Scenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach;
|
|
- Aleksander Sebastian Piasecki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania: Kształcenie w zakresie podstawowym. Program nauczania w liceach i technikach (autor programu Alina Przychoda, Zygmunt Łaszczyk). 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach; 4. Integracja: wewnątrzprzedmiotowa wzory skróconego mnożenia, działania na potęgach; 5. Cele lekcji: Uczeń potrafi: - nazwać oraz zapisać trzy postacie funkcji kwadratowej (A1), - zdefiniować pojęcia: miejsce zerowe funkcji, monotoniczność funkcji, wartości dodatnie i ujemne funkcji,
2 wierzchołek paraboli, oś symetrii paraboli (A2), - wyjaśnić związek między współrzędnymi wierzchołka paraboli i postacią kanoniczną wzoru funkcji kwadratowej (B1), - wyjaśnić związek między miejscami zerowymi i postacią iloczynową wzoru funkcji kwadratowej (B2), - odczytać własności funkcji kwadratowej z wykresu: dziedzina, zbiór wartości, miejsca zerowe, maksymalny przedział, w którym funkcja przyjmuje wartości dodatnie lub ujemne, monotoniczność, wartość największą lub najmniejszą (B3), - zapisywać wzór funkcji kwadratowej w jednej z trzech postaci (C1), - przechodzić z jednej postaci wzoru funkcji kwadratowej w inną (C2), - obliczać współrzędne wierzchołka paraboli (C3), - obliczać miejsca zerowe funkcji kwadratowej (C4), - rysować wykres funkcji kwadratowej (C5), - stosować wzory skróconego mnożenia na kwadrat sumy i różnicy (C6), - podać zależności własności funkcji kwadratowej od wartości p, q, x 1, x 2 (C7), - wykorzystać informację o tym, że punkt należy do wykresu funkcji (C8), - zaproponować różne, nietypowe metody rozwiązania zadania (D1), - dobrać strategię rozwiązania zadania (D2), - argumentować swoje stanowisko (D3).
3 6. Postawy i zainteresowania: - doskonalenie umiejętności logicznego i twórczego myślenia, - motywowanie do samodzielnego poszukiwania rozwiązania problemu, - wdrażanie do dobrej organizacji pracy; 7. Strategie nauczania: asocjacyjna, podająca; 8. Metody nauczania: - pogadanka (M1), - ćwiczeniowa (M2); 9. Zasady nauczania: - świadomego i aktywnego uczestnictwa w zajęciach, - stopniowania trudności; 10. Formy pracy uczniów: - zbiorowa (F1), - indywidualna (F2), - programowana z użyciem tablicy interaktywnej (F3);
4 11. Środki dydaktyczne: - tablica interaktywna z programem Interwrite, - rzutnik multimedialny; 12. Wykaz piśmiennictwa: dla ucznia i nauczyciela: - załącznik nr 1, - załącznik nr 2; 13. Struktura lekcji: ZAGADNIENIA, ZADANIA, ETAPY LEKCJI PROBLEMY LEKCJI 1. FAZA WSTĘPNA Czynności organizacyjne; Sprawdzenie pracy domowej; Przypomnienie postaci kanonicznej, iloczynowej i ogólnej funkcji kwadratowej; SPOSOBY REALIZACJI ZAGADNIEŃ, ZADAŃ, PROBLEMÓW LEKCJI (F1) (M1) SPEŁNIENIE ZAŁOŻONYCH CELÓW LEKCJI (A1)
5 Przypomnienie metod przechodzenia z jednej postaci funkcji kwadratowej w inną; (F1) (M1) (B1, B2) 2. FAZA REALIZACYJNA Podanie uczniom zadania; Zadanie Dana jest funkcja kwadratowa y = 2x 2 4x 6. a) Podaj nazwę postaci, w jakiej podano wzór funkcji. b) Oblicz współrzędne wierzchołka paraboli, będącej wykresem funkcji (p, q). c) Podaj wzór funkcji w postaci kanonicznej. d) Oblicz miejsca zerowe funkcji. e) Zapisz wzór funkcji w postaci iloczynowej. Uczniowie szkicują wykres funkcji. Na podstawie wykresu funkcji odczytują i zapisują jej własności; - dziedzinę, - zbiór wartości, - miejsca zerowe, - monotoniczność funkcji, (F1, F2) (M1, M2) (F1, F2) (M1, M2) (F1, F2) (M1, M2) (F1, F2) (M1, M2) (F1, F2) (M1, M2) (A1) (C3) (B1) (C1) (C4) (B2) (C1) (A2) (B3)
6 - wartości dodatnie i ujemne, - wartość najmniejsza, - oś symetrii; Powtórzenie zależności własności funkcji kwadratowej od wartości: p, q, x 1, x 2 ; (F1) (M1) (C7) Rozdanie uczniom zestawu zadań o funkcji kwadratowej (załącznik nr 1 do lekcji); Zadanie 1 Pytania do zadania 1. W jakiej postaci podany jest wzsór funkcji kwadratowej w treści zadania? 2. Którą postać funkcji kwadratowej można zastosować w zadaniu, tak żeby wykorzystać informację o wierzchołku? 3. W jaki sposób wyznaczysz współczynniki b i c, mając daną postać kanoniczną funkcji? 4. Czy jest inny sposób rozwiązania zadania? 5. Który ze sposobów rozwiązania uważasz za najlepszy? Uzasadnij twój wybór) (A1) (B1) (C1) (C2) (D1) (D2, D3)
7 Zadanie 2 Pytania do zadania 1. Która z trzech postaci funkcji kwadratowej pozwoli wykorzystać daną W = (2, 5) z treści zadania? 2. Jak wyznaczyć współczynnik a we wzorze funkcji kwadratowej, mając dany punkt należący do paraboli? 3. Jaką postać należy wyznaczyć i w jaki sposób to zrobić? (A1) (B1) (C1) (D2) (C8) (C2, C6) Zadanie 3 Pytania do zadania 1. Która z trzech postaci funkcji kwadratowej pozwoli na wykorzystanie danych x 1 = - 3, x 2 = 5 z treści zadania? 2. Jak można w rozwiązaniu wykorzystać informację o tym, że funkcja osiąga najmniejszą wartość równą -6? 3. W jaki sposób wyznaczyć pozostałe postacie funkcji kwadratowej? 4. Czy istnieje inny sposób rozwiązania zadania? (A1) (B2) (C1) ( D2) (C7, C8) (C1, C2) (A1) (C8)
8 5. Który ze sposobów rozwiązania uważasz za najlepszy? Uzasadnij twój wybór. (D1, D2, D3) Zadanie 4 1. Zaproponuj wzór funkcji kwadratowej, którą można zastosować w rozwiązaniu zadania. Uzasadnij swój wybór. 2. Jak wyznaczysz współczynnik a we wzorze funkcji? 3. W jaki sposób przejdziesz do pozostałych postaci funkcji kwadratowej? 4. Czy istnieje inny sposób rozwiązania zadania? (A1) (B1) (C1) (D2, D3) (C8) (A1) (B1) (C1, C2, C3, C6) (D1) Zadanie 5 1. Jakie informacje możesz odczytać z wykresu funkcji? 2. Zaproponuj strategię rozwiązania zadania. (B4) (A1) (B2) (C1, C8) (D2) Zadanie 6 1. Jakie informacje o funkcji kwadratowej potrafisz odczytać z treści zadania? 2. Którą z postaci funkcji kwadratowej proponujesz zastosować w celu rozwiązania (B3) (D1, D2)
9 zadania? Po odczytaniu danych z treści zadania uczniowie próbują samodzielnie je. Propozycję rozwiązania prezentują na tablicy. 3. FAZA Podsumowanie lekcji pytania do uczniów: PODSUMOWUJĄCA 1. Jakie informacje o funkcji kwadratowej, (F1) (M1) (B1, B2) zawarte w treści zadania determinują wybór wzoru funkcji w postaci ogólnej/ iloczynowej/ kanonicznej? 2. Jakie informacje, istotne do zapisania wzoru funkcji kwadratowej, można odczytać z wykresu? (F1) (M1) (A2) Informacja o zadaniu domowym Załącznik nr 2. Opracowała Irena Wosz - Łoba
10 Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru funkcji o podanych własnościach (Załącznik nr 1) Wyznaczanie wzoru funkcji kwadratowej Zad. 1. Wyznacz współczynniki funkcji kwadratowej y = x 2 + bx + c, mając dane współrzędne wierzchołka W = (- 1, 4). Zad. 2. Pewna parabola o wierzchołku W = (2, 5) przecina oś 0Y w punkcie A = (0, -3). Wyznacz postać ogólną funkcji kwadratowej y = f(x), której wykresem jest ta parabola. Zad. 3. Miejscami zerowymi funkcji kwadratowej są x 1 = - 3, x 2 = 5. Funkcja osiąga najmniejszą wartość równą - 6. Wyznacz wzór funkcji w postaci iloczynowej, ogólnej i kanonicznej. Zad. 4. Napisz w postaci ogólnej, kanonicznej i iloczynowej wzór funkcji kwadratowej, jeśli do wykresu tej funkcji należy punkt A = (3, 0) i funkcja osiąga wartość największą równą 12 dla argumentu 1. Zad. 5. Na podstawie wykresu funkcji kwadratowej podaj jej wzór. Zad. 6. Wykres funkcji kwadratowej f jest styczny do prostej y = - 4, przechodzi przez punkt (3, 14) oraz jest symetryczny względem osi OY. Wyznacz wzór funkcji f i narysuj jej wykres. Odczytaj własności funkcji z wykresu.
11 Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru funkcji o podanych własnościach (Załącznik nr 2) Zadanie domowe Zad. 1. Wierzchołek funkcji kwadratowej ma współrzędne W = (4, - 2). Wykres funkcji przechodzi przez punkt A = (6, 2). Zapisz wzór funkcji w postaci ogólnej i iloczynowej. Zad. 2. Punkty A = (0, 5) i B = (1, 12) należą do wykresu funkcji f(x) = x 2 + bx + c. Zapisz wzór funkcji w postaci ogólnej, kanonicznej i iloczynowej. Zad. 3. Dany jest wykres funkcji kwadratowej a) Korzystając z danych na wykresie wyznacz wzór funkcji w postaci ogólnej. b) Oblicz współrzędne wierzchołka paraboli. c) Zapisz wzór funkcji w postaci kanonicznej.
Scenariusz lekcji 1. Informacje wst pne: 2. Program nauczania: 3. Temat zaj 4. Integracja: 5. Cele lekcji: Ucze potrafi:
Scenariusz lekcji 1. Informacje wstępne: Data: 25 września 2012r. Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program nauczania:
Bardziej szczegółowoWykazywanie tożsamości trygonometrycznych. Scenariusz lekcji
Scenariusz lekcji 1. Informacje wstępne: Data: 28 maja 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
Bardziej szczegółowoScenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r.
1. Informacje wstępne: Data: 7 maja 013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka..
Bardziej szczegółowoScenariusz lekcyjny Przesunięcia wykresu funkcji równolegle do osi odciętych i osi rzędnych. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Bardziej szczegółowoScenariusz lekcyjny Rozwiązywanie zadań z wykorzystaniem działań na logarytmach. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Bardziej szczegółowoScenariusz lekcyjny Przekształcenie wzorów występujących w matematyce, fizyce, chemii. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Bardziej szczegółowoFUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie
Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem
Bardziej szczegółowoScenariusz lekcyjny Obliczanie pierwiastków dowolnego stopnia i stosowanie praw działań na pierwiastkach. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 25 wrzesień 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
Bardziej szczegółowoZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3
ZADANIE 1 i największa wartość funkcji f (x) = (x )(x + 1) w przedziale 0; 4. ZADANIE Wyznacz wzór funkcji f (x) = x + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa rozwiaza- niami równania
Bardziej szczegółowoPojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Bardziej szczegółowoFUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Bardziej szczegółowoScenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej Temat : Powtórzenie i utrwalenie wiadomości z funkcji kwadratowej Czas trwania : 90 min. Środki dydaktyczne:
Bardziej szczegółowoScenariusz lekcji. 1. Informacje wstępne: Data: 16 października 2012r.
1. Informacje wstępne: Data: 16 października 2012r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot:
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Bardziej szczegółowoARKUSZ HOSPITACJI DIAGNOZUJĄCEJ
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Przedmiot: matematyka Data: 07.04.2006 Klasa: I T inf i I T mech Imię i nazwisko nauczyciela prowadzącego: Agnieszka Hodor Cel hospitacji: zdiagnozowanie umiejętności posługiwania
Bardziej szczegółowoSkrypt 12. Funkcja kwadratowa:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Funkcja kwadratowa: 8.
Bardziej szczegółowoKształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowoLekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n
Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania
Bardziej szczegółowo1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Bardziej szczegółowoScenariusz lekcyjny Zastosowanie układów równań liniowych do rozwiązywania zadań tekstowych. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Bardziej szczegółowoScenariusz lekcji. 1. Informacje wstępne: Data: 26 luty 2013r.
1. Informacje wstępne: Data: 26 luty 2013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka.
Bardziej szczegółowoScenariusz lekcyjny Zadania typu maturalnego: procenty, przedziały, wartość bezwzględna, błędy przybliżeń, logarytmy. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 20 listopad 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
Bardziej szczegółowoFunkcje IV. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których
Bardziej szczegółowoKONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
Bardziej szczegółowoEgzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2
1 FUNKCJE Wykres i własności funkcji kwadratowej Funkcja kwadratowa może występować w 3 postaciach: postać ogólna: f(x) ax 2 + bx + c, postać kanoniczna: f(x) a(x - p) 2 + q postać iloczynowa: f(x) a(x
Bardziej szczegółowo. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
Bardziej szczegółowoFUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Bardziej szczegółowoZakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Wykresy funkcji. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoSCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki
SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.
Bardziej szczegółowo3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.
Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji
Bardziej szczegółowoROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Bardziej szczegółowoSCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
Bardziej szczegółowoWymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Bardziej szczegółowo========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2
Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1
Bardziej szczegółowoWYKRESY FUNKCJI LINIOWEJ
GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie
Bardziej szczegółowoAd maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach SCENARIUSZ DWUGODZINNYCH (2 X 45 MINUT) ZAJĘĆ Z MATEMATYKI W KLASIE II LICEUM PROWADZONYCH W CELU UZUPEŁNIENIA WIADOMOŚCI Temat: Doskonalenie umiejętności
Bardziej szczegółowoOstatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
Bardziej szczegółowoScenariusz lekcji matematyki: Podsumowanie wiadomości o wielomianach rozwiązywanie interaktywnego testu. Scenariusz lekcji
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r. Klasa: Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program
Bardziej szczegółowoDział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
Bardziej szczegółowoKONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności
Bardziej szczegółowoSCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :
SCENARIUSZ LEKCJI 1. Informacje wstępne: Data : 01.10.2012 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki
Bardziej szczegółowoPrzedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
Bardziej szczegółowoNAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY 1 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Wyznacz wzór funkcji f (x) = 2x
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
Bardziej szczegółowoPo zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.
Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych
Bardziej szczegółowoScenariusz zajęć otwartych dla nauczycieli Publicznego Gimnazjum w Pajęcznie prowadzonych przez Iwonę Jędrzejewską
Klasa: Przedmiot: Dział programu: Scenariusz zajęć otwartych dla nauczycieli Publicznego Gimnazjum w Pajęcznie prowadzonych przez Iwonę Jędrzejewską III Matematyka Funkcje Temat: Powtórzenie i utrwalenie
Bardziej szczegółowoTemat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
Bardziej szczegółowoSCENARIUSZ LEKCJI MATEMATYKI PLANOWANEJ DO PRZEPROWADZENIA W KLASIE I LICEUM OGÓLNOKSZTAŁCĄCEGO
SCENARIUSZ LEKCJI MATEMATYKI PLANOWANEJ DO PRZEPROWADZENIA W KLASIE I LICEUM OGÓLNOKSZTAŁCĄCEGO DZIAŁ: Funkcje TEMAT: Wykres funkcji i miejsca zerowe funkcji w Excelu Odczytywanie własności funkcji z wykresu
Bardziej szczegółowoROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Bardziej szczegółowoFunkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz
Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz x argumenty funkcji y wartości funkcji a współczynnik kierunkowy prostej ( a = tg, gdzie osi OX) - kąt nachylenia wykresu funkcji
Bardziej szczegółowoScenariusz lekcji matematyki w szkole ponadgimnazjalnej. Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej
Scenariusz lekcji matematyki w szkole ponadgimnazjalnej Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej Czas trwania lekcji: jedna jednostka lekcyjna (4ut) Powiązanie z wcześniejszą
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Bardziej szczegółowoRozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Bardziej szczegółowoSCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
Bardziej szczegółowoMATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoOkreśl zbiór wartości i przedziały monotoniczności funkcji.
Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej
Bardziej szczegółowoMatematyka wykaz umiejętności wymaganych na poszczególne oceny
Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 21.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoTEMAT : Przykłady innych funkcji i ich wykresy.
Elżbieta Kołodziej e-mail: efreet@pf.pl matematyka, informatyka Gimnazjum Nr 5 37-450 Stalowa Wola ul. Poniatowskiego 55 SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT : Przykłady innych funkcji
Bardziej szczegółowo? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Bardziej szczegółowoROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: oblicza wartości liczbowe wyrażeń algebraicznych mnoży jednomiany.
SCENARIUSZ LEKCJI. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 04.03.03 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka. Program nauczania: Matematyka
Bardziej szczegółowoMATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i
Bardziej szczegółowoKup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:05.03.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoSCENARIUSZ LEKCJI. 3.Temat lekcji: Wyrażenia algebraiczne -powtórzenie i utrwalenie wiadomości. 4.Integracja: wewnątrzprzedmiotowa
SCENARIUSZ LEKCJI.Informacje wstępne Publiczne Gimnazjum Nr 6 w Opolu Data:2.2.202 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska 2.Program nauczania
Bardziej szczegółowoWymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Bardziej szczegółowoScenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego. Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej
Scenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej Opracowanie: Anna Borawska Czas trwania zajęć: jedna jednostka
Bardziej szczegółowoScenariusz lekcji matematyki w klasie III gimnazjalnej z zastosowaniem metody aktywizującej kula śniegowa
Scenariusz lekcji matematyki w klasie III gimnazjalnej z zastosowaniem metody aktywizującej kula śniegowa TEMAT: FUNKCJE POWTÓRZENIE WIADOMOŚCI Cel ogólny: Powtórzenie i utrwalenie wiadomości o unkcjach
Bardziej szczegółowox+h=10 zatem h=10-x gdzie x>0 i h>0
Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy
Bardziej szczegółowoPLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Bardziej szczegółowo2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24
SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste
Bardziej szczegółowoa =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
Bardziej szczegółowoPLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać
Bardziej szczegółowoSCENARIUSZ LEKCJI. Klasa: I liceum profilowane Blok tematyczny: Własności funkcji kwadratowej
SCENARIUSZ LEKCJI Klasa: I liceum profilowane Blok tematyczny: Własności funkcji kwadratowej Temat lekcji: Przesuwanie paraboli Typ lekcji: ćwiczeniowa Czas realizacji: 45 minut Metody pracy: podająca:
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoWymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych
Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady
Bardziej szczegółowoKonspekt lekcji matematyki kl. I gimnazjum Temat: Funkcje - powtórzenie
Maria Żylska ul. Krasickiego 9/78-55 Kraków zyluska@interia.pl Konspekt lekcji matematyki kl. I gimnazjum Temat: Funkcje - powtórzenie Autor: Maria Żylska Gimnazjum 7 Kraków Temat: Funkcje powtórzenie
Bardziej szczegółowoI. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
Bardziej szczegółowoAd maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach SCENARIUSZ ZAJĘĆ Z MATEMATYKI W KLASIE II LICEUM PROWADZONYCH W CELU UZUPEŁNIENIA WIADOMOŚCI Temat: Wyznaczanie równania prostej prostopadłej i prostej
Bardziej szczegółowoSCENARIUSZ LEKCJI. kategoria B zrozumienie
SCENARIUSZ LEKCJI 1. Informacje wstępne: Data: 12.11.2012 Klasa: I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki
Bardziej szczegółowoWymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoKURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1
KURS FUNKCJE LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Dana jest funkcja f przedstawiona
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoNa rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].
Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:08.01.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoZad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=
Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
Bardziej szczegółowoSCENARIUSZ LEKCJI Z MATEMATYKI. opracowała Hanna Szmyt
SCENARIUSZ LEKCJI Z MATEMATYKI opracowała Hanna Szmyt Temat: Zadania optymalizacyjne dotyczące funkcji kwadratowej. 1. Cele główne: pokazanie zastosowań własności funkcji kwadratowe w zadaniach optymalizacyjnych,
Bardziej szczegółowoI. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
Bardziej szczegółowoPlan wynikowy z przedmiotu: MATEMATYKA
Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,
Bardziej szczegółowo