jednorodnej funkcji u»yteczno- ±ci stopni r 1 welth expnsion pth jest lini prost Czy jest to prwd dl homotetycznych funkcji u»yteczno±ci, tj funkcji u»yteczno±ci postci fx = Hqx, gdzie q jest jednorodn funkcj u»yteczno±ci, H jest funkcj rosn c? Rozwi znie Niech q,, x n b dzie jednorodn funkcj u»yteczno±ci stopni r, tj speªni qk,, kx n = k r q,, x n Krzyw welth expnsion pth jest to zdn prmetrycznie krzyw ˆxw = ˆ w,, ˆx n w, gdzie ˆx l, l = 1,, n s popytmi Wrs w to bogctwo Ztem ˆx = ˆ,, ˆx n jest rozwi zniem zdni optymlizcji postci mx qx, x B gdzie B = {x : p x = w} Wrunki pierwszego rz du dl powy»szego zdni s postci qˆx = λ p p ˆx = w
4 4 A wi c pierwszy wrunek optymlno±ci ozncz,»e dl dowolnych l, s zchodzi q / q = p l 1 x l x s p s Niech ˆx b dzie rozwi zniem optymlnym dl bogctw w Zmienimy terz bogctwo konsument mno» c je przez k, tj bogctwo konsument wynosi kw Jest jsne,»e koszyk kˆx speªni równnie bud»etowe, le n mocy tw Euler speªni równie» wrunek 1 wi c pierwszy wrunek optymlno±ci i konsekwentnie jest koszykiem optymlnym Ztem koszyki optymlne zkre±lj prost kˆx Dl dowolnego k > 0 rozwi znie optymlne ˆx speªni x B x B qˆx qx Powy»szy wrunek pozostje prwdziwy równie» dl funkcji H q, ±ci±le Hqˆx Hqx co ko«czy dowód Zdnie 13 Oblicz elstyczno± skli dl uogólnionej funkcji produkcji Cobb-Dougls f, x = Ax α 1 x β Zdnie 14 Dl funkcji produkcji f, x = Ax α 1 α obliczy expnsion pth Obliczy elstyczno± substytucji Zdnie 15 Niech dn b dzie funkcj produkcji f postci σ/σ 1 f, x = A x σ 1/σ x σ 1/σ, gdzie A > 0, [0, 1] i σ, 1 Obliczy elstyczno± substytucji Jk interpretcj m prmetr σ? b Pok»,»e funkcj produkcji Cobb-Dougls jest grnicznym przypdkiem funkcji f, x gdy σ 1 Jk interpretcj m prmetr? c Jk funkcj produkcji uzyskuje si, gdy σ jk gdy σ 0 i jk gdy σ 0 +? Rozwi znie Aby obliczy elstyczno± substytucji mo»emy skorzyst ze wzoru gdzie d lnx / d ln TRS = TRS x / dx / dtrs, TRS = f/ f/ x jest kr«cow stop substytucji technicl rte of substitution Tk uzbrojeni mo»emy policzy sk d ln TRS = ln 1 TRS = x 1 1/σ 1/σ x = ln σ ln x Elstyczno± skli jest zdeniown jko: ɛ = dftx t dt fx t=1 Elstyczno± substytucji σ jest zdeniown jko: σ = d x / /dp 1 /p x / /p 1 /p Elstyczno± substytucji mo»n równie» obliczy korzystj c ze wzoru σ = TRS x / dx / dtrs, gdzie TRS = f/ / f/ x Npis dgx ozncz g xdx st d mmy d lnx / = dx / x /
5 5 Mmy ztem wyr»enie d ln d ln 1 x + 1σ ln x gdzie przyjmuj c θ = lnx / mo»emy zpis d ln dθ σ θ = 1 1/σ = σ Ztem prmetr σ jest elstyczno±ci substytucji b Musimy policzy nst puj c grnic σ/σ 1 lim A x σ 1/σ σ x σ 1/σ Mmy jednk A σ/σ 1 σ/σ 1 lim x σ 1/σ σ x σ 1/σ = exp lim ln A x σ 1/σ σ x σ 1/σ je»eli grnic po prwej stronie istnieje Przyjmuj c θ = σ 1/σ obliczmy ztem grnic lim ln A x θ θ x θ 1/θ = lim ln A + 1 θ 0 θ ln x θ x θ 1 = ln A + lim θ 0 θ ln x θ x θ korzystj c z tw de l'hopitl' = ln A + lim θ 0 ln x θ ln x x θ x θ xθ = ln A + ln + 1 ln x + 1 = ln A + ln x 1 + ln = ln Ax 1 Wrcj c do oryginlnego sformuªowni otrzymujemy A σ/σ 1 lim x σ 1/σ σ x σ 1/σ = exp ln Ax 1 = Ax 1 Tk wi c prmetr jest elstyczno±ci czynnik produkcji i odpowiednio 1 jest elstyczno±ci czynnik produkcji x Poniew» + 1 = 1 wi c tk funkcj produkcji m elstyczno± skli równ 1 c Obliczenie grnicy funkcji f gdy σ jest trywilne Dl σ 0 przyjmuj c θ = σ 1/σ mmy dl > x lim A x θ x θ 1/θ = lim A θ θ [ x θ 1 = lim θ A1/θ x x θ ] 1/θ θ 1/θ
6 6 Wyr»enie 1/θ 1 przy θ wyr»enie w nwisch to przy θ wyr»enie zbiegj ce do 1 0 = 1 A ztem grnic wynosi lim A x θ x θ 1/θ = Ax1, θ co przy zªo»eniu > x mo»n zpis mx, x W sytucji gdy < x wyci gmy przed nwis 1 x i otrzymujemy grnic x Tk wi c grnic funkcji f, x przy σ 0 wynosi mx, x W przypdku grnicy σ 0 +, tj θ, obliczeni s identyczne le przed nwis wyci gmy nie mx, x min, x i otrzymujemy wynik lim σ 0 + f, x = min, x Tblic 1: Wyniki zbie»no±ci funkcji f, x Grnic σ Grnic θ Funkcj grniczn σ θ 1 A + 1 x σ 0 θ mx, x σ 0 + θ min, x σ 1 θ 0 Ax 1 Tblic 1 zbier uzyskne wyniki zbie»no±ci Odpowiednie interpretcje wynikj bezpo±rednio lbo z przeliczeni σ lbo z grnicy i odpowiedniego przeliczeni Tblic t mówi równie» jkie elstyczno±ci substytucji mj funkcje grniczne
Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Mtemtyk 1 Šuksz Dwidowski Instytut Mtemtyki, Uniwersytet l ski Cªk oznczon Niech P = [, b] R b dzie przedziªem. Podziªem przedziªu P b dziemy nzywli k»d sko«czon rodzin Π = {P 1, P 2,..., P m } tkich przedziªów,»e
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Analiza Matematyczna I.2
Anliz Mtemtyczn I. wiczeni, seri, P. Nyr, /3 Zdnie. Niech f, g : (, ) R b d jednostjne ci gªe. Czy fg te» jest jednostjnie ci gª? Co si stnie, je±li zbiór (, ) zst pimy zbiorem (, )? Zdnie. Funkcj f :
N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x
I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)
Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co
Obliczanie caªek. Kwadratury
Rozdziª 6 Oblicznie cªek. Kwdrtury W tym rozdzile zjmiemy si zdniem obliczeni przybli»onego cªek postci: dl funkcji f, czy ogólniej: dl ρ dnej wgi. f(t) dt, f(t)ρ(t) dt, 6.1 Funkcj octve' qud() Do obliczni
Notatki do wykªadu z analizy matematycznej I. Piotr Bartªomiejczyk opracowali Krzysztof Woyke i Šukasz Zªotowski
Nottki do wykªdu z nlizy mtemtycznej I Piotr Brtªomiejczyk oprcowli Krzysztof Woyke i Šuksz ªotowski Instytut Mtemtyki Uniwersytet Gd«ski Przedmow Spis tre±ci Rozdziª 1. Grnice ci gów i funkcji 1 1. Grnice
RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.
RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
CAŁKA OZNACZONA JAKO SUMA SZEREGU
CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o
Wykªad 1. Macierze i wyznaczniki Macierze podstawowe okre±lenia
Wykªd 1 Mcierze i wyznczniki 11 Mcierze podstwowe okre±leni Denicj 1 Mcierz (rzeczywist ) wymiru m n, gdzie m, n N, nzywmy prostok tn tblic zªo»on z m n liczb rzeczywistych ustwionych w m wierszch i n
( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)
List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f
Matematyka II dla studentów Technologii Chemicznej
Mtemtyk II dl studentów Technologii Chemicznej Ilon IglewskNowk 17 lutego 16 r. Cªki oznczone Denicj 1 Podziªem odcink [, b] n n cz ±ci, n N, nzywmy zbiór gdzie = x < x 1 < < x n = b. P = {x, x 1,...,
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
f(g(x))g (x)dx = 6) x 2 1
Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:
Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b).
Wzory uproszczonego mno zeni: ( + b) = + b + b, ( b) = b + b, b = ( b) ( + b). Dzi ni n pot ¾egch: Dl ; y R orz ; b > 0 (dl pewnych wyk dników ; y z o zeni o ; b mog¾ być os bine w zle zności od sytucji)
Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1
Informacje pomocnicze:
dr Krzysztof yjewski Informatyka; S-I 0.in». 7 grudnia 06 Rachunek caªkowy funkcji jednej zmiennej. Caªka nieoznaczona. przydatne wzory: Informacje pomocnicze: Lp. Wzór Uwagi. dx = x c. adx = ax c 3. x
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Wykªad 8. Pochodna kierunkowa.
Wykªd jest prowdzony w opriu o podr znik Anliz mtemtyzn 2. enije, twierdzeni, wzory M. Gewert i Z. Skozyls. Wykªd 8. ohodn kierunkow. enij Nieh funkj f b dzie okre±lon przynjmniej n otozeniu punktu (x
1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x
Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie
3. F jest lewostronnie ciągła
Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
Funkcje, wielomiany. Informacje pomocnicze
Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a
Niewymierność i przestępność Materiały do warsztatów na WWW6
Niewymierność i przestępność Mteriły do wrszttów n WWW6 Piotr Achinger 23 sierpni 2010 1 Wstęp 1.1 Liczby wymierne i niewymierne Pytnie 1. Czy istnieją liczby niewymierne? Zdnie 1. Wykzć, że 1. 2 / Q,
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski
Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość
Matematyka dla biologów Zajęcia nr 7.
Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).
Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu)
Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Denicja pochodnej Denicja. Niech : X R, X R oraz U(x 0, r) X dla pewnego r > 0. Ilorazem ró»nicowym unkcji
PEWNIK DEDEKINDA i jego najprostsze konsekwencje
PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze
Metody Lagrange a i Hamiltona w Mechanice
Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Zagadnienie brachistochrony jako przyk lad zastosowania rachunku wariacyjnego
Zgnienie brchistochrony jko przyk l zstosowni rchunku wricyjnego 1. Przestwienie problemu. Równni Euler-Lgrenge 3. Tożsmość Beltrmiego 4. Równnie cykloiy 5. Zs Fermt 1 Przestwienie problemu Brchistochron
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych
Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki
INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.
VI. Rachunek całkowy. 1. Całka nieoznaczona
VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x
Całka Riemanna Dolna i górna suma całkowa Darboux
Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1
Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)
Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy
Zestw - Dziłni n wektorch i mcierzch, wyzncznik i rząd mcierzy PRZYKŁADOWE ZADANIA Z ROZWIAZANIAMI Dodjąc( bądź odejmując) do siebie dw wektory (lub więcej), dodjemy (bądź odejmujemy) ich odpowiednie współrzędne
x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n )
*** Elementy teorii popytu *** II. Funkcja popytu konsumenta x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) p, x = p 1 x 1 + p 2 x 2 + + p n x n cena koszyka x Zbiór wszystkich koszyków, na jakie sta
Analiza matematyczna dla informatyków Notatki z wykªadu. Maciej Paluszy«ski
Anliz mtemtyczn dl informtyków Nottki z wykªdu Mciej Pluszy«ski 5 styczni 9 Spis tre±ci Anliz mtemtyczn FAQ 3 Liczby rzeczywiste i zespolone 6 3 Funkcje 4 Ci gi 9 5 Szeregi 49 6 Grnic funkcji 63 7 Funkcje
Legalna ±ci ga z RRI 2015/2016
Legalna ±ci ga z RRI 205/206 Równania ró»niczkowe pierwszego rz du sprowadzalne do równa«o zmiennych rozdzielonych a) Równanie postaci: = f(ax + by + c), Równanie postaci: = f(ax + by + c), () wprowadzamy
Pochodne i całki, macierze i wyznaczniki
Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk
Funkcje wielu zmiennych
Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)
Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
XVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii
Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii
Analiza matematyczna i algebra liniowa Całka oznaczona
Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40
AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium
AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego
ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.
ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.
Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej
Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
usuwa niewymierność z mianownika wyrażenia typu
Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Analiza matematyczna dla informatyków Notatki z wykªadu. Maciej Paluszy«ski
Anliz mtemtyczn dl informtyków Nottki z wykªdu Mciej Pluszy«ski p¹dziernik 0 Spis tre±ci Anliz mtemtyczn FAQ 3 Liczby rzeczywiste i zespolone 6 3 Funkcje 3 4 Ci gi 3 5 Szeregi 5 6 Grnic funkcji 65 7 Funkcje
R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10
Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,
Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
Rachunek prawdopodobieństwa i statystyka matematyczna.
Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne
Szkice rozwi za«zada«z egzaminu 1
Egzamin - szkic rozwi za«sem. zimowy 06/07 AM, Budownictwo, IL PW Szkice rozwi za«zada«z egzaminu. Poda denicj granicy oraz ci gªo±ci funkcji. Def. (Heinego) Liczb g nazywamy granic funkcji f : D R w unkcie
Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.
Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem
Mathematica - podstawy
Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica
Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki
Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn
Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3
Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 2 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju
Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych
2. (8 punktów) 3. (8 punktów) 4. (8 punktów) 5. (8 punktów) EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Znajd¹ rozwi zanie poni»szego zagadnienia programowania liniowego: Zmaksymalizowa x 1 2x 2 + x 3 x 5 przy ograniczeniach x 1 3x 2 + x 3 + 2x 5 = 8
Analiza Matematyczna. Całka Riemanna
Anliz Mtemtyczn. Cłk Riemnn Aleksnder Denisiuk denisiuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych Wydził Informtyki w Gdńsku ul. Brzegi 55 8-45 Gdńsk 29 kwietni 217 1 / 2 Cłk Riemnn
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Makroekonomia Zaawansowana
Makroekonomia Zaawansowana wiczenia 1 Stan ustalony i log-linearyzacja MZ 1 / 27 Plan wicze«1 Praca z modelami DSGE 2 Stan ustalony 3 Log-linearyzacja 4 Zadania MZ 2 / 27 Plan prezentacji 1 Praca z modelami
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzmin mturlny mj 009 INFORMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Informtyk poziom podstwowy CZ I Nr zdni Nr podpunktu Mks. punktj z z zdni Mks. punktj z zdnie 1. Z poprwne uzupe nienie
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne
Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):
Wyk lad 1 Podstawowe wiadomości o macierzach
Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?
Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk
Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.
Wszystkim życzę Wesołych Świąt :-)
Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych
1 Granice funkcji wielu zmiennych.
AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki: