SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa."

Transkrypt

1 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data: r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program nauczania: Matematyka z plusem. Program nauczania matematyki dla trzeciego etapu edukacyjnego (klasy I- III gimnazjum). Marta Jucewicz, Marcin Karpiński, Jacek Lech. 3.Temat lekcji: Rozwiązywanie układów równań ćwiczenia. Podstawa programowa: Równania. Uczeń: -sprawdza, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi; -rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi. 4.Integracja: Wewnątrzprzedmiotowa. 5.Cele lekcji Wiadomości: kategoria A - zapamiętanie zdefiniować układ równań (A1) powiedzieć, do czego służą układy równań (A2) określić czym jest rozwiązanie układu równań (A3) kategoria B - zrozumienie sprawdzić, czy dana para liczb spełnia układ równań (B1) wyznaczyć niewiadomą z równania (B2) zna metodę podstawiania (B3) zna metodę przeciwnych współczynników (B4) Umiejętności: kategoria C - stosowanie wiadomości w sytuacjach typowych rozwiązać układ równań I stopnia z dwiema niewiadomymi metodą (C1) podstawiania rozwiązać układ równań I stopnia z dwiema niewiadomymi metodą (C2) przeciwnych współczynników pracować w grupie. (C3) kategoria D - stosowanie wiadomości w sytuacjach problemowych znaleźć błąd w rozumowaniu innego ucznia (D1)

2 dokonać oceny czyjejś pracy (D2) zapisać treść zadania w postaci układu równań (D3) Postawy i zainteresowania: kształtowanie wytrwałości w zdobywaniu wiedzy i umiejętności matematycznych motywowanie uczniów do kreatywności i samodzielności kształtowanie postaw dociekliwych, poszukujących i krytycznych wyrabianie systematyczności w pracy kształtowanie odpowiedzialności za powierzone zadania 6. Strategie nauczania: strategia problemowa strategia oddziaływania na rzeczywistość - praktyka, ćwiczenia, zadania 7. Metody nauczania: pogadanka układanka dydaktyczna ćwiczenia; 8. Zasady nauczania: zasada poglądowości zasada systematyczności (powtórzenie znanych już wiadomości, wdrażanie uczniów do samodzielnej i systematycznej pracy) zasada świadomego i aktywnego udziału ucznia w procesie kształcenia (uczniowie rozwiązują zadania na tablicy oraz w parach) zasada indywidualizacji i zespołowości zasada operatywności wiedzy (wdrażanie uczniów do samodzielnego rozwiązywania określonych problemów ) zasada trwałości wiedzy uczniów ( zadania mające na celu utrwalenie przerobionego materiału). 9. Formy pracy uczniów: praca w grupach - grupy dwuosobowe praca zbiorowa 10. Środki dydaktyczne: układanka dydaktyczna kserokopie rozwiązanych zadań tablica interaktywna. 11. Wykaz piśmiennictwa dla nauczyciela podręcznik Matematyka 2 Praca zbiorowa pod redakcją Małgorzaty Dobrowolskiej str Wersja dla nauczyciela; matematyka 2. Zbiór zadań dla gimnazjum. Marcin Braun, Jacek Lech str dla ucznia podręcznik Matematyka 2 Praca zbiorowa pod redakcją Małgorzaty Dobrowolskiej str

3 12. Organizacja zajęć lekcyjnych. Etapy lekcji Faza wstępna Faza realizacyjna Zagadnienia, zadania,problemy lekcji Powitanie uczniów. Sprawdzenie obecności. Sprawdzenie zadania domowego. Zapisanie tematu lekcji na tablicy. Zapoznanie uczniów z celami lekcji. Przypomnienie wiadomości na temat układów równań i metod ich rozwiązywania. Znajomość metod rozwiązywania układów równań. Sprawdzenie poprawności rozwiązania zadań przez uczniów. Sprawdzenie, czy dana para liczb jest rozwiązaniem układu równań. Umiejętność rozwiązywania układów równań. Analiza ocen "kartkówek" wystawionych przez uczniów. Sposoby realizacji zagadnień, zadań, problemów Spełnienie założonych celów lekcji Uwagi o realizacji Wybrani uczniowie odpowiadają na pytania nauczyciela. Uczniowie dopasowują do siebie elementy układanki będących kolejnymi etapami rozwiązania układów równań. Załącznik I Przedstawienie poprawnej kolejności elementów układanki. Uczniowie sprawdzają przygotowane przez nauczyciela "kartkówki". Załącznik II i III Samodzielne rozwiązanie dwóch układów równań poznanymi metodami. Uczniowie dokonują oceny "kartkówek" napisanych przez innego ucznia. (A1), (A2),(A3) (B3), (B4), (C3) (B1),(D1) (B2),(C1),(C2) (D2) Praca w grupach dwuosobowych. Prezentacja na tablicy interaktywnej poprawnej wersji układanki.dyskusja. Śledzenia toku rozwiązania, wyszukiwanie błędów, poprawne rozwiązanie danych układów. Wybrani uczniowie przedstawiają poprawnie rozwiązane układy równań z "kartkówek" na tablicy. Ocena "kartkówek" przez uczniów. Uzasadnienia tych ocen.

4 Faza podsumowująca Pytania sprawdzające stopień utrwalenia materiału. Zadanie pracy domowej. Ewaluacja lekcji Zad.9 str.103 (D3) Zaznaczenie znakiem " + " lub " - " każdej kolumny w tabelce narysowanej na tablicy, gdzie " + " oznacza tak, a " - " nie. Czy potrafisz sprawdzić, czy dana para liczb spełnia układ równań? Czy potrafisz rozwiązać układ równań metodą podstawiania? Czy potrafisz rozwiązać układ równań metodą przeciwnych współczynników?

5 ZAŁĄCZNIK I UKŁADANKA DYDAKTYCZNA Ułóż w prawidłowej kolejności poszczególne etapy rozwiązania układów równań. Nie kieruj się numerkami obok. Mają one posłużyć Ci do sprawdzenia poprawnej kolejności tej układanki. Następnie odpowiedz na pytanie "Jaką metodą zostały rozwiązane te układy?" Uzasadnij dlaczego została wybrana dana metoda. I II 4(x 2) y = 1 (2) 2 x 4 y = 8 /: 2 4 x 8 y = 1 (4) x 2 y = 4 (3) 5 x 7 y = 3 / 2 2 x 3 y = 7 / ( 5) 10 x 14 y = 6 10 x + 15 y = 35 (5) + y = 29 (3) 4 x y = x = y 4(4 + 2 y ) y = 9 (1) x = y y y = 9 (10) x = y 7 y = 9 16 (7) x = y 7 y = 7 /:7 (9) x = y (7) y = 29 2 x 3( 29)= 7 (1) y = 29 2 x + 87 = 7 (4) y = 29 2 x = 7 87 (6) y = 29 2 x = 80 /:2 (2) x = 40 y = 29 (6) y = 1 x = ( 1) (8) y = 1 x = 4 2 (5) x = 2 y = 1

6 ZAŁACZNIK II Piotr rozwiązał zadany mu układ równań. Sprawdź,czy otrzymana przez niego para liczb spełnia ten układ. Jeśli nie znajdź błąd, a następnie rozwiąż ten układ metodą wybraną przez Piotra. a 3 + b 4 = 1 / 12 a 4 + b =1 / a + 3 b = 12 2 a + b = 8 4 a + 3 b = 12 4 a + 3(8 2a) = 12 4 a a = 12 2a = a = 36 /:( 2) b = 8 2 a a = 18 b = 8 2 ( 18) a = 18 b = a = 18 b = 44 KARTKÓWKA I Odpowiedz na pytanie: " Co Piotr wykonał dobrze, a co źle?" Odpowiedź uzasadnij.

7 ZAŁACZNIK III Paweł rozwiązał zadany mu układ równań. Sprawdź,czy otrzymana przez niego para liczb spełnia ten układ. Jeśli nie znajdź błąd, a następnie rozwiąż ten układ metodą wybraną przez Pawła. 2(x + 3) (1 y) = 9 2 x 4( y + 1) = 10 2 x y = 9 2 x 4 y 4 = 10 2 x + 5 y = 9 2 x 4 y = x y = x 4 y = 14 / ( 1) 2 x y = 4 2 x 4 y = y = 10 /:( 5) 2 x 2 = 4 2 x = x = 6 /: 2 x = 3 KARTKÓWKA II Odpowiedz na pytanie: " Co Paweł wykonał dobrze, a co źle?" Odpowiedź uzasadnij.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program nauczania: Matematyka

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 3.Temat lekcji: Wyrażenia algebraiczne -powtórzenie i utrwalenie wiadomości. 4.Integracja: wewnątrzprzedmiotowa

SCENARIUSZ LEKCJI. 3.Temat lekcji: Wyrażenia algebraiczne -powtórzenie i utrwalenie wiadomości. 4.Integracja: wewnątrzprzedmiotowa SCENARIUSZ LEKCJI.Informacje wstępne Publiczne Gimnazjum Nr 6 w Opolu Data:2.2.202 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska 2.Program nauczania

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:15.05.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:05.03.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Wykresy funkcji. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Wykresy funkcji. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 21.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń : SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń : SCENARIUSZ LEKCJI 1. Informacje wstępne: Data : 01.10.2012 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Międzyprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Międzyprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:12.06.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

Scenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r.

Scenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r. 1. Informacje wstępne: Data: 7 maja 013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka..

Bardziej szczegółowo

Scenariusz lekcji. 1. Informacje wstępne: Data: 26 luty 2013r.

Scenariusz lekcji. 1. Informacje wstępne: Data: 26 luty 2013r. 1. Informacje wstępne: Data: 26 luty 2013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Wyrażenia algebraiczne. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Wyrażenia algebraiczne. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.03.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: oblicza wartości liczbowe wyrażeń algebraicznych mnoży jednomiany.

SCENARIUSZ LEKCJI. Podstawa programowa: oblicza wartości liczbowe wyrażeń algebraicznych mnoży jednomiany. SCENARIUSZ LEKCJI. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 04.03.03 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka. Program nauczania: Matematyka

Bardziej szczegółowo

SCENARIUSZ LEKCJI. kategoria B zrozumienie

SCENARIUSZ LEKCJI. kategoria B zrozumienie SCENARIUSZ LEKCJI 1. Informacje wstępne: Data: 12.11.2012 Klasa: I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Równania. Uczeń: rozwiązuje równania stopnia pierwszego z jedną niewiadomą.

SCENARIUSZ LEKCJI. Podstawa programowa: Równania. Uczeń: rozwiązuje równania stopnia pierwszego z jedną niewiadomą. SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 27.05.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Uczeń zapisuje: wzór na pole prostokąta i kwadratu ( B 1 ) jednostki długości ( B 2 ) podstawowe jednostki miar pola ( B 3 )

SCENARIUSZ LEKCJI. Uczeń zapisuje: wzór na pole prostokąta i kwadratu ( B 1 ) jednostki długości ( B 2 ) podstawowe jednostki miar pola ( B 3 ) SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 07.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

Scenariusz lekcji matematyki: Podsumowanie wiadomości o wielomianach rozwiązywanie interaktywnego testu. Scenariusz lekcji

Scenariusz lekcji matematyki: Podsumowanie wiadomości o wielomianach rozwiązywanie interaktywnego testu. Scenariusz lekcji Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r. Klasa: Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program

Bardziej szczegółowo

Scenariusz lekcji. 1. Informacje wstępne: Data: 16 października 2012r.

Scenariusz lekcji. 1. Informacje wstępne: Data: 16 października 2012r. 1. Informacje wstępne: Data: 16 października 2012r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot:

Bardziej szczegółowo

Scenariusz lekcji 1. Informacje wst pne: 2. Program nauczania: 3. Temat zaj 4. Integracja: 5. Cele lekcji: Ucze potrafi:

Scenariusz lekcji 1. Informacje wst pne: 2. Program nauczania: 3. Temat zaj 4. Integracja: 5. Cele lekcji: Ucze potrafi: Scenariusz lekcji 1. Informacje wstępne: Data: 25 września 2012r. Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program nauczania:

Bardziej szczegółowo

Scenariusz lekcyjny Rozwiązywanie zadań z wykorzystaniem działań na logarytmach. Scenariusz lekcyjny

Scenariusz lekcyjny Rozwiązywanie zadań z wykorzystaniem działań na logarytmach. Scenariusz lekcyjny Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym

Bardziej szczegółowo

Scenariusz lekcyjny Przekształcenie wzorów występujących w matematyce, fizyce, chemii. Scenariusz lekcyjny

Scenariusz lekcyjny Przekształcenie wzorów występujących w matematyce, fizyce, chemii. Scenariusz lekcyjny Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym

Bardziej szczegółowo

Wykazywanie tożsamości trygonometrycznych. Scenariusz lekcji

Wykazywanie tożsamości trygonometrycznych. Scenariusz lekcji Scenariusz lekcji 1. Informacje wstępne: Data: 28 maja 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:

Bardziej szczegółowo

Scenariusz lekcyjny Zadania typu maturalnego: procenty, przedziały, wartość bezwzględna, błędy przybliżeń, logarytmy. Scenariusz lekcyjny

Scenariusz lekcyjny Zadania typu maturalnego: procenty, przedziały, wartość bezwzględna, błędy przybliżeń, logarytmy. Scenariusz lekcyjny Scenariusz lekcyjny Data: 20 listopad 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program

Bardziej szczegółowo

Scenariusz lekcyjny Zastosowanie układów równań liniowych do rozwiązywania zadań tekstowych. Scenariusz lekcyjny

Scenariusz lekcyjny Zastosowanie układów równań liniowych do rozwiązywania zadań tekstowych. Scenariusz lekcyjny Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym

Bardziej szczegółowo

SCENARIUSZ LEKCJI. - pracować w sposób wytrwały i samodzielny, - pracować zgodnie z pozytywnymi postawami etycznymi, - dobrze organizować pracę,

SCENARIUSZ LEKCJI. - pracować w sposób wytrwały i samodzielny, - pracować zgodnie z pozytywnymi postawami etycznymi, - dobrze organizować pracę, SCENARIUSZ LEKCJI 1. Informacje wstępne Klasa VI PSP 20 w Opolu Czas trwania zajęć 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania Matematyka z plusem

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 3. Temat lekcji Obliczanie drogi, prędkości i czasu w ruchu jednostajnym.

SCENARIUSZ LEKCJI. 3. Temat lekcji Obliczanie drogi, prędkości i czasu w ruchu jednostajnym. SCENARIUSZ LEKCJI 1. Informacje wstępne Klasa VI PSP 20 w Opolu Czas trwania zajęć 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania Matematyka z plusem

Bardziej szczegółowo

SCENARIUSZ LEKCJI. ćwiczenia utrwalające. 4. Integracja:

SCENARIUSZ LEKCJI. ćwiczenia utrwalające. 4. Integracja: SCENARIUSZ LEKCJI 1. Informacje wstępne Klasa IV c PSP 20 w Opolu Czas trwania zajęć 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania Matematyka z

Bardziej szczegółowo

Scenariusz lekcji. 1. Informacje wstępne: Klasa: I liceum ogólnokształcącego. Czas trwania zajęć: 60 minut; Nauczany przedmiot: matematyka.

Scenariusz lekcji. 1. Informacje wstępne: Klasa: I liceum ogólnokształcącego. Czas trwania zajęć: 60 minut; Nauczany przedmiot: matematyka. 1. Informacje wstępne: Klasa: I liceum ogólnokształcącego. Czas trwania zajęć: 60 minut; Nauczany przedmiot: matematyka. Scenariusz lekcji matematyki: Scenariusz lekcji 2. Program nauczania: M. Karpiński,

Bardziej szczegółowo

SCENARIUSZ LEKCJI 3. Ułamkowy as - powtórzenie wiadomo ci o ułamkach zwykłych cz.1.

SCENARIUSZ LEKCJI 3. Ułamkowy as - powtórzenie wiadomo ci o ułamkach zwykłych cz.1. SCENARIUSZ LEKCJI 1. Informacje wstępne Klasa IV c PSP 20 w Opolu Czas trwania zajęć 2 45 minut Nauczany przedmiot matematyka przedmiotu Małgorzata Jackowska 2. Program nauczania Matematyka z plusem 3.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. - odpowiedzialnie wywiązywać się z powierzonego zadania. - pracować w sposób kreatywny i samodzielny, - dobrze organizować pracę,

SCENARIUSZ LEKCJI. - odpowiedzialnie wywiązywać się z powierzonego zadania. - pracować w sposób kreatywny i samodzielny, - dobrze organizować pracę, SCENARIUSZ LEKCJI 1. Informacje wstępne Klasa IV c PSP 20 w Opolu Czas trwania zajęć 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania Matematyka z

Bardziej szczegółowo

Scenariusz lekcji. Opracował: Paweł Słaby

Scenariusz lekcji. Opracował: Paweł Słaby Scenariusz lekcji 1. Informacje wstępne: Klasa: uczniowie szkoły ponadgimnazjalnej, realizujący poziom podstawowy bądź rozszerzony; Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka.. Temat

Bardziej szczegółowo

Scenariusz lekcyjny Obliczanie pierwiastków dowolnego stopnia i stosowanie praw działań na pierwiastkach. Scenariusz lekcyjny

Scenariusz lekcyjny Obliczanie pierwiastków dowolnego stopnia i stosowanie praw działań na pierwiastkach. Scenariusz lekcyjny Scenariusz lekcyjny Data: 25 wrzesień 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program

Bardziej szczegółowo

Scenariusz lekcyjny Przesunięcia wykresu funkcji równolegle do osi odciętych i osi rzędnych. Scenariusz lekcyjny

Scenariusz lekcyjny Przesunięcia wykresu funkcji równolegle do osi odciętych i osi rzędnych. Scenariusz lekcyjny Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 3. Temat lekcji Ułamek jako część całości.

SCENARIUSZ LEKCJI. 3. Temat lekcji Ułamek jako część całości. SCENARIUSZ LEKCJI 1. Informacje wstępne Klasa IV PSP 20 w Opolu Czas trwania zajęć 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania Matematyka z plusem

Bardziej szczegółowo

Scenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach;

Scenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach; Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:

Bardziej szczegółowo

SCENARIUSZ LEKCJI. międzyprzedmiotowa treści zadań nawiązują do edukacji polonistycznej.

SCENARIUSZ LEKCJI. międzyprzedmiotowa treści zadań nawiązują do edukacji polonistycznej. SCENARIUSZ LEKCJI 1. Informacje wstępne Data 15.11.2012 r. Klasa IV c Czas trwania zajęć 45 minut Nauczany przedmiot matematyka 2. Program nauczania Matematyka z plusem 3. Temat lekcji Obliczenia zegarowe.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. międzyprzedmiotowa lekcja nawiązuje do treści przyrodniczych.

SCENARIUSZ LEKCJI. międzyprzedmiotowa lekcja nawiązuje do treści przyrodniczych. SCENARIUSZ LEKCJI 1. Informacje wstępne Data 06.12.2012 r. Klasa IV c PSP 20 w Opolu Czas trwania zajęć 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Zespół Szkół Ekonomicznych w Brzozowie PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Przedmiotowy System Oceniania (PSO) z matematyki opracowany na podstawie programu nauczania nr DKW-4015-37/01 oraz podręczników

Bardziej szczegółowo

Scenariusz lekcji matematyki: Zastosowanie równań i układów równań do rozwiązywania zadań tekstowych. Scenariusz lekcji

Scenariusz lekcji matematyki: Zastosowanie równań i układów równań do rozwiązywania zadań tekstowych. Scenariusz lekcji Scenariusz lekcji 1. Informacje wstępne: Klasa: uczniowie klasy I szkoły ponadgimnazjalnej Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Temat zajęć:. 3. Integracja: międzyprzedmiotowa:

Bardziej szczegółowo

Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach.

Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach. Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach. Opracowała: mgr inż. Monika Grzegorczyk 1. Temat lekcji: Równania pierwszego stopnia z jedną niewiadomą w zadaniach.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. (podstawa programowa pkt 7. Uczeń rozpoznaje i nazywa figury: punkt, prosta, półprosta i odcinek).

SCENARIUSZ LEKCJI. (podstawa programowa pkt 7. Uczeń rozpoznaje i nazywa figury: punkt, prosta, półprosta i odcinek). SCENARIUSZ LEKCJI 1. Informacje wstępne Data 07.01.2013 r. Klasa IV c PSP 20 w Opolu Czas trwania zajęć 2 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania

Bardziej szczegółowo

Proporcjonalność prosta i odwrotna

Proporcjonalność prosta i odwrotna Literka.pl Proporcjonalność prosta i odwrotna Data dodania: 2010-02-14 14:32:10 Autor: Anna Jurgas Temat lekcji dotyczy szczególnego przypadku funkcji liniowej y=ax. Jednak można sie dopatrzeć pewnej różnicy

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5

KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KLASA 5E PROWADZĄCA: Anna Sałyga DZIAŁ PROGRAMOWY: Arytmetyka TEMAT: Dodawanie i odejmowanie liczb mieszanych. CELE: Poziom wiadomości: (kategoria A) uczeń zna algorytm

Bardziej szczegółowo

Przedmiotowy System Oceniania z fizyki Gimnazjum i liceum

Przedmiotowy System Oceniania z fizyki Gimnazjum i liceum Przedmiotowy System Oceniania z fizyki Gimnazjum i liceum Bieżąca ocena osiągnięć ucznia polega na odnotowywaniu postępów i ocenianiu osiągnięć jego pracy na podstawie: - obserwacji aktywności uczniów,

Bardziej szczegółowo

ARKUSZ HOSPITACYJNY. (wyłącznie do użytku służbowego)

ARKUSZ HOSPITACYJNY. (wyłącznie do użytku służbowego) 1. Imię i nazwisko nauczyciela 2. Przedmiot ARKUSZ HOSPITACYJNY (wyłącznie do użytku służbowego) 3. Data 4. Długość jednostki lekcyjnej 5. Klasa szkoła specjalność (zawód) 6. Temat lekcji 7. Typ zajęć

Bardziej szczegółowo

1. Scenariusz lekcji: Tuningi samochodów

1. Scenariusz lekcji: Tuningi samochodów 1. Scenariusz lekcji: Tuningi samochodów a. b. 1. Cele lekcji i. a) Wiadomości Uczeń: wie, jak skutecznie wyszukiwać informacje w sieci oraz jak wykorzystać adresy stron internetowych, zna korzyści płynące

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS I, II, III W GIMNAZJUM NR 2 W LUDŹMIERZU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS I, II, III W GIMNAZJUM NR 2 W LUDŹMIERZU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS I, II, III W GIMNAZJUM NR 2 W LUDŹMIERZU I. Dokumenty prawne stanowiące podstawę PSO Przedmiotowy system oceniania opracowany został po przeprowadzonej

Bardziej szczegółowo

Monika Góral, Krzysztof Grynienko, Monika Jasińska, Piotr Kryszkiewicz

Monika Góral, Krzysztof Grynienko, Monika Jasińska, Piotr Kryszkiewicz Powtórzenie wiadomości o układach równań { { 2x + 3y = 5 6x + 9y = 15 x + 2y = 7 2x y = 1 { 4x + 2y = 8 5x + 3y = 9 { 4x + y = 2 5x 3y = 11 2x + 3y = 5 6x + 9y = 15 4x + 2y = 8 5x + 3y = 9 { MATEMATYKA

Bardziej szczegółowo

Monika Góral, Krzysztof Grynienko, Monika Jasińska, Piotr Kryszkiewicz

Monika Góral, Krzysztof Grynienko, Monika Jasińska, Piotr Kryszkiewicz Powtórzenie wiadomości o układach równań 2x + 3y = 5 6x + 9y = 15 x + 2y = 7 2x y = 1 4x + 2y = 8 5x + 3y = 9 4x + y = 2 5x 3y = 11 2x + 3y = 5 6x + 9y = 15 4x + 2y = 8 5x + 3y = 9 MATEMATYKA Scenariusz

Bardziej szczegółowo

PRZEDMIOTOWE OCENIANIE Z PRZYRODY

PRZEDMIOTOWE OCENIANIE Z PRZYRODY PRZEDMIOTOWE OCENIANIE Z PRZYRODY W SZKOLE PODSTAWOWEJ W CHORZEWIE W KLASACH IV VI I. Główne założenia PO... 2 II. Obszary aktywności podlegające ocenie... 2 III. Sposoby sprawdzania wiadomości i umiejętności

Bardziej szczegółowo

1. Scenariusz lekcji: Najnowsze marki samochodów

1. Scenariusz lekcji: Najnowsze marki samochodów 1. Scenariusz lekcji: Najnowsze marki samochodów a. b. 1. Cele lekcji i. a) Wiadomości Uczeń: wie, jak skutecznie wyszukiwać informacje w sieci oraz jak wykorzystać adresy stron internetowych, zna korzyści

Bardziej szczegółowo

Zasady Oceniania Przedmiot: Matematyka

Zasady Oceniania Przedmiot: Matematyka I. Kontrakt między nauczycielem i uczniem Zasady Oceniania Przedmiot: Matematyka 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Prace klasowe, sprawdziany i odpowiedzi ustne są obowiązkowe.

Bardziej szczegółowo

Scenariusz lekcji matematyki dla klasy I Gimnazjum

Scenariusz lekcji matematyki dla klasy I Gimnazjum Scenariusz lekcji matematyki dla klasy I Gimnazjum Temat: Przekształcanie wzorów. Cel ogólny : przekształcanie wzorów matematycznych i fizycznych z zastosowaniem metod rozwiązywania równań. Cele operacyjne:

Bardziej szczegółowo

GIMNAZJUM NR 1 W GDYNI Przedmiotowe zasady oceniania z chemii

GIMNAZJUM NR 1 W GDYNI Przedmiotowe zasady oceniania z chemii GIMNAZJUM NR 1 W GDYNI Przedmiotowe zasady oceniania z chemii 1. Oceny wystawiane będą w obowiązującej 6-cio stopniowej skali (od 1-6) oraz znakami "+" i "-" 2. Na ocenę semestralną (roczną) wpływają oceny,

Bardziej szczegółowo

Cele nauczania: a)poznawcze: Cele ogólne kształcenia: -uczeń umie odejmować ułamki dziesiętne. Aktywności matematyczne:

Cele nauczania: a)poznawcze: Cele ogólne kształcenia: -uczeń umie odejmować ułamki dziesiętne. Aktywności matematyczne: Konspekt lekcji matematyki: Klasa: czwarta Prowadzący: Elżbieta Kruczek, nauczyciel Samorządowej Szkoły Podstawowej w Brześciu (z wykorzystaniem podręcznika Matematyka z plusem) Temat: Odejmowanie ułamków

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKA W KLASIE IV i VII SZKOŁY PODSTAWOWEJ

PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKA W KLASIE IV i VII SZKOŁY PODSTAWOWEJ PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKA W KLASIE IV i VII SZKOŁY PODSTAWOWEJ I. OBSZARY AKTYWNOŚCI. 1. Pisemne prace sprawdzające (sprawdziany, kartkówki). Sprawdziany i kartkówki są przeprowadzane

Bardziej szczegółowo

Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej

Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej Temat: Wzory Viete a. Zastosowanie wzorów Viete a w zadaniach. Czas trwania lekcji: dwie jednostki lekcyjne (90 minut) Powiązanie z wcześniejszą

Bardziej szczegółowo

Przedmiotowy system oceniania MATEMATYKA Miejskie Gimnazjum nr 3 im. Jana Pawła II

Przedmiotowy system oceniania MATEMATYKA Miejskie Gimnazjum nr 3 im. Jana Pawła II Przedmiotowy system oceniania MATEMATYKA Miejskie Gimnazjum nr 3 im. Jana Pawła II Przedmiotem oceniania są: - wiadomości, - umiejętności, - postawa ucznia i jego aktywność. Cele ogólne oceniania: - rozpoznanie

Bardziej szczegółowo

SCENARIUSZ LEKCJI. (podstawa programowa pkt 11. Uczeń oblicza obwód wielokąta o danych długościach boków).

SCENARIUSZ LEKCJI. (podstawa programowa pkt 11. Uczeń oblicza obwód wielokąta o danych długościach boków). SCENARIUSZ LEKCJI 1. Informacje wstępne Klasa IV PSP 20 w Opolu Czas trwania zajęć 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania Matematyka z plusem

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII

PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII Przedmiotowy System Oceniania z chemii w gimnazjum opracowany został na podstawie: Rozporządzenia MEN z dnia 30 kwietnia 2007 r. Podstawy Programowej (23.12.2008)

Bardziej szczegółowo

Scenariusz zajęć z edukacji wczesnoszkolnej

Scenariusz zajęć z edukacji wczesnoszkolnej Scenariusz zajęć z edukacji wczesnoszkolnej 1. Informacje wstępne: Data 29 V 2013 Klasa II c 2. Realizowany program nauczania Gra w kolory program nauczania edukacji wczesnoszkolnej Autorka Ewa Stolarczyk

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W XXV Liceum Ogólnokształcącym im. Stefana Żeromskiego w Łodzi w roku szkolnym 2013/2014 klasy 1 i 2 Podstawa prawna do opracowania Przedmiotowego Systemu Oceniania:

Bardziej szczegółowo

ZASADY OCENIANIA Z MATEMATYKI

ZASADY OCENIANIA Z MATEMATYKI Szkoła Podstawowa nr 2 im. Jana Pawła II w Koronowie ZASADY OCENIANIA Z MATEMATYKI Opracowanie: Izabela Maćkowiak, Grażyna Romańska, Joanna Włodarczyk, Anna Grochowska Podstawy prawne Przedmiotowe zasady

Bardziej szczegółowo

PSO jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Gimnazjum w Zespole Szkół im. Jana Pawła II w Masłowie.

PSO jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Gimnazjum w Zespole Szkół im. Jana Pawła II w Masłowie. PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI PSO jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Gimnazjum w Zespole Szkół im. Jana Pawła II w Masłowie. W procesie dydaktycznym oceniane są wiadomości i umiejętności

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH W KLASACH IV VI SZKOŁY PODSTAWOWEJ I. OBSZARY AKTYWNOŚCI.

PRZEDMIOTOWY SYSTEM OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH W KLASACH IV VI SZKOŁY PODSTAWOWEJ I. OBSZARY AKTYWNOŚCI. PRZEDMIOTOWY SYSTEM OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH W KLASACH IV VI SZKOŁY PODSTAWOWEJ I. OBSZARY AKTYWNOŚCI. 1. Pisemne prace sprawdzające (sprawdziany, kartkówki). Sprawdziany i kartkówki są przeprowadzane

Bardziej szczegółowo

Gimnazjum z Oddziałami Dwujęzycznymi nr 83 Zasady oceniania Chemia Dla klas: 1o, 1d, 2o, 2d, 3d. Nauczyciel: mgr Justyna Jankowska-Święch

Gimnazjum z Oddziałami Dwujęzycznymi nr 83 Zasady oceniania Chemia Dla klas: 1o, 1d, 2o, 2d, 3d. Nauczyciel: mgr Justyna Jankowska-Święch Gimnazjum z Oddziałami Dwujęzycznymi nr 83 Zasady oceniania Chemia Dla klas: 1o, 1d, 2o, 2d, 3d Nauczyciel: mgr Justyna Jankowska-Święch 1.CELE OCENIANIA: Cele ogólne oceniania z chemii: -rozpoznanie przez

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE 1

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE 1 SCENARIUSZ LEKCJI MATEMATYKI W KLASIE 1 Tytuł cyklu WsiP Etap edukacyjny Autor scenariusza Przedmiot Czas trwania Miejsce Cele Matematyka, autorzy: M.Trzeciak, M. Jankowska szkoła ponadgimnazjalna Adam

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI

KRYTERIA OCENIANIA Z MATEMATYKI KRYTERIA OCENIANIA Z MATEMATYKI Kryteria oceniania z matematyki są zgodne z Wewnątrzszkolnym Systemem Oceniania w Zespole Szkół w Rajczy. Nauczanie matematyki w szkole podstawowej w klasach IV odbywa się

Bardziej szczegółowo

KONSPEKT ZAJĘĆ EDUKACYJNYCH

KONSPEKT ZAJĘĆ EDUKACYJNYCH KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM 1 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM I System oceniania w nauczaniu matematyki ma sprzyjać : dostarczaniu uczniowi bieżącej informacji o poziomie jego osiągnięć edukacyjnych i postępach

Bardziej szczegółowo

Wymagania edukacyjne z edukacji dla bezpieczeństwa

Wymagania edukacyjne z edukacji dla bezpieczeństwa Wymagania edukacyjne z edukacji dla bezpieczeństwa Wymagania edukacyjne z zostały opracowane na podstawie: 1. Podstawy programowej dla gimnazjum z edukacji dla bezpieczeństwa 2. Programu nauczania edukacji

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w Szkole Podstawowej nr 4 i Gimnazjum Nr 2 w Hajnówce.

Przedmiotowy system oceniania z fizyki w Szkole Podstawowej nr 4 i Gimnazjum Nr 2 w Hajnówce. Przedmiotowy system oceniania z fizyki w Szkole Podstawowej nr 4 i Gimnazjum Nr 2 w Hajnówce. I. Przedmiotowy system oceniania został sporządzony w oparciu o Wewnątrzszkolny System Oceniania. II. Przedmiotem

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI

PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI Dla klas I III gimnazjum Opracowała Beata Giza 1 1. Przedmiotowe Zasady Oceniania z fizyki obejmują ocenę wiadomości i umiejętności wynikających z programu nauczania.

Bardziej szczegółowo

Konspekt lekcji matematyki

Konspekt lekcji matematyki Konspekt lekcji matematyki 1) Nauczyciel: Ewelina Śliż ) Przedmiot: Matematyka 3) Szkoła: Gimnazjum 4) Klasa: III 5) Czas trwania lekcji: 45 min 6) Nr programu nauczania: DPN 500 17 /08 7) Jednostka metodyczna:

Bardziej szczegółowo

Przedmiotowy system oceniania Chemia ZKPiG 12 Gimnazjum 16

Przedmiotowy system oceniania Chemia ZKPiG 12 Gimnazjum 16 Przedmiotowy system oceniania Chemia 2012-09-01 ZKPiG 12 Gimnazjum 16 PRZEDMIOTOWY SYSTEM OCENIANIA UCZNIÓW Z CHEMII. 1. Wiedza i umiejętności ucznia mogą być sprawdzane poprzez: odpowiedź ustną, sprawdzian

Bardziej szczegółowo

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Scenariusz lekcji Temat: Czym różni się atom od cząsteczki? Teresa Bagińska, Gimnazjum w Nowym Mieście Lub. Przedmiot chemia Klasa pierwsza Czas trwania 45 minut Dział programowy: Wewnętrzna budowa materii.

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY W KLASACH IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY W KLASACH IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY W KLASACH IV VI I. CEL OCENY Przedmiotem oceny jest 1. Aktualny stan wiedzy ucznia i jego umiejętności. 2. Tempo przyrostu wiadomości i umiejętności. 3. Stosowanie

Bardziej szczegółowo

Scenariusz zajęć otwartych dla nauczycieli Publicznego Gimnazjum w Pajęcznie prowadzonych przez Iwonę Jędrzejewską

Scenariusz zajęć otwartych dla nauczycieli Publicznego Gimnazjum w Pajęcznie prowadzonych przez Iwonę Jędrzejewską Klasa: Przedmiot: Dział programu: Scenariusz zajęć otwartych dla nauczycieli Publicznego Gimnazjum w Pajęcznie prowadzonych przez Iwonę Jędrzejewską III Matematyka Funkcje Temat: Powtórzenie i utrwalenie

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania z chemii

Przedmiotowe Zasady Oceniania z chemii Gimnazjum Nr 1 im. Kazimierza Wielkiego w Radoszycach Przedmiotowe Zasady Oceniania z chemii Nauczyciel chemii: Barbara Ciechanowska Radoszyce, dnia 01.09.2015 1. Założenia ogólne: a/ Ocenie podlegają

Bardziej szczegółowo

G I M N A Z J U M I M. A R M I I K R A J O W E J RAPORT Z EWALUACJI WEWNĘTRZNEJ W PIASKU 2013/2014. Piasek, czerwiec 2014 r.

G I M N A Z J U M I M. A R M I I K R A J O W E J RAPORT Z EWALUACJI WEWNĘTRZNEJ W PIASKU 2013/2014. Piasek, czerwiec 2014 r. G I M N A Z J U M I M. A R M I I K R A J O W E J W PIASKU RAPORT Z EWALUACJI WEWNĘTRZNEJ 2013/2014 Piasek, czerwiec 2014 r. Przedmiot ewaluacji: Uczniowie nabywają wiadomości określone w podstawie programowej.

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI. W KLASACH IV VI SZKOŁY PODSTAWOWEJ im. ORŁA BIAŁEGO W BORAWEM

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI. W KLASACH IV VI SZKOŁY PODSTAWOWEJ im. ORŁA BIAŁEGO W BORAWEM PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ im. ORŁA BIAŁEGO W BORAWEM 1. Procedury osiągania celów Podstawową formą organizacyjną nauczania matematyki w szkole jest lekcja.

Bardziej szczegółowo

Przedmiotowy System Oceniania z Chemii w Gimnazjum Nr 105 w Warszawie

Przedmiotowy System Oceniania z Chemii w Gimnazjum Nr 105 w Warszawie Przedmiotowy System Oceniania z Chemii w Gimnazjum Nr 105 w Warszawie (opracowany na podstawie Statutu Zespołu Szkół Nr 115 w Warszawie) I. Analiza dokumentów. Program Ciekawa chemia dopuszczony do użytku

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY DLA KLAS IV - VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY DLA KLAS IV - VI PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY DLA KLAS IV - VI I. CEL OCENY Przedmiotem oceny jest: 1 Aktualny stan wiedzy ucznia i jego umiejętności. 2. Tempo przyrostu wiadomości i umiejętności. 3. Stosowanie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII

PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII I. CELE OCENIANIA OSIĄGNIĘĆ UCZNIÓW: - poinformowanie ucznia o poziomie jego osiągnięć edukacyjnych i postępach w tym zakresie; - pomoc uczniowi w samodzielnym planowaniu

Bardziej szczegółowo

Przedmiotowy System Oceniania z Matematyki

Przedmiotowy System Oceniania z Matematyki Przedmiotowy System Oceniania z Matematyki Opracowany na podstawie: 1. Podstawy programowej dla szkoły podstawowej z matematyki. 2. Programu nauczania Matematyka z kluczem klasa 4, 5, 6 i 7 3. Podręcznika

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z BIOLOGII W GIMNAZJUM NR 1

PRZEDMIOTOWY SYSTEM OCENIANIA Z BIOLOGII W GIMNAZJUM NR 1 PRZEDMIOTOWY SYSTEM OCENIANIA Z BIOLOGII W GIMNAZJUM NR 1 I. ZASADY OGÓLNE 1. Niniejszy dokument stanowi załącznik do Statutu Szkoły. 2. Nauczyciel dostosuje wymagania, formy pracy i sprawdzania wiedzy

Bardziej szczegółowo

Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej w Zespole Szkół im. H. Sienkiewicza w Grabowcu

Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej w Zespole Szkół im. H. Sienkiewicza w Grabowcu Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej w Zespole Szkół im. H. Sienkiewicza w Grabowcu Przedmiotowy System Oceniania jest zgodny z Rozporządzeniem MEN z dnia 10 czerwca

Bardziej szczegółowo

KRYTERIA I ZASADY OCENIANIA Z MATEMATYKI. zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół przy ul. Grunwaldzkiej 9 w Łowiczu.

KRYTERIA I ZASADY OCENIANIA Z MATEMATYKI. zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół przy ul. Grunwaldzkiej 9 w Łowiczu. KRYTERIA I ZASADY OCENIANIA Z MATEMATYKI zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół przy ul. Grunwaldzkiej 9 w Łowiczu. Nauczanie matematyki w szkole podstawowej w klasach IV VI odbywa

Bardziej szczegółowo

Temat : Budowa, właściwości i zastosowanie acetylenu jako przedstawiciela alkinów.

Temat : Budowa, właściwości i zastosowanie acetylenu jako przedstawiciela alkinów. Konspekt lekcji chemii w klasie 2 liceum ogólnokształcącego. Temat : Budowa, właściwości i zastosowanie acetylenu jako przedstawiciela alkinów. 1. Zakres treści: 2. cele lekcji: Budowa cząsteczki acetylenu;

Bardziej szczegółowo

Scenariusz lekcji matematyki w szkole ponadgimnazjalnej. Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej

Scenariusz lekcji matematyki w szkole ponadgimnazjalnej. Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej Scenariusz lekcji matematyki w szkole ponadgimnazjalnej Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej Czas trwania lekcji: jedna jednostka lekcyjna (4ut) Powiązanie z wcześniejszą

Bardziej szczegółowo

Wśród prostokątów o jednakowym obwodzie największe pole. ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla. gimnazjalistów.

Wśród prostokątów o jednakowym obwodzie największe pole. ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla. gimnazjalistów. 1 Wśród prostokątów o jednakowym obwodzie największe pole ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla gimnazjalistów. Czas trwania zajęć: 45 minut Potencjalne pytania badawcze: 1. Jaki prostokąt

Bardziej szczegółowo

I Liceum Ogólnokształcące im. Tadeusza Kościuszki w Busku Zdroju

I Liceum Ogólnokształcące im. Tadeusza Kościuszki w Busku Zdroju I Liceum Ogólnokształcące im. Tadeusza Kościuszki w Busku Zdroju PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI obowiązuje od 1 września 2017 roku 1 I. Cele kształcenia i wychowania Cele związane z kształceniem

Bardziej szczegółowo

Przedmiotowy system ocenia z matematyki. w klasach I, II, III gimnazjalnych. Zespołu Szkół w Baczynie

Przedmiotowy system ocenia z matematyki. w klasach I, II, III gimnazjalnych. Zespołu Szkół w Baczynie Przedmiotowy system ocenia z matematyki w klasach I, II, III gimnazjalnych Zespołu Szkół w Baczynie W roku 2014/2015 1.Wstęp Program nauczania matematyki realizowany jest w wymiarze 4godz. tygodniowo w

Bardziej szczegółowo

1. Dopuszcza się stosowanie plusów i minusów przy ocenach bieżących.

1. Dopuszcza się stosowanie plusów i minusów przy ocenach bieżących. PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI OBOWIĄZUJĄCY W KLASIE IV-VI SZKOŁY PODSTAWOWEJ W ŁASZCZOWIE 1. Podręcznik klasa VI- Matematyka wokół nas, H. Lewicka, M. Kowalczyk, Wyd. WSiP + 2 zeszyty ćwiczeń.

Bardziej szczegółowo

Przedmiotowe ocenianie z matematyki

Przedmiotowe ocenianie z matematyki Szkoła Podstawowa w Niemczu Przedmiotowe ocenianie z matematyki 1) Cele oceniania w przedmiocie. uświadamianie uczniom braków w procesie uczenia się - określenie indywidualnych przyczyn, trudności, motywowanie

Bardziej szczegółowo

Gra w kolory program nauczania edukacji wczesnoszkolnej

Gra w kolory program nauczania edukacji wczesnoszkolnej Scenariusz zajęć z edukacji wczesnoszkolnej 1. Informacje wstępne: Data 12 II 2013 Klasa II c 2. Realizowany program nauczania Gra w kolory program nauczania edukacji wczesnoszkolnej Autorka Ewa Stolarczyk

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH DLA KLAS IV-VI

PRZEDMIOTOWE ZASADY OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH DLA KLAS IV-VI PRZEDMIOTOWE ZASADY OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH DLA KLAS IV-VI I. CEL OCENY Przedmiotem oceny jest: 1. Aktualny stan wiedzy ucznia i jego umiejętności - zgodny z PP. 2. Tempo przyrostu wiadomości i

Bardziej szczegółowo

Przedmiotowy system oceniania fizyka

Przedmiotowy system oceniania fizyka Przedmiotowy system oceniania fizyka 1. Cele oceniania - Zapoznanie uczniów z ich osiągnięciami edukacyjnymi i postępami w nauce. - Pomoc uczniowi w samodzielnym planowaniu swojego rozwoju. - Motywowanie

Bardziej szczegółowo