KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI. Wyznaczanie bezwzględnego współczynnika lepkości cieczy metodą Stokesa.
|
|
- Irena Karczewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie bezwzględnego wsółczynnika lekości cieczy metodą Stokesa.
2 1. Wowadzenie Płyny zeczywiste mają ewną watość tacia wewnętznego, któe nazywamy lekością. Lekość dotyczy zaówno cieczy jak i gazów. MoŜemy ją zdefiniować jako tacie omiędzy sąsiadującymi wastewkami łynu, gdy zesuwają się one względem siebie. W cieczach lekość jest sowodowana siłami kohezyjnymi omiędzy cząstkami, a w gazach jest związana ze zdezeniami cząstek. Rys.1 Zestaw ekseymentalny do wyznaczania wsółczynnika lekości RóŜne łyny mają óŝną watość lekości n. syo jest badziej leki niŝ woda, sma ma większą lekość niŝ olej silnikowy, a ciecze mają większą lekość niŝ gazy. Lekości óŝnych łynów mogą być wyaŝone ilościowo ozez wsółczynnik lekości, η (gecka litea eta), któy moŝemy zdefiniować za omocą nastęującego ekseymentu. Cienką wastwę łynu umieszcza się omiędzy dwoma łytkami, z któych jedna jest uchoma, a duga nieuchoma. Cząstki łynu znajdującego się w bezośednim kontakcie z kaŝdą z łytek oddziaływują z nimi siłami adhezji. Tak więc góna owiezchnia łynu ousza się z tą samą ędkością co łytka uchoma, odczas gdy łyn w kontakcie z łytką nieuchomą ozostaje w soczynku i hamuje uch wastwy łynu, znajdującego się nad nią, a ta z kolei hamuje uch nastęnej itd. Widzimy, Ŝe ędkość zmienia się w sosób ciągły od 0 do v. Zmiana ędkości odzielona zez dogę, na któej nastęuje ta zmiana (v/l) nazywana jest gadientem ędkości. Aby zesunąć góną łytkę naleŝy zadziałać odowiednią siłą, któa jest oocjonalna do owiezchni łynu A, znajdującego się w kontakcie z łytką i do ędkości v, a odwotnie oocjonalny do odległości omiędzy łytkami l, czyli F va/ l. Im badziej leki jest łyn, tym większa owinna być ta siła. Ostatecznie moŝemy naisać, Ŝe siła ta jest ówna: 1
3 Av F = η (1) l Rozwiązując to ównanie dla η, otzymujemy: η = Fl / va. W układzie SI jednostką η jest N s / m = Pa s. W układzie CGS jednostką jest dyna s / cm i nazywana jest oisem (P) [czyt. uaz]. Lekość jest często odawana w centyoisach* ( 1cP = 10 P ). W tabeli 1 odano zykładowe wsółczynnik lekości dla óŝnych łynów. RównieŜ temeatua silnie wływa na lekość łynów n. lekość takich cieczy jak olej silnikowy maleje ze wzostem temeatuy. Płyn Temeatua [ C] Lekość [Pa. s] Woda Woda Woda Alkohol etylowy Olej silnikowy Powietze Wodó Paa wodna Tabela 1 Najostszą zaleŝność wiąŝącą siłę hamującą waz z gadientem ędkości dla zeływu laminanego wyowadził Newton: dv F = η A () dx Jest ono sełnione tylko dla małych ędkości (niska watość liczby Reynoldsa, ρv Re<1160, Re = ). Ciecze, któe sełniają to ównanie nazywamy newtonowskimi. tπη * 1[Pa*s] = 10[P] = 1000[cP]
4 Tudno byłoby obliczyć lekość łynów bezośednio z owyŝszego ównania z owodu tudności w omiaze gadientu ędkości i nieewności w omiaze owiezchni kontaktu. Zamiast tego wykozystuje się wiskozymet Stokesa, w któym mała metalowa kulka jest wzucana do szklanej uy, wyełnionej łynem. Rys.. Schemat sadku swobodnego kulki w lekim łynie Podczas uchu ciał w ośodkach lekich, wskutek oddziaływań międzycząsteczkowych, ciało unosi wastwę cieczy zylegającą do niego, ta natomiast wawia w uch nastęne wastwy cieczy (Rys. ). Powstaje zatem w ośodku gadient ędkości ostoadły do kieunku uchu ciała (n. metalowej kulki). Zjawisko to jest czynnikiem hamującym i okeślane jest jako tacie wewnętzne bądź lekość. Jeśli ędkość kulki jest wystaczająco mała (moŝemy załoŝyć, Ŝe zeływ jest laminany) moŝemy uŝyć ównania Stokesa do obliczenia siły tacia wewnętznego, działającej na kulkę: F T = 6πηv (3) gdzie: - omień kulki, v- ędkość oadania kulki, Na oadającą kulkę działają jednak takŝe inne siły: 3
5 siła gawitacji: F G 4 = mg = π 3 ρ m g 3 gdzie ρ k to gęstość mateiału, z któego wykonana jest kulka (stali). Dugą siłą jest siła wyou ośodka, związana ze wzostem ciśnienia waz z głębokością. Tak więc ciśnienie na owiezchni zy dnie obiektu zanuzonego w łynie jest większe niŝ ciśnienie na gónej owiezchni obiektu (Rys.3.). (4) Rys.3. Wyznaczanie siły wyou. RozwaŜaną sytuację zedstawiono dla walca zanuzonego całkowicie w łynie o gęstości ρ o wysokości h, któego odstawy mają owiezchnię A. Płyn wywiea ciśnienie P 1 = ρ gh 1 na owiezchnię góną walca. Natomiast siła działająca na góną odstawę walca jest ówna: F1 1 ρ 1 = P A = gh A i jest skieowana w dół. Podobnie łyn działa siłą skieowaną w góę na dolną odstawę walca, ówną: F ρ = P A = gh A. Siła wyadkowa działająca na walec jest to siła wyou F W, działająca w góę i oisana ównaniem: F = F F1 = ρ ga( h h1 ) = ρ gah = ρ gv (5) W W zyadku metalowej kulki zanuzonej w cieczy, siła wyou jest nastęująca: F W 4 = π 3 ρ g (6) 3 Początkowo, gdy kulka metalowa zostaje wzucona zez lejek do cieczy jej ędkość ośnie i ousza się ona uchem zysieszonym. Gdy ośnie ędkość, ośnie takŝe siła 4
6 tacia, aŝ do momentu, gdy siły w ównaniu (7) zównowaŝą się i kulka zacznie ouszać się uchem jednostajnym. ΣF = F F F = 0 G G W W T T F = F + F (8) Podstawiając ównania dla oszczególnych sił (ównanie 3, 4 i 6) do ównania 8 uzyskujemy ównanie 9, słuŝące do obliczania wsółczynnika lekości, o uzednim obliczeniu ędkości kulki na odstawie wykonanych omiaów. (7) g( ρ k ρ ) η = v (9) 9v Równanie Stokesa jest sełnione dla nieskończenie duŝego ośodka i zeływu laminanego. Dlatego naleŝy wziąć od uwagę wływ ścianek uy, wowadzając oawkę, iŝ wskutek wływu ścianek cylinda ędkość oadania zmniejsza się tyle azy ile wynosi watość ułamka R. Pomiay Doświadczenie zeowadza się w wiskozymetze Stokesa (Rys.4.) 5
7 Rys.4. Wiskozymet Stokesa Doświadczenie naleŝy wykonać według nastęującej oceduy: 1. Naełnić uę gliceyną. Wowadzić lejek do uy 3. Zmiezyć odległości omiędzy oziomami uy, zaznaczonymi niebieskimi askami 4. Zmiezyć śednicę kulki suwmiaką, zwaŝyć ją, a nastęnie wzucić zez lejek do uy wiskozymetu 5. Zmiezyć czas sadku kulki omiędzy wyóŝnionymi oziomami 6. Zaisać uzyskany wynik omiau w notatniku laboatoyjnym 7. Powtózyć omia dla 15 kulek o małej śednicy 8. Zebać odowiednie dane jak gęstość gliceyny, śednica uy, dokładność omiau suwmiaki 6
8 9. Wyjąć kulki z uy, ciągnąc ostoŝnie za koek i wyuszczając tochę gliceyny. Wlać gliceynę z owotem do uy. Wyniki owinny być zamieszczone w tabeli. Tabela L. [m] m [kg] l [m] t [s] R [m] ρ k 1. [kg/m 3 ] ρ [kg/m 3 ] η [Pa. s] 3. Wyniki, obliczenia, analiza błędów NaleŜy obliczyć wsółczynnik lekości η gliceyny, wykozystując ównania 3-7. A nastęnie zeowadzić analizę błędów dla obliczonego wsółczynnika lekości kozystając z nastęującego wzou: d η η η η η = d + dl + dt + dr (10) l t R Natomiast końcowe wyniki naleŝy zedstawić w fomie: η = η ± dη (11) Otzymaną watość wsółczynnika oównać ze wsółczynnikiem lekości uzyskanym z tablic. 4. Liteatua 1. Szydłowski H., Pacownia fizyczna, PWN, Waszawa, Bobowski Cz., Fizyka kótki kus, WNT, Waszawa, Giancoli D.C., Physics. Pinciles with Alications, Pentice Hall, Feynman R., Feynmana wykłady z fizyki, Tom.., PWN, Waszawa, 00 7
9 5. Pytania 1. Co to jest lekość? Jakie odzaje lekości są ci znane?. Oisz zjawisko sadającej koli deszczu. 3. Wyowadź ównanie na lekość. 4. Metody wyznaczania wsółczynnika lekości. 5. Od czego zaleŝy lekość? 6. Co to jest liczba Reynoldsa? 7. Jakie waunki owinny być sełnione, aby moŝna było kozystać z ównania Stokesa? 8. Z czego wynika stosowanie oawki we wzoze Stokesa? 9. Omów awo Achimedesa. 10. Wyowadź wzó na siłę wyou. 6. Liteatua 1. Szydłowski H., Pacownia fizyczna, PWN, Waszawa, Bobowski Cz., Fizyka kótki kus, WNT, Waszawa, Giancoli D.C., Physics. Pinciles with Alications, Pentice Hall, Feynman R., Feynmana wykłady z fizyki, Tom.., PWN, Waszawa, 00 8
Wyznaczanie współczynnika wnikania ciepła dla konwekcji swobodnej
Kateda Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie wsółczynnika wnikania cieła dla konwekcji swobodnej - - Pojęcia odstawowe Konwekcja- zjawisko wymiany cieła między owiezchnią
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
Fizyka. Wykład 2. Mateusz Suchanek
Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,
Wykład 5: Dynamika. dr inż. Zbigniew Szklarski
Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,
PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się
PŁYNY RZECZYWISTE Płyny rzeczywiste Przeływ laminarny Prawo tarcia Newtona Przeływ turbulentny Oór dynamiczny Prawdoodobieństwo hydrodynamiczne Liczba Reynoldsa Politechnika Oolska Oole University of Technology
ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania
ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze
KOMPLEKSOWE BADANIE WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH LABORATORYJNĄ METODĄ POMIARU OPORÓW TARCIA
Gónictwo i Geoinżynieia Rok 33 Zeszyt 1 29 Janusz Kaczmaek KOMPLEKSOWE BADANIE WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH LABORATORYJNĄ METODĄ POMIARU OPORÓW TARCIA 1 Wstę Koncecję laboatoyjnego sosobu badania
WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA
Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
Mechanika płynp. Wykład 9 14-I Wrocław University of Technology
Mechanika łyn ynów Wykład 9 Wrocław University of Technology 4-I-0 4.I.0 Płyny Płyn w odróŝnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia.
WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
Energia kinetyczna i praca. Energia potencjalna
Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson
dr inż. Zbigniew Szklarski
Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
cz.1 dr inż. Zbigniew Szklarski
ykład : Gawitacja cz. d inż. Zbiniew Szklaski szkla@ah.edu.l htt://laye.uci.ah.edu.l/z.szklaski/ Doa do awa owszechneo ciążenia Ruch obitalny lanet wokół Słońca jak i dlaczeo? Reulane, wieloletnie omiay
Wykład 17. 13 Półprzewodniki
Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa
Mechanika płynów. Wykład 9. Wrocław University of Technology
Wykład 9 Wrocław University of Technology Płyny Płyn w odróżnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia. Płyny od tą nazwą rozumiemy
dr inż. Zbigniew Szklarski
ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.
Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej
Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.
Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera (M8)
Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera (M8) W P R O W A D Z E N I E Jakikolwiek przepływ cieczy rzeczywistej cechuje zawsze poślizg warstewek. PoniewaŜ w cieczach istnieją
W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych.
BADANIE PROCESU SEDYMENTACJI Wstęp teoretyczny. Sedymentacja, to proces opadania cząstek ciała stałego w cieczy, w wyniku działania siły grawitacji lub sił bezwładności. Zaistnienie róŝnicy gęstości ciała
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego
POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC
Badanie siły elektromotorycznej Faraday a
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW ZESPÓŁ FIZYKI I MATEMATYKI STOSOWANEJ LABORATORIUM Z FIZYKI Badanie siły elektomotoycznej Faaday a 1. Wpowadzenie Jedną
9. 1. KOŁO. Odcinki w okręgu i kole
9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,
10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.
0. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0.0. Podstawy hydrodynamiki. Podstawowe ojęcia z hydrostatyki Ciśnienie: F N = = Pa jednostka raktyczna (atmosfera fizyczna): S m Ciśnienie hydrostatyczne:
Wyznaczanie gęstości i lepkości cieczy
Wyznaczanie gęstości i lepkości cieczy A. Wyznaczanie gęstości cieczy Obowiązkowa znajomość zagadnień Definicje gęstości bezwzględnej (od czego zależy), względnej, objętości właściwej, ciężaru objętościowego.
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa
Zastosowanie zasad dynamiki Newtona.
Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne
WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY Z PRAWA STOKESA
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY Z PRAWA STOKESA I. Cel ćwiczenia: obserwacja ruchu ciał stałych w ciekłym ośrodku lepkim, pomiar współczynnika lepkości gliceryny przy wykorzystaniu prawa Stokesa.
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.
Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te
Kalorymetria paliw gazowych
Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,
3.GRAWITACJA 3.1. Wielkości charakteryzujące pole grawitacyjne. Siły Centralne F21
.GAWITACJA.. Wielkości chaakteyzujące ole awitacyjne. iły Centalne C F ˆ Dla oddziaływań awitacyjnych stała C: C Gm m Nm dzie G 6,67* - k Dla oddziaływań elektostatycznych stała C: q q C 4πε o Oddziaływanie
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,
Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych
Ć W I C Z E N I E N R C-5
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII ATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-5 WYZNACZANIE CIEPŁA PAROWANIA WODY ETODĄ KALORYETRYCZNĄ
PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r
PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda
Współczynnik lepkości
Ćwiczenie 1 Współczynnik lepkości Cel ćwiczenia Zapoznanie się z własnościami cieczy lepkiej, wyznaczenie współczynnika lepkości metodą spadania kulki (metodą Stokesa). Wprowadzenie Przy przepływie wszystkich
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia
Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.
Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
Fizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne odstawy inżynieii ocesowej Wykład VI Różne metody wyznaczania ciśnienia nasycenia Wykesy temodynamiczne Równania stanu dla substancji zeczywistych Różne metody okeślania ężności ay nasyconej
Wykłady z Fizyki. Hydromechanika
Wykłady z Fizyki 03 Zbigniew Osiak Hydromechanika OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K
Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]
Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
1. Za³o enia teorii kinetyczno-cz¹steczkowej budowy cia³
1. Za³o enia teorii kinetyczno-cz¹steczkowej budowy cia³ Imię i nazwisko, klasa A 1. Wymień trzy założenia teorii kinetyczno-cząsteczkowej budowy ciał. 2. Porównaj siły międzycząsteczkowe w trzech stanach
Równanie Bernoulliego. 2 v1
Wykład z fizyki, Piotr Posmykiewicz 4 Równanie Bernoulliego. RozwaŜmy płyn przepływający przez rurkę, której przekrój poprzeczny i połoŝenie zmienia się jak pokazano na rysunku -0. Zastosujmy twierdzenie
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury
Prawo powszechnego ciążenia Newtona
Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =
SYNTEZA I WŁAŚCIWOŚCI PIEZOELEKTRYCZNE CERAMIKI TYPU PZT OTRZYMYWANEJ METODĄ ZOLOWO-ŻELOWĄ
SYNTZA I WŁAŚCIWOŚCI PIZOLKTRYCZN CRAMIKI TYPU PZT OTRZYMYWANJ MTODĄ ZOLOWO-ŻLOWĄ JAN ILCZUK, ALDONA ZARYCKA, MARK CZRWIC Uniwesytet Śląski w Katowicach, Wydział Infomatyki i Nauki o Mateiałach, Kateda
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Cel ćwiczenia: Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. Literatura
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
v p dr dt = v dr= v dt
Rozpędzanie obiektów Praca sił przy rozpędzaniu obiektów b W = a b F dr = a m v dv dt dr = k v p dr dt =v dr=v dt m v dv = m v 2 k 2 2 m v p 2 Wyrażenie ( mv 2 / 2 )nazywamy energią kinetyczną rozpędzonego
Atom (cząsteczka niepolarna) w polu elektrycznym
Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do
PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego
PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa
Elektrostatyka. A. Sieradzki IF PWr. Ogień Świętego Elma
A. Sieadzki I PW Elektostatyka Wykład Wocław Univesity of Technology 3-3- Ogień Świętego Elma Ognie świętego Elma (ognie św. Batłomieja, ognie Kastoa i Polluksa) zjawisko akustyczno-optyczne w postaci
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
Człowiek najlepsza inwestycja FENIKS
Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki łynów ĆWICZENIE NR OKREŚLENIE WSPÓLCZYNNIKA STRAT MIEJSCOWYCH PRZEPŁYWU POWIETRZA W RUROCIĄGU ZAKRZYWIONYM 1.
Siła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
Kartografia matematyczna
Wykład II Katogafia matematyczna Odwzoowania azymutalne Kystian Kozioł Kaków 0 0 9 Klasyfikacja odwzoowań Ze względu na chaakte zniekształceń odwzoowawczych: ównokątne zachowują bez zniekształceń kąty,
Wykłady z fizyki FIZYKA III
POLITECHNIKA OPOLSKA WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI Instytut Matematyki i Fizyki Katedra Fizyki Wykłady z fizyki FIZYKA III dr Barbara Klimesz SPRAWY ORGANIZACYJNE Warunki ogólne zaliczenia zajęć
Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka)
2012 Katedra Fizyki SGGW Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Ćwiczenie 402 Godzina... Wyznaczanie siły wyporu i gęstości ciał WIELKOŚCI FIZYCZNE JEDNOSTKI WALEC (wpisz
MODELOWANIE OBSZARÓW WIELOSPÓJNYCH W PURC DLA DWUWYMIAROWEGO RÓWNANIA RÓŻNICZKOWEGO NAVIERA
MODELOWANIE INŻYNIERSKIE ISNN 896-77X 3, s. 507-5, Gliwice 006 MODELOWANIE OBSZARÓW WIELOSPÓJNYCH W PURC DLA DWUWYMIAROWEGO RÓWNANIA RÓŻNICZKOWEGO NAVIERA EUGENIUSZ ZIENIUK AGNIESZKA BOŁTUĆ Zakład Metod
τ = wyp τ i ! F = wyp Równowaga statyczna
Równowaga statyczna Ciało sztywne znajduje się w równowadze statycznej tj. w bezruchu względem inercjalnego układu odniesienia - gdy wypadkowa siła oraz wypadkowy moment siły (liczony względem dowolnego
Ćw. 1 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej
Ćw. Wyznaczanie rędkości rzeływu rzy omocy rurki siętrzającej. Cel ćwiczenia Celem ćwiczenia jest zaoznanie się z metodą wyznaczania rędkości gazu za omocą rurek siętrzających oraz wykonanie charakterystyki
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 stycznia 06 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą,
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
WYZNACZANIE ROZMIARÓW
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Wykład 15. Reinhard Kulessa 1
Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.
Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listoad 05 Zadania zamknięte Za każdą oawną odowiedź zdający otzymuje unkt. Nume Poawna odowiedź Wskazówki do ozwiązania.
Rozwiązanie zadania 1.
ozwiązaie zadaia. Zagadieie będziemy ozatywali w układzie, w któym stożek jest ieuhomy. a Poieważ zdezeie jest doskoale sężyste, a owiezhia stożka ieuhoma, atom gazu o zdezeiu będzie miał ędkość v skieowaą
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład XII: Siły sprężyste Opory ruchu Tarcie Lepkość Ruch w ośrodku Siła sprężysta Prawo Hooke a Opisuje zależność siły sprężystej od odkształcenia ciała: L Prawo
Teoria Względności. Czarne Dziury
Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie
Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów
Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z
Laboratorium Podstaw Fizyki. Ćwiczenie 100a Wyznaczanie gęstości ciał stałych
Prowadzący: najlepszy Wykonawca: mgr Karolina Paradowska Termin zajęć: - Numer grupy ćwiczeniowej: - Data oddania sprawozdania: - Laboratorium Podstaw Fizyki Ćwiczenie 100a Wyznaczanie gęstości ciał stałych
KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Schemat punktowania zadań
Maksymalna liczba punktów 60 85% 5pkt KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 7 stycznia 0 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Uwaga!. Za poprawne rozwiązanie
METODY STATYCZNE Metody pomiaru twardości.
METODY STATYCZNE Metody pomiau twadości. Opacował: XXXXXXXX studia inŝynieskie zaoczne wydział mechaniczny semest V Gdańsk 00. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z metodami pomiaów twadości,
1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Binarne Diagramy Decyzyjne
Sawne tablice logiczne Plan Binane diagamy decyzyjne Oganiczanie i kwantyfikacja Logika obliczeniowa Instytut Infomatyki Plan Sawne tablice logiczne Binane diagamy decyzyjne Plan wykładu 1 2 3 4 Plan wykładu