Pojęcie funkcji i jej podstawowe własności.
|
|
- Kajetan Kurowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Konspekt lekcji matematyki w klasie II gimnazjum Pojęcie funkcji i jej podstawowe własności. Opracowała mgr Iwona Żuk Gimnazjum nr 2 w Świętoniowej
2 I. Umiejscowienie lekcji w jednostce metodycznej: Pojęcie funkcji i jej podstawowe własności Funkcja liniowa i proporcjonalność prosta Równania liniowe z jedną niewiadomą Przykłady innych funkcji, proporcjonalność odwrot- Nierówności liniowe z jedną niewiadomą Układy równań liniowych z dwiema niewiadomymi rozwiązania algebraiczne i geometryczne 2z22
3 Temat lekcji Czas trwania Lekcja poprzednia Przekształcanie wyrażeń algebraicznych Lekcja bieżąca Pojęcie funkcji - powtórzenie wiadomości. 45min Lekcja następna Podstawowe własności funkcji - powtórzenie wiadomości. II. Cele operacyjne jednostki metodycznej kategoria postawy umiejętności wiadomości do zrozumienia wiadomości do zapamiętania cele Uczeń dąży do wyspecyfikowania problemu i przedstawienia jego rozwiązania w najefektywniejszy sposób Uczeń potrafi: q wyspecyfikować dane i niewiadome oraz wyodrębnić zachodzące między nimi związki q podane związki wyrazić algebraicznie q dobrać metodę rozwiązania odpowiednią do danego układu q podać ilustrację graficzną Uczeń rozumie: q różnicę pomiędzy wykresem funkcji a wykresem równania q metody uzyskiwania równań (układów ) równoważnych Uczeń pamięta treści pojęć: q funkcja, wykres funkcji q równanie, rozwiązanie równania, równania (układy) równoważne 3z22
4 III. Cele operacyjne lekcji kategoria postawy umiejętności wiadomości do zrozumienia wiadomości do zapamiętania cel Uczeń wybiera dla danej funkcji najefektywniejszy sposób jej opisania. 1. Uczeń odróżnia przyporządkowania funkcyjne od innych 2. Uczeń potrafi odczytać z wykresu wartość funkcji dla danego argumentu i odwrotnie Pojęcie wykresu funkcji Określenie funkcji, określenie wykresu funkcji, sposoby zadawania funkcji sposób kontroli Przedstawić inny sposób zadania funkcji podanej opisem słownym: funkcja f każdej liczbie naturalnej przyporządkowuje jej dwukrotność powiększoną o1 1. Spośróddanychgrafów, tabel i wykresów wybrać funkcyjne. 2. Na danym wykresie odczytać wartość funkcji dla danego argumentu i odwrotnie Zbadać, czy dany punkt należy do wykresu funkcji określonej jednym ze sposobów Należy wypowiedzieć definicje, wymienić sposoby standard Uczeń podaje przepis funkcji: f: x 2x + 1 i nazywa dziedzinę 1. Uczeń wybiera właściwe plansze. 2. Uczeń wykonuje odpowiednie czynności iwyjaśnia ich sens Uczeń sprawdza, czy współrzędne punktu spełniają warunki określone w definicji wykresu Uczeń poprawnie wypowiada definicje 4z22
5 IV. Treści kształcenia Treści podstawowe Treści rozszerzające Treści dopełniające Treści kształcenia Pojęcia: funkcja, wykres funkcji, sposoby zadawania funkcji Zamiana jednego ze sposobów opisania funkcji na inny Odczytywanie niektórych własności funkcji z wykresu V. Formy pracy 1. Faza przygotowawcza: praca z całą klasą 2. Faza wykonawcza: praca w zespołach 2-osobowych pod kierunkiem nauczyciela VI. Środki nauczania 1. Tablica, mazak, tablica magnetyczna 2. Plansze przedstawiające przyporządkowania opisane różnymi sposobami ( po kilka na grupę ) 3. Podręcznik, zeszyt ćwiczeń VII. Tok lekcji 1. Czynności porządkowe, podanie tematu lekcji. 2. Uczniowie zostają podzieleni na grupy, każda grupa otrzymuje zestaw plansz ( patrz załączniki ) przedstawiających graf, tabelę, wykres przyporządkowania. 3. Uczniowie analizują grafy w celu stwierdzenia, który przedstawia funkcję, a który nie, i dlaczego. 4. Uczniowie analizują tabele w celu stwierdzenia, która przedstawia funkcję, a która nie,i dlaczego. 5. Uczniowie analizują wykresy w celu stwierdzenia, który przedstawia funkcję, a który nie,i dlaczego. 6. Na tablicy magnetycznej zostają umieszczone te grafy, tabele i wykresy, które przedstawiają funkcje. Analizujemy je jeszcze raz i podkreślamy, przyporządkowania tak przedstawione spełniają dwa warunki jakich wymagamy od funkcji. Jeden z uczniów wypowiada definicję funkcji. 5z22
6 7. Wskazuję na tabelkę funkcji: q Co ona zawiera? q Jak można zinterpretować w układzie współrzędnych parę liczb? q Jak nazywamy zbiór takich punktów? q Jakie warunki muszą spełniać współrzędne punktu, by należał on do wykresu funkcji? 8. Uczniowie otrzymują zestaw plansz, które przypominają, jak z wykresu funkcji odczytać niektóre jej własności np.: dziedzinę, zbiór wartości, wartość dla danego argumentu i argument, gdy dana jest wartość. 9. Praca z zeszytem ćwiczeń i przygotowanymi wykresami. Uczniowie jak z wykresu funkcji odczytują dziedzinę, zbiór wartości, wartość dla danego argumentu i argument, gdy dana jest wartość, określają, dla jakich argumentów funkcja przyjmuje wartości dodatnie /ujemne/, większe / mniejsze / od zadanej liczby. Uczniowie kolejno podchodzą do tablicy, wykonują określone czynności i wyjaśniają ich sens. 10.Podsumowanie lekcji: q Wymienić omawiane pojęcia i podać ich definicje q Wymienić omawiane sposoby zadania funkcji 11.Zadanie pracy domowej ćwicz 2 i 3,pomogą one przypomnieć sobie inne własności funkcji, które będą omawiane na następnej lekcji. Załączniki do konspektu: 6z22
7 1 a w b x c z d y x 7z22
8 2 a x b z c y d x 8z22
9 3 a b x z c y d w x 9z22
10 4 a x b y c z d w x 10 z 22
11 5 x y z 22
12 6 x y z 22
13 7 x y z 22
14 8 x y z 22
15 ,5-7,5-6,5-5,5-4,5-3,5-2,5-1,5-0,5 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11, z 22
16 -8,5-8 -7,5-7 -6,5-6 -5,5-5 -4,5-4 -3,5-3 -2,5-2 -1,5-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9, , , z 22
17 ,5-7,5-6,5-5,5-4,5-3,5-2,5-1,5-0,5 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11, z 22
18 ,5-7,5-6,5-5,5-4,5-3,5-2,5-1,5-0,5 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11, z 22
19 13 30 znajdowanie wartości funkcji dla danego argumentu ,5-6,5-5,5-4,5-3,5-2,5-1,5-0,5 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11, z 22
20 14 30 znajdowanie argumentu, gdy dana jest wartość funkcji ,5-6,5-5,5-4,5-3,5-2,5-1,5-0,5 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11, z 22
21 ,5-8 -7,5-7 -6,5-6 -5,5-5 -4,5-4 -3,5-3 -2,5-2 -1,5-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9, , ,5 15 dziedzina funkcji z 22
22 6 6,5 7 7,5 8 8,5 9 9, , ,5-8 -7,5-7 -6,5-6 -5,5-5 -4,5-4 -3,5-3 -2,5-2 -1,5-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5, zbiór wartości funkcji z 22
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności
Bardziej szczegółowoKonspekt lekcji matematyki kl. I gimnazjum Temat: Funkcje - powtórzenie
Maria Żylska ul. Krasickiego 9/78-55 Kraków zyluska@interia.pl Konspekt lekcji matematyki kl. I gimnazjum Temat: Funkcje - powtórzenie Autor: Maria Żylska Gimnazjum 7 Kraków Temat: Funkcje powtórzenie
Bardziej szczegółowoScenariusz zajęć otwartych dla nauczycieli Publicznego Gimnazjum w Pajęcznie prowadzonych przez Iwonę Jędrzejewską
Klasa: Przedmiot: Dział programu: Scenariusz zajęć otwartych dla nauczycieli Publicznego Gimnazjum w Pajęcznie prowadzonych przez Iwonę Jędrzejewską III Matematyka Funkcje Temat: Powtórzenie i utrwalenie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
Bardziej szczegółowoTemat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
Bardziej szczegółowoMATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Bardziej szczegółowoWymagania i plan wynikowy z matematyki dla klasy I BO
Wymagania i plan wynikowy z matematyki dla klasy I BO Lekcja Liczba Treści z podstawy godzin programowej I. Liczby rzeczywiste (9 h) 1. Liczby naturalne 1 Przypomnienie ze szkoły podstawowej ułatwiające
Bardziej szczegółowoKształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowoKlasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoSCENARIUSZ LEKCJI MATEMATYKI W KLASIE 1
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE 1 Tytuł cyklu WsiP Etap edukacyjny Autor scenariusza Przedmiot Czas trwania Miejsce Cele Matematyka, autorzy: M.Trzeciak, M. Jankowska szkoła ponadgimnazjalna Adam
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Bardziej szczegółowoWymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum
Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum I. Liczby rzeczywiste 1. Liczby naturalne 2. Liczby całkowite. 3. Liczby wymierne 4. Rozwinięcie dziesiętne liczby
Bardziej szczegółowoPropozycja planu wynikowego z rozkładem materiału dla klasy 1 branżowej szkoły I stopnia
Propozycja planu wynikowego z rozkładem materiału dla klasy 1 branżowej szkoły I stopnia Zamieszczone poniżej zestawienie zagadnień omawianych na lekcjach matematyki to propozycja połączenia planu wynikowego
Bardziej szczegółowoROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Bardziej szczegółowoPLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001
Bożena Bakiewicz, Bożena Pindral PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Poziom wymagań: K - konieczny P - podstawowy R - rozszerzający D - dopełniający POTĘGI,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Bardziej szczegółowoProporcjonalność prosta i odwrotna
Literka.pl Proporcjonalność prosta i odwrotna Data dodania: 2010-02-14 14:32:10 Autor: Anna Jurgas Temat lekcji dotyczy szczególnego przypadku funkcji liniowej y=ax. Jednak można sie dopatrzeć pewnej różnicy
Bardziej szczegółowoMATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
Bardziej szczegółowoScenariusz lekcji 1. Informacje wst pne: 2. Program nauczania: 3. Temat zaj 4. Integracja: 5. Cele lekcji: Ucze potrafi:
Scenariusz lekcji 1. Informacje wstępne: Data: 25 września 2012r. Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program nauczania:
Bardziej szczegółowoWymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoFUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę.
FUNKCJE Lekcja 61-6. Dziedzina i miejsce zerowe funkcji str. 140-14 Co to jest funkcja. Może przykłady. W matematyce funkcje najczęściej przedstawiamy za pomocą wzorów. Przykłady. Dziedzina to zbiór argumentów
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w
Bardziej szczegółowoWymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1
1 TEST WSTĘPNY 1. (1p) Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą. Spośród liczb f(42), f(44), f(45), f(48) A. f(42) B. f(44) C. f(45)
Bardziej szczegółowoGIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych
Bardziej szczegółowoPLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Bardziej szczegółowoScenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach;
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
Bardziej szczegółowoKonspekt lekcji hospitacyjnej z matematyki w klasie III gimnazjum
Konspekt lekcji hospitacyjnej z matematyki w klasie III gimnazjum Temat lekcji: Funkcja liniowa w praktycznych zastosowaniach. Obserwowana w czasie lekcji umiejętność: Stosowanie zdobytej wiedzy i umiejętności
Bardziej szczegółowoWymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa
ymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa Oznaczenia: wymagania konieczne (ocena dopuszczająca), wymagania podstawowe (ocena dostateczna), wymagania rozszerzające (ocena dobra) D wymagania
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoWARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych)
WARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych) Aktywizujące metody nauczania na przykładzie tematu: Dyskusja nad liczbą rozwiązań równania liniowego z wartością bezwzględną
Bardziej szczegółowoKONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
Bardziej szczegółowoFunkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Bardziej szczegółowoPLAN KIERUNKOWY. Klasa III Gimnazjum Matematyka. Liczba godzin: 144. Wstępne osiągnięcia ucznia
Klasa III Gimnazjum Matematyka Liczba godzin: 144 PLAN KIERUNKOWY Wstępne osiągnięcia ucznia Posługuje się prostokątnym układem współrzędnych. Rozwiązuje równania i nierówności I stopnia z jedną niewiadomą
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Bardziej szczegółowoWymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Bardziej szczegółowoWymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej
Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania dostosowano do sześciostopniowej skali ocen. I. Liczby rzeczywiste zna cechy
Bardziej szczegółowoAnaliza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Bardziej szczegółowoScenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej Temat : Powtórzenie i utrwalenie wiadomości z funkcji kwadratowej Czas trwania : 90 min. Środki dydaktyczne:
Bardziej szczegółowoROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Bardziej szczegółowoPrzedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
Bardziej szczegółowoKONSPEKT LEKCJI MATEMARTKI DLA KLASY 5
KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KLASA 5E PROWADZĄCA: Anna Sałyga DZIAŁ PROGRAMOWY: Arytmetyka TEMAT: Dodawanie i odejmowanie liczb mieszanych. CELE: Poziom wiadomości: (kategoria A) uczeń zna algorytm
Bardziej szczegółowo(Lekcja w III klasie gimnazjum. Czas trwania: 90 min.)
Katarzyna Jasek nauczycielka matematyki w gimnazjum w Górze Kalwarii Jak efektywnie i efektownie poprowadzić lekcję powtórzeniową? Powtórzenie wiadomości o funkcjach liniowych metodą układanki - Jigsaw
Bardziej szczegółowoWYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
Bardziej szczegółowoTemat: Przedstawianie i odczytywanie informacji przedstawionych za pomocą wykresów. rysowanie i analizowanie wykresów zależności funkcyjnych.
Scenariusz lekcji matematyki dla klasy I Gimnazjum Temat: Przedstawianie i odczytywanie informacji przedstawionych za pomocą wykresów Cel ogólny : rysowanie i analizowanie wykresów zależności funkcyjnych.
Bardziej szczegółowoFUNKCJE LINIOWE SCENARIUSZE LEKCJI OPRACOWAŁA EWA SKOROCH
FUNKCJE LINIOWE SCENARIUSZE LEKCJI OPRACOWAŁA EWA SKOROCH Iława 2006 Wstęp Opracowanie jest zbiorem sześciu scenariuszy lekcji z zakresu funkcji opartych na programie Matematyka z plusem. Służą one jako
Bardziej szczegółowoSCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.
Bardziej szczegółowoSCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
Bardziej szczegółowoFUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe
1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoKonspekt lekcji historii: Określanie czasu minionych wydarzeń
Literka.pl Konspekt lekcji historii: Określanie czasu minionych wydarzeń Data dodania: 2010-05-25 20:12:38 Autor: Kazimierz Lakowski Konspekt zajęć lekcyjnych z historii dla uczniów klasy 4 szkoły podstawowej.
Bardziej szczegółowoWYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Bardziej szczegółowoOsiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu
Bardziej szczegółowoKONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: matematyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Funkcje trygonometryczne
Bardziej szczegółowoZakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Bardziej szczegółowoWymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2018/2019. Kryteria oceny
Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 018/019 Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era Kryteria oceny Znajomość pojęć, definicji, własności oraz wzorów objętych
Bardziej szczegółowozna wykresy i własności niektórych funkcji, np. y = x, y =
Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
Bardziej szczegółowoAgnieszka Kamińska Dorota Ponczek. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 1 Zakres podstawowy
Agnieszka Kamińska Dorota Ponczek Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 1 Zakres podstawowy Warszawa 2019 Wyróżnione zostały następujące wymagania
Bardziej szczegółowoScenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego. Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej
Scenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej Opracowanie: Anna Borawska Czas trwania zajęć: jedna jednostka
Bardziej szczegółowoWymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
Bardziej szczegółowoPrzekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne)
Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne) Opracowała: Marlena Lisiecka Cele realizowane podczas lekcji: - znajdowanie potrzebnych informacji
Bardziej szczegółowoWymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I
NAUCZYCIEL BARBARA PAPUSZKA PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I KONTRAKT NAUCZYCIEL UCZEŃ 1. Uczeń zobowiązany jest do bycia przygotowanym na każdą lekcję tj. wymagane jest posiadanie
Bardziej szczegółowoPLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE
Ewa Koralewska PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem LP.. 2. 3. 5. OGÓLNA PODST- AWA PROGRA- MOWA a a TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna.
Bardziej szczegółowoKRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka Poznać, zrozumieć Kształcenie w zakresie podstawowym Klasa 1 (4 godziny tygodniowo) Poniżej podajemy umiejętności, jakie powinien
Bardziej szczegółowoPlan wynikowy z rozkładem materiału
Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej
Bardziej szczegółowoWYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
Bardziej szczegółowoKONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
Bardziej szczegółowoWYKRESY FUNKCJI LINIOWEJ
GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie
Bardziej szczegółowoSkrypt 7. Funkcje. Opracowanie: L1
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Funkcje 8. Miejsce zerowe
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
Bardziej szczegółowoKonspekt lekcji matematyki
Konspekt lekcji matematyki 1) Nauczyciel: Ewelina Śliż ) Przedmiot: Matematyka 3) Szkoła: Gimnazjum 4) Klasa: III 5) Czas trwania lekcji: 45 min 6) Nr programu nauczania: DPN 500 17 /08 7) Jednostka metodyczna:
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowoScenariusz lekcji matematyki z wykorzystaniem techniki komputerowej. Temat lekcji : Przekształcanie wykresów funkcji trygonometrycznych.
Scenariusz lekcji matematyki z wykorzystaniem techniki komputerowej - lekcji otwartej przeprowadzonej w dniu 15 marca 2010 nauczyciel prowadzący Anna Wieczyńska Temat lekcji : Przekształcanie wykresów
Bardziej szczegółowoAd maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach SCENARIUSZ ZAJĘĆ Z MATEMATYKI W KLASIE II LICEUM PROWADZONYCH W CELU UZUPEŁNIENIA WIADOMOŚCI Temat: Wyznaczanie równania prostej prostopadłej i prostej
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:08.01.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Bardziej szczegółowoFunkcja rosnąca, malejąca, stała współczynnik kierunkowy
Funkcja rosnąca, malejąca, stała współczynnik kierunkowy 1. Cele lekcji Cel ogólny: Uczeń podaje przykłady funkcji i odczytuje jej własności z wykresów. Cele szczegółowe: Uczeń potrafi: określić monotoniczność
Bardziej szczegółowoDział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
Bardziej szczegółowoSposoby przedstawiania algorytmów
Temat 1. Sposoby przedstawiania algorytmów Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły
Bardziej szczegółowoFUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
Bardziej szczegółowoROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
Bardziej szczegółowoPróbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Bardziej szczegółowoTwórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
SCENARIUSZ LEKCJI PRZEDMIOT: MATEMATYKA TEMAT: GRAFICZNE ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ AUTOR SCENARIUSZA : mgr Halina Bobek OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Graficzne rozwiązywanie
Bardziej szczegółowoMETODA Wykorzystanie programu LICEALISTA 2.0 (a w nim podprogramu VIRTUAL MATH) zakupionego przez nauczyciela Karty Pracy dla każdego ucznia
KONSPEKT LEKCJI na temat: RYSOWANIE WYKRESÓW WIELOMIANÓW CELE LEKCJI: Poznawcze Uczeń utrwala wiadomości o funkcji wielomianowej (rysowanie wykresu, miejsce zerowe (pierwiastek) wielomianu i jego krotność,
Bardziej szczegółowoKLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
Bardziej szczegółowoMATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Bardziej szczegółowoOsiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji
Bardziej szczegółowoMATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
Bardziej szczegółowoROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
Bardziej szczegółowo