Scenariusz lekcji 1. Informacje wst pne: 2. Program nauczania: 3. Temat zaj 4. Integracja: 5. Cele lekcji: Ucze potrafi:
|
|
- Liliana Czajkowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Scenariusz lekcji 1. Informacje wstępne: Data: 25 września 2012r. Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program nauczania: M. Karpiński, M. Braun, J. Lech. Matematyka z plusem. Program nauczania matematyki w liceum i technikum. DKW / Temat zajęć:. 4. Integracja: wewnątrzprzedmiotowa: wzory skróconego mnożenia, wartość bezwzględna, oś symetrii figury. 5. Cele lekcji: Uczeń potrafi: nazwać oraz zapisać trzy postacie funkcji kwadratowej (A1); nazwać oraz zapisać wzory skróconego mnożenia (A2); zdefiniować pojęcia: miejsce zerowe funkcji, oś symetrii paraboli, monotoniczność funkcji, wierzchołek paraboli (A3);
2 poruszać się po menu programu Interwrite tablicy interaktywnej (A4); wyjaśnić pojęcie osi symetrii figury (B1); wyjaśnić pojęcie wartości bezwzględnej (B2); rozróżnić przedziały, w których funkcja kwadratowa rośnie, maleje (B3); opisać strukturę zadań na egzaminie maturalnym z matematyki (B4); zilustrować odciętą wierzchołka paraboli, jako średnią arytmetyczną jej miejsc zerowych (B5); rozwiązać nierówność kwadratową, również z zastosowaniem wzorów skróconego mnożenia, wartości bezwzględnej (C1); narysować wykres (szkic wykresu) funkcji kwadratowej i odczytać jej własności: monotoniczność, wartości dodatnie, ujemne, wartość największą, najmniejszą, itp. (C2); rozwiązać zadania zamknięte drogą eliminacji poszczególnych odpowiedzi (C3); wybrać właściwą postać wyjściową funkcji kwadratowej (C4); przekształcać z jednej postaci funkcji kwadratowej na inną (C5); dowieść własności funkcji kwadratowej (D1); zaproponować różne sposoby rozwiązania i ocenić, który jest najlepszy (D2). Postawy i zainteresowania: kształtowanie samodzielności, inicjatywy, systematyczności i odpowiedzialność za uzyskany wynik; kształtowanie krytycyzmu w stosunku do wypowiedzi kolegi;
3 dbanie o estetykę rozwiązywanych zadań. 6. Strategie nauczania: operacyjna. 7. Metody nauczania: rozmowa dydaktyczna (M1); programowana z użyciem tablicy interaktywnej (M2); ćwiczeniowa (M3). 8. Zasady nauczania: świadomego i aktywnego udziału ucznia w lekcji; wyrabianie pewności siebie u ucznia przez wypowiedzi i czynny udział w zajęciach; systematyczności i logicznej kolejności. 9. Formy pracy uczniów: zbiorowa (F1); indywidualna (F2); z tablicą interaktywną (F3). 10. Środki dydaktyczne: tablica interaktywna z programem Interwrite; rzutnik multimedialny; lista zadań typu maturalnego, związanych z funkcją kwadratową, dla ucznia (załącznik nr 1);
4 11. Wykaz piśmiennictwa: Scenariusz lekcji matematyki: dla ucznia i nauczyciela: M. Karpiński, M. Dobrowolska, J. Lech MatematykaII. Nowa wersja. Podręcznik dla liceum i technikum. Zakres podstawowy. 12. Struktura lekcji: ETAPY LEKCJI ZAGADNIENIA, ZADANIA, PROBLEMY LEKCJI 1. FAZA WSTĘPNA Czynności organizacyjne; Sprawdzenie pracy domowej; SPOSOBY REALIZACJI ZAGADNIEŃ, ZADAŃ, PROBLEMÓW (M1, M2); (F2, F3) LEKCJI SPEŁNIENIE ZAŁOŻONYCH CELÓW LEKCJI UWAGI O REALIZA- -CJI Przypomnienie przez uczniów określeń: postać kanoniczna, iloczynowa i ogólna funkcji kwadratowej (co możemy odczytać z poszczególnych postaci); monotoniczność funkcji kwadratowej, oś symetrii paraboli, miejsca zerowe funkcji kwadratowej. W trakcie pytań podaję konkretne przykłady, by uczniowie odczytywali (M1, M2); (F1, F3) (A1, A3, A4); (B1, B3)
5 z nich w/w własności. 2. FAZA REALIZACYJNA Rozdanie uczniom zestawu zadań o funkcji kwadratowej (załącznik nr 1 do lekcji) Zadanie 1. - Którą odpowiedź na pewno można odrzucić? (M1, M2), (F1, F3) (A1, A3, A4); (C3) - Czy istnieje inny sposób na rozwiązanie zadania? (Jaki?) (M1, M2, M3), (F2, F3) (D2), (A2, A4) (C5) Zadanie 2. - Które odpowiedzi można na pewno odrzucić? - Z jaką postacią mamy do czynienia w zadaniu i co można z niej odczytać? (M1, M2), (F1, F3) (A1, A3, A4); (B3), (C2, C3)
6 - Czy trzeba rysować dokładny wykres funkcji kwadratowej? Zadanie 3. - Jaki sposób rozwiązania mógłby najszybciej doprowadzić nas do wyniku? (M1, M2, M3) ; (F1, F2, F3). (A2, A3, A4); (B2), (C1, C2); (D2) Zadanie 4. - Z jaką postacią funkcji kwadratowej mamy do czynienia w zadania? (M1, M2) ; (F1, F3) (A1) - Która odpowiedź nie pasuje do pozostałych, czy oś symetrii paraboli może być pozioma? (M1, M2, M3); (F2, F3). (A3), (B1), (C3) - Jak szybko rozwiązać postawiony w zadaniu problem? (M2, M3) ; (F2, F3) (B5), (D2).
7 Zadanie 5. - Od jakiej postaci zaczniemy zapisywanie funkcji kwadratowej i dlaczego? (co oznacza zdanie a dla argumentu 10 funkcja przyjmuje największą wartość równą 2?) (M1, M2, M3) ; (F2, F3) (A1, A4), (B4), (C1, C4, C5) Zadanie 6. - Jaki jest punkt przecięcia paraboli z osią OY i dlaczego? - Czy są inne sposoby rozwiązania problemu który jest najprostszy? (M2, M3) ; (F2, F3) (A1, A4), (C2), (D1) (D2) Zadanie 7. - Czy są inne sposoby rozwiązania problemu który jest najprostszy? (M1, M2, M3); (F2, F3) (A2, A3, A4); (D1) (D2)
8 Zadanie 8. - W jakiej postaci zapiszemy wyjściową funkcję? I dlaczego? - Jak wyznaczymy rozwiązanie problemu, postawionego w podpunkcie b graficznie, czy algebraicznie? który ze sposobów jest dokładniejszy? (M1, M2, M3); (F1, F2, F3) (A1, A3, A4); (B4), (C1, C2,C5), (D2) Zadanie 9. Omawiamy tylko sposób rozwiązania zadania, a samo rozwiązanie pozostawiam uczniom do przeanalizowania w domu. (M1), (F1) (D2) 3. FAZA PODSUMOWUJĄCA uczniowie odpowiadają na pytania, które służą zapamiętaniu szybkich rozwiązań postawionego problemu: (M1, F1) - Jak najszybciej znaleźć miejsce zerowe (A1, A2) ; (D2)
9 funkcji: f(x) = x 2 4x + 4?; - Jaki jest zbiór rozwiązań nierówności: x 2 < 16?; - Jaka jest os symetrii paraboli, będącej wykresem funkcji f(x) = 2(x 1)(x + 1)? - Ile punktów można uzyskać za zadania zamknięte na egzaminie maturalnym, a ile za zadania otwarte krótkiej odpowiedzi, rozszerzonej odpowiedzi? (B2) ; (C1, C2) ; (D2) (A1, A3) ; (B1, B5) ; (D2) (B4) słowna lub wyrażona stopniem (bądź plusami, z uzasadnieniem) ocena pracy uczniów; informuję uczniów o pracy domowej (załącznik nr 1); dla chętnych zestaw III podręcznik, str. 265, zadania 1 oraz 4.
10 (Załącznik nr 1) Funkcja kwadratowa zadania typu maturalnego Zadania zamknięte Zad 1. Wzór funkcji kwadratowej w następujący sposób: A. B. f ( x) = 3x 2 6x można zapisać w postaci kanonicznej C. D. 1 Zad 2. Maksymalny przedział, w którym funkcja f ( x) = ( x 1) jest rosnąca, to: 2 A. ( ; 1 > ; B. ( ; 4 > ; C. < 1 ; + ) ; D. < 4 ; + ). Zad 3. Zbiorem rozwiązań nierówności x 2 > 9 jest: A. ( ;3) ; B. ( 3;3) ; C. ( 3; + ) ; D. ( ; 3) (3; + ). Zad 4. Osią symetrii wykresu funkcji kwadratowej f ( x) = 2( x 4)( x + 12) jest prosta: A. x 4 = 0; B. x + 4 = 0; C. x + 12 = 0; D. y = -4. Zadania krótkiej odpowiedzi Zad 5. Do wykresu funkcji kwadratowej f należy punkt A(6 ; -6), a dla argumentu 10 funkcja przyjmuje największą wartość równą 2. Wyznacz wzór funkcji w postaci ogólnej. 2 Zad 6. Na poniższym rysunku przedstawiony jest fragment wykres funkcji y = ax + x 4. Wykaż, że najmniejsza wartość funkcji wynosi 4,5. 2 Zad 7. Wykaż, że jeśli funkcje kwadratowe f ( x) = x + 10x + 25 oraz 2 g( x) = 2x + ax + 2b a mają wspólne miejsce zerowe, to b = 3a 25.
11 Zadania rozszerzonej odpowiedzi Zad 8. O funkcji kwadratowej wiadomo, że przyjmuje wartości ujemne wtedy i tylko wtedy, gdy x ( 8; 4) oraz do jej wykresu należy punkt A(2;30). a) Napisz wzór funkcji w postaci ogólnej; b) Wyznacz zbiór wszystkich tych argumentów, dla których funkcja przyjmuje wartości większe od 10,5. Zad 9. Dana jest funkcja kwadratowa f(x) = a(x 3)(x + 2). a) Oblicz współczynnik a, jeśli wiadomo, że f(10)= b) Parabola, będąca wykresem funkcji f ma z osią OY punkt wspólny. Wyznacz jego współrzędne. c) Napisz wzór funkcji w postaci kanonicznej. Zadanie domowe Powodzenia!!! Paweł Słaby
Scenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach;
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
Bardziej szczegółowoScenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r.
1. Informacje wstępne: Data: 7 maja 013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka..
Bardziej szczegółowoScenariusz lekcji. 1. Informacje wstępne: Data: 16 października 2012r.
1. Informacje wstępne: Data: 16 października 2012r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot:
Bardziej szczegółowoScenariusz lekcji. 1. Informacje wstępne: Data: 26 luty 2013r.
1. Informacje wstępne: Data: 26 luty 2013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka.
Bardziej szczegółowoScenariusz lekcji. 1. Informacje wstępne: Klasa: I liceum ogólnokształcącego. Czas trwania zajęć: 60 minut; Nauczany przedmiot: matematyka.
1. Informacje wstępne: Klasa: I liceum ogólnokształcącego. Czas trwania zajęć: 60 minut; Nauczany przedmiot: matematyka. Scenariusz lekcji matematyki: Scenariusz lekcji 2. Program nauczania: M. Karpiński,
Bardziej szczegółowoScenariusz lekcyjny Przesunięcia wykresu funkcji równolegle do osi odciętych i osi rzędnych. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Bardziej szczegółowoScenariusz lekcji matematyki: Podsumowanie wiadomości o wielomianach rozwiązywanie interaktywnego testu. Scenariusz lekcji
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r. Klasa: Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program
Bardziej szczegółowoPojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Bardziej szczegółowoFUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Bardziej szczegółowoScenariusz lekcyjny Obliczanie pierwiastków dowolnego stopnia i stosowanie praw działań na pierwiastkach. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 25 wrzesień 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
Bardziej szczegółowoScenariusz lekcyjny Przekształcenie wzorów występujących w matematyce, fizyce, chemii. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Bardziej szczegółowoScenariusz lekcyjny Zadania typu maturalnego: procenty, przedziały, wartość bezwzględna, błędy przybliżeń, logarytmy. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 20 listopad 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
Bardziej szczegółowoScenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej Temat : Powtórzenie i utrwalenie wiadomości z funkcji kwadratowej Czas trwania : 90 min. Środki dydaktyczne:
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Wykresy funkcji. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoFUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie
Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Bardziej szczegółowoLekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n
Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania
Bardziej szczegółowoARKUSZ HOSPITACJI DIAGNOZUJĄCEJ
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Przedmiot: matematyka Data: 07.04.2006 Klasa: I T inf i I T mech Imię i nazwisko nauczyciela prowadzącego: Agnieszka Hodor Cel hospitacji: zdiagnozowanie umiejętności posługiwania
Bardziej szczegółowo. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
Bardziej szczegółowoEgzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Bardziej szczegółowoSkrypt 12. Funkcja kwadratowa:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Funkcja kwadratowa: 8.
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:08.01.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoScenariusz lekcyjny Rozwiązywanie zadań z wykorzystaniem działań na logarytmach. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Bardziej szczegółowoScenariusz lekcji. Opracował: Paweł Słaby
Scenariusz lekcji 1. Informacje wstępne: Klasa: uczniowie szkoły ponadgimnazjalnej, realizujący poziom podstawowy bądź rozszerzony; Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka.. Temat
Bardziej szczegółowo1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Bardziej szczegółowoZakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Bardziej szczegółowoWykazywanie tożsamości trygonometrycznych. Scenariusz lekcji
Scenariusz lekcji 1. Informacje wstępne: Data: 28 maja 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
Bardziej szczegółowoFunkcje IV. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: oblicza wartości liczbowe wyrażeń algebraicznych mnoży jednomiany.
SCENARIUSZ LEKCJI. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 04.03.03 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka. Program nauczania: Matematyka
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:05.03.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoKształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowoScenariusz lekcyjny Zastosowanie układów równań liniowych do rozwiązywania zadań tekstowych. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Bardziej szczegółowo3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.
Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji
Bardziej szczegółowoZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3
ZADANIE 1 i największa wartość funkcji f (x) = (x )(x + 1) w przedziale 0; 4. ZADANIE Wyznacz wzór funkcji f (x) = x + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa rozwiaza- niami równania
Bardziej szczegółowoSCENARIUSZ LEKCJI. 3.Temat lekcji: Wyrażenia algebraiczne -powtórzenie i utrwalenie wiadomości. 4.Integracja: wewnątrzprzedmiotowa
SCENARIUSZ LEKCJI.Informacje wstępne Publiczne Gimnazjum Nr 6 w Opolu Data:2.2.202 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska 2.Program nauczania
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Wyrażenia algebraiczne. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.03.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoSCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :
SCENARIUSZ LEKCJI 1. Informacje wstępne: Data : 01.10.2012 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki
Bardziej szczegółowoSCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 21.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoSCENARIUSZ LEKCJI. kategoria B zrozumienie
SCENARIUSZ LEKCJI 1. Informacje wstępne: Data: 12.11.2012 Klasa: I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki
Bardziej szczegółowoFUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Bardziej szczegółowoZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie
Bardziej szczegółowoTemat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2
1 FUNKCJE Wykres i własności funkcji kwadratowej Funkcja kwadratowa może występować w 3 postaciach: postać ogólna: f(x) ax 2 + bx + c, postać kanoniczna: f(x) a(x - p) 2 + q postać iloczynowa: f(x) a(x
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program nauczania: Matematyka
Bardziej szczegółowoKONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Bardziej szczegółowoROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Bardziej szczegółowoWymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Bardziej szczegółowoKURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1
KURS FUNKCJE LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Dana jest funkcja f przedstawiona
Bardziej szczegółowoSkrypt 7. Funkcje. Opracowanie: L1
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Funkcje 8. Miejsce zerowe
Bardziej szczegółowoPlan wynikowy z przedmiotu: MATEMATYKA
Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,
Bardziej szczegółowoSCENARIUSZ LEKCJI MATEMATYKI PLANOWANEJ DO PRZEPROWADZENIA W KLASIE I LICEUM OGÓLNOKSZTAŁCĄCEGO
SCENARIUSZ LEKCJI MATEMATYKI PLANOWANEJ DO PRZEPROWADZENIA W KLASIE I LICEUM OGÓLNOKSZTAŁCĄCEGO DZIAŁ: Funkcje TEMAT: Wykres funkcji i miejsca zerowe funkcji w Excelu Odczytywanie własności funkcji z wykresu
Bardziej szczegółowoDział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
Bardziej szczegółowoSCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
Bardziej szczegółowoKONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Równania. Uczeń: rozwiązuje równania stopnia pierwszego z jedną niewiadomą.
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 27.05.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Bardziej szczegółowoScenariusz lekcji matematyki: Zastosowanie równań i układów równań do rozwiązywania zadań tekstowych. Scenariusz lekcji
Scenariusz lekcji 1. Informacje wstępne: Klasa: uczniowie klasy I szkoły ponadgimnazjalnej Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Temat zajęć:. 3. Integracja: międzyprzedmiotowa:
Bardziej szczegółowoOstatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
Bardziej szczegółowoNa rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].
Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji
Bardziej szczegółowoMATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Bardziej szczegółowoFUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę.
FUNKCJE Lekcja 61-6. Dziedzina i miejsce zerowe funkcji str. 140-14 Co to jest funkcja. Może przykłady. W matematyce funkcje najczęściej przedstawiamy za pomocą wzorów. Przykłady. Dziedzina to zbiór argumentów
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Bardziej szczegółowoKup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:15.05.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Międzyprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:12.06.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
Bardziej szczegółowoZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (ZAKRES PODSTAWOWY)
1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (ZAKRES PODSTAWOWY) Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 100 Kursywą zaznaczone zostały treści,
Bardziej szczegółowoFunkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz
Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz x argumenty funkcji y wartości funkcji a współczynnik kierunkowy prostej ( a = tg, gdzie osi OX) - kąt nachylenia wykresu funkcji
Bardziej szczegółowoROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Bardziej szczegółowoTroszkę przypomnienia
Troszkę przypomnienia Przesunięcie o wektor Przesunięcie funkcji o wektor polega na przesunięciu jej w układzie współrzędnych o określoną ilośc jednostek w poziomie oraz w pionie. Pierwsza współrzędna
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1
1 TEST WSTĘPNY 1. (1p) Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą. Spośród liczb f(42), f(44), f(45), f(48) A. f(42) B. f(44) C. f(45)
Bardziej szczegółowoI. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
Bardziej szczegółowoScenariusz lekcji z matematyki w szkole ponadgimnazjalnej
Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej Temat: Wzory Viete a. Zastosowanie wzorów Viete a w zadaniach. Czas trwania lekcji: dwie jednostki lekcyjne (90 minut) Powiązanie z wcześniejszą
Bardziej szczegółowoSCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki
SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA
Bardziej szczegółowoSCENARIUSZ LEKCJI. Uczeń zapisuje: wzór na pole prostokąta i kwadratu ( B 1 ) jednostki długości ( B 2 ) podstawowe jednostki miar pola ( B 3 )
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 07.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoSCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Bardziej szczegółowoNAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY 1 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Wyznacz wzór funkcji f (x) = 2x
Bardziej szczegółowoI. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
Bardziej szczegółowoRozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Bardziej szczegółowoZad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=
Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności
Bardziej szczegółowoa =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
Bardziej szczegółowoPLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Bardziej szczegółowoWymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoFUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe
1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie
Bardziej szczegółowoSCENARIUSZ LEKCJI. Miejsca zerowe funkcji kwadratowej i ich graficzna prezentacja
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoPojęcie funkcji i jej podstawowe własności.
Konspekt lekcji matematyki w klasie II gimnazjum Pojęcie funkcji i jej podstawowe własności. Opracowała mgr Iwona Żuk Gimnazjum nr 2 w Świętoniowej I. Umiejscowienie lekcji w jednostce metodycznej: Pojęcie
Bardziej szczegółowoScenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego. Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej
Scenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej Opracowanie: Anna Borawska Czas trwania zajęć: jedna jednostka
Bardziej szczegółowoAd maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach SCENARIUSZ DWUGODZINNYCH (2 X 45 MINUT) ZAJĘĆ Z MATEMATYKI W KLASIE II LICEUM PROWADZONYCH W CELU UZUPEŁNIENIA WIADOMOŚCI Temat: Doskonalenie umiejętności
Bardziej szczegółowo