Równanie Bernoulliego. 2 v1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Równanie Bernoulliego. 2 v1"

Transkrypt

1 Wykład z fizyki, Piotr Posmykiewicz 4 Równanie Bernoulliego. RozwaŜmy płyn przepływający przez rurkę, której przekrój poprzeczny i połoŝenie zmienia się jak pokazano na rysunku -0. Zastosujmy twierdzenie o pracy i energii do płynu znajdującego się początkowo punktami i ( Rysunek -0a ). Po pewnym czasie ograniczonymi punktami i ( Rysunek -0b). Niech masa między t płyn przesunie się wzdłuŝ rurki do obszaru m = ρ V jest masą tego płynu. W rezultacie m w ciągu czasu tzostała podniesiona z wysokości y na wysokość y, a jej prędkość zmieniła się z v na v. Zmiana energii potencjalnej płynu wyniesie przy tym: U = mgy K = ( y ) mgy = ρ Vg y a zmiana energii kinetycznej jest równa: ( m) v ( m) v = ρ V( v ) v Płyn z tyłu za masą płynu w rurce ( po lewej stronie zacienionej części (Rysunek -0a) działa na płyn z przodu siłą równą F = pa, gdzie p jest ciśnieniem w punkcie. Siła ta wykonuje pracę: W = F x = pa x = p V W tym samym czasie płyn z przodu (po prawej stronie) działa siłą F = p A w kierunku na lewo na rysunku. Siła ta wykonuje pracę ujemną, poniewaŝ jest przeciwna do kierunku ruchu cieczy: Pole A Rysunek -0 Pole A W = F x = p A x = p V Całkowita praca wykonana przez te siły jest równa: ( p p ) V Wca = p V p V = Twierdzenie o pracy i energii ma postać: W rezultacie: W ca JeŜeli podzielić to przez = U + K ( p p ) V = ρ Vg( y y ) + ρ V ( v ) v V, to otrzymamy:

2 Wykład z fizyki, Piotr Posmykiewicz 43 p p = ρgy ρgy + ρv ρv JeŜeli przenieść wszystkie wyrazy z indeksem na jedną stronę, a wyrazy z indeksem na drugą, to otrzymamy: p + ρ gy + ρv = p + ρgy + ρv -a Wynik powyŝszy moŝna przepisać w postaci: p + gy + ρ v = const ρ -b Równanie Bernoulliego co oznacza, Ŝe suma powyŝszych wielkości ma taką samą wartość w dowolnym punkcie rurki. Równanie -b nazywa się równaniem Bernoulliego dla ustalonego, nielepkigo przepływu i nieściśliwego płynu. Zadanie. DuŜy zbiornik z wodą posiada małą dziurkę w odległości h od powierzchni wody. Znajdź prędkość wylewającej się wody przez otwór korzystając z prawa Bernoulliego. ( Odpowiedź: v = gh ) Na rysunku - woda przepływa przez poziomą rurkę, która posiada zmienne przekroje poprzeczne. PoniewaŜ rurka połoŝona Rysunek - na tej samej wysokości, to y = y w równaniu -b. Wtedy równanie Bernoulliego moŝemy zapisać: p + ρ v = const -3 Równanie Bernoulliego dla stałej wysokości JeŜeli płyn przepływa do części węŝszej ( A małe ) prędkość musi ulec zwiększeniu poniewaŝ Av musi pozostać stałe. Jednak jeŝeli prędkość jest większa, to w związku z tym, Ŝe ciśnienie musi zmaleć. JeŜeli prędkość cieczy wzrasta, to ciśnienie maleje. p Zjawisko Venturiego + ρv musi być stałe, P R Z K Ł A D Wskaźnik Venuriego jest urządzeniem słuŝącym do mierzenia prędkości przepływu płynu. Płyn o gęstości ρ p przechodzi przez część rurki o przekroju A, która jest połączona z rurką o ρ p ρ c Rysunek -

3 Wykład z fizyki, Piotr Posmykiewicz A przekroju 44 (Rysunek -). Obje części rurki połączone są manometrem w postaci U-rurki, który częściowo napełniany jest cieczą o gęstości ρc. PoniewaŜ prędkość przepływu jest większa zwęŝonym obszarze, to ciśnienie w tym miejscu jest mniejsze niŝ w innych częściach rurki. RóŜnica ciśnień mierzona jest poprzez pomiar róŝnicy wysokości słupów cieczy w U-rurce. Znajdź prędkość wysokości h, znanych gęstości ρ p i ρ c Analiza zadania. Ciśnienia v poprzez równanie p i p na podstawie zmierzonej = A / A. w szerokiej i węŝszej części rurki są związane z prędkościami Bernoulliego. RóŜnica p p = ρ c gh. MoŜna wyrazić v. i znanego stosunku przekrojów r v poprzez ciśnień związana jest z wysokością h p + ρ p v = p + ρ p v v = A v = rv A szerszej i węŝszej części rurki.. Zapisz równanie ciągłości dla dwu obszarów i wylicz 3. podstaw otrzymany wynik do i wylicz 4. Oblicz róŝnicę p p v : p p : ( na podstawie róŝnicy słupa cieczy w U-rurce: 5 Porównaj oba wyraŝenia na róŝnicę p p i oblicz v v = ρ c gh ρp r ( ) DuŜa v małe p R ó Małe v duŝe p ) ρ p r v p p = ρ c gh p p = Rysunek -3 i poprzez A i A i v korzystając z równania ciągłości. Zapisz równanie Bernoulliego dla stałej wysokości dla v

4 Wykład z fizyki, Piotr Posmykiewicz 45 wnanie Bernoulliego moŝna wykorzystać do jakościowego opisu siły nośnej skrzydła samolotowego lub opisu toru lotu podkręconej piłki. Skrzydło samolotu jest tak zaprojektowane, Ŝe powietrze porusza się szybciej na górnej jego części niŝ na dolnej, a to powoduje mniejsze ciśnienie na górnej powierzchni niŝ pod spodem skrzydła. W rezultacie ta róŝnica ciśnień daje siłę nośną samolotu. Rysunek -3a przedstawia widok z góry ruchu piłki. Podczas gdy piłka się obraca, pociąga jednocześnie za sobą cząsteczki powietrza. Rysunek -3b wykonany jest z punktu widzenia piłki znajdującej się w spoczynku ( ale kręcącej się), z powietrzem pędzącym względem piłki. Ruch powietrza spowodowany obrotem piłki dodaje się do prędkości powietrza poruszającego się nad piłką i odejmuje od ruchu powietrza pod piłką. Tak więc, prędkość powietrza u góry jest większa niŝ na dole, a to powoduje, Ŝe ciśnienie nad piłką jest mniejsze niŝ na dole. W rezultacie piłka zakręca do góry. Pomimo tego, Ŝe równanie Bernoulliego jest bardzo przydatne do opisu szeregu zjawisk związanych z przepływem płynu, to taki opis jest często całkowicie nieadekwatny do wyników eksperymentalnych. Głównym powodem tych rozbieŝności jest fakt, Ŝe gazy na przykład powietrze są tylko w bardzo małym stopniu nieściśliwe, a z drugiej strony ciecze takie jak na przykład woda posiadają lepkość, która powoduje naruszenie zasady zachowania energii mechanicznej. Oprócz tego, często trudno jest utrzymać przepływ stacjonarny i warstwowy, który moŝe łatwo przerodzić się w przepływ turbulentny ( wirowy); mogący znacznie wpłynąć na wynik pomiarów. Przepływ lepki. Zgodnie z równaniem Bernoulliego, jeŝeli płyn płynie w sposób ustalony przez długą, poziomą rurkę o stałym przekroju poprzecznym, to ciśnienie wzdłuŝ całej rurki powinno być stałe. W praktyce, jednak, obserwujemy, Ŝe ciśnienie spada w miarę jak posuwamy się w kierunku przepływu. Spójrzmy na to zagadnienie z innej strony: róŝnica ciśnień jest konieczna, aby przesuwać płyn wzdłuŝ poziomej rurki. Ta róŝnica ciśnień jest konieczna, z powodu siły oporu, która jest wywierana przez ściankę rurki na warstwę płynu przylegającego do rurki i z powodu siły oporu wywieranej przez kaŝdą warstwę płynu na warstwę sąsiednią poruszającą się z inną prędkością. Te siły oporu nazywają się siłami lepkości. W rezultacie występowania sił lepkości prędkość płynu nie jest stała wzdłuŝ średnicy rurki. Jest ona największa w środku rurki, a najmniejsza na brzegu rurki; jeŝeli ciecz zwilŝa rurkę, to jej prędkość w miejscu kontaktu ze ścianką rurki wynosi zero ( Rysunek -4 ).Niech p będzie ciśnieniem w punkcie, a p ciśnieniem w punkcie, p p wzdłuŝ kierunku przepływu w odległości L. Spadek ciśnienia jest proporcjonalny do szybkości przepływu objętości: p = p p = I R Rysunek 3-4 p = V -4 Rysunek -5

5 Wykład z fizyki, Piotr Posmykiewicz 46 Gdzie I V = va jest szybkością przepływu objętości, a stała proporcjonalności R jest oporem przepływu i zaleŝy od długości L rurki, jej promienia i lepkości płynu. Aby zdefiniować współczynnik lepkości płynu, rozpatrzmy płyn zawarty między dwiema równoległymi płytami, z których kaŝda ma powierzchnię A i które oddalone są od siebie o z, jak jest to przedstawione na rysunku -5. Górna płytka jest ciągnięta ze stałą prędkością v przez siłę F r, podczas gdy dolna płytka znajduje się w spoczynku. Siła F r potrzebna jest do ciągnięcia górnej płytki, poniewaŝ płyn sąsiadujący z płytką wywiera siłę oporu lepkości, która to siła jest przeciwnie skierowana do kierunku ruchu płytki. Prędkość płynu między płytkami jest, w istocie, równa v przy górnej płytce i równa zeru przy dolnej płytce; zmieniając się liniowo wraz z odległością między płytkami. Okazuje się, Ŝe siła F r jest wprost proporcjonalna do v i A, a odwrotnie proporcjonalna do odległości między płytkami współczynnikiem lepkości η : z. Stała proporcjonalności nazywa się F va η z = -5 Wzór Newtona Wzór ten nosi nazwę wzoru Newtona. W układzie SI jednostką współczynnika lepkości jest Ns/m. starą jednostką jest puaz: Pa s = 0 puazów PoniŜsza tabela przedstawia współczynniki lepkości dla paru płynów w róŝnych temperaturach. Ogólnie współczynnik lepkości maleje wraz ze wzrostem temperatury. Właśnie dlatego, w chłodnym klimacie do smarowania silników samochodowych zimą uŝywa się rzadszych olei niŝ latem. Prawo Poiseuille a Opór przepływu R w równaniu -4 dla stacjonarnego przepływu przez rurę o przekroju kołowym o promieniu r moŝna pokazać, Ŝe jest równy Współczynnik lepkości dla róŝnych płynów Płyn t, 0 C η, mpa s Woda 0,8 0, ,65 Krew 37 4,0 Olej silnikowy (SAE 0 ) Gliceryna Powietrze 0 0,08

6 Wykład z fizyki, Piotr Posmykiewicz 47 R 8ηL π r = I 4 V -6 Łącząc równanie -4 z równaniem -6 otrzymamy spadek ciśnienia na długości L rury o promieniu r : 8ηL p = I 4 V -7 πr Prawo Poiseuille a Równanie -7 jest znane jako prawo Poiseuille a. Zwróćmy uwagę na odwrotną zaleŝność między r 4, a spadkiem ciśnienia. JeŜeli promień rurki zmniejsza się o połowę, to spadek ciśnienia dla danej prędkości przepływu wzrasta 6 razy! Lub inaczej ciśnienie musi być 6 razy większe, aby pompa pompowała ciecz przez rurkę z początkową szybkością przepływu objętości. W ten sposób, jeŝeli średnica Ŝył, lub aort ulegnie z jakiś powodów zwęŝeniu, to albo szybkość przepływu objętości krwi bardzo zmaleje, albo serce musi pracować znacznie cięŝej, aby utrzymać pierwotną szybkość przepływu. Prawo Poiseuille a ma zastosowanie tylko do przepływu warstwowego ( laminarnego ) płynu o stałym współczynniku lepkości. W niektórych płynach lepkość cieczy zmienia się wraz z prędkością naruszając prawo Poiseuille a. Na przykład krew jest złoŝoną cieczą składających się ze stałych cząsteczek o róŝnych kształtach, zanurzonych w cieczy. Czerwone komórki krwi mają kształt dysków i rzadko mają jakąś określoną orientację jeŝeli prędkość krwi jest mała, jednak przy duŝej prędkości krwi starają się tak ustawić aby ułatwić przepływ krwi. W rezultacie lepkość krwi maleje wraz ze wzrostem szybkości przepływu i prawa Poiseuille a nie moŝna ściśle stosować. Tym niemniej prawa Poiseuille a jest dobrym przybliŝeniem, jeŝeli chcemy jakościowo zrozumieć przepływ krwi. Przepływ turbulentny: Liczba Reynoldsa Kiedy prędkość przepływu płynu staje się rzeczywiście duŝa, wtedy przepływ laminarny załamuje się, a tworzy się przepływ turbulentny ( wirowy ). Krytyczna prędkość, powyŝej której przepływ przez rurę staje się turbulentny zaleŝy od gęstości i lepkości, a takŝe od promienia rury. Przepływ płynu moŝe być scharakteryzowany przez bezwymiarową liczbę zwaną liczbą Reynoldsa N R, którą definiujemy następująco: rρv N R = -8 η gdzie v jest średnią prędkością płynu. Doświadczenia pokazują, Ŝe przepływ będzie laminarny, jeŝeli liczba Reynoldsa jest mniejsza niŝ 000, jeŝeli liczba Reynoldsa jest większa niŝ 3000, to przepływ jest turbulentny. Między tymi wartościami przepływ jest niestabilny i moŝe zmieniać się z jednego typu w drugi.

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY) STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s

Bardziej szczegółowo

(równanie Bernoulliego) (15.29)

(równanie Bernoulliego) (15.29) Lekcja 5 Temat: Równanie ernoulliego. Równanie ernoulliego. Statyczne konsekwencje równania ernoulliego a) nieruchomy płyn w zbiorniku b) manometr c) pomiar ciśnienia krwi za pomocą kaniuli Zagadnienia

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ] Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa

Bardziej szczegółowo

Podstawy fizyki wykład 5

Podstawy fizyki wykład 5 Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie

Bardziej szczegółowo

Zastosowania Równania Bernoullego - zadania

Zastosowania Równania Bernoullego - zadania Zadanie 1 Przez zwężkę o średnicy D = 0,2 m, d = 0,05 m przepływa woda o temperaturze t = 50 C. Obliczyć jakie ciśnienie musi panować w przekroju 1-1, aby w przekroju 2-2 nie wystąpiło zjawisko kawitacji,

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Cel ćwiczenia: Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. Literatura

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest

Bardziej szczegółowo

Straty energii podczas przepływu wody przez rurociąg

Straty energii podczas przepływu wody przez rurociąg 1. Wprowadzenie Ć w i c z e n i e 11 Straty energii podczas przepływu wody przez rurociąg Celem ćwiczenia jest praktyczne wyznaczenie współczynników strat liniowych i miejscowych podczas przepływu wody

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,

Bardziej szczegółowo

prędkości przy przepływie przez kanał

prędkości przy przepływie przez kanał Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

KOLOKWIUM w piątek 8 grudnia

KOLOKWIUM w piątek 8 grudnia izyka 1 KOLOKWIUM w piątek 8 grudnia Na kolokwium obowiązują Państwa zagadnienia omawiane na wykładach 1 7 zgodnie z prezentacjami zamieszczonymi na stronie. Przypominam, że dostępne na stronie prezentacje

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

Kurs teoretyczny PPL (A) Dlaczego samolot lata?

Kurs teoretyczny PPL (A) Dlaczego samolot lata? 1 Kurs teoretyczny PPL (A) Dlaczego samolot lata? 2 Spis treści: 1. Wstęp (str. 4) 2. Siła nośna Pz (str. 4) 3. Siła oporu Px (str. 7) 4. Usterzenie poziome i pionowe (str. 9) 5. Powierzchnie sterowe (str.

Bardziej szczegółowo

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni. Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze

Bardziej szczegółowo

Zadanie 1. Zadanie 2.

Zadanie 1. Zadanie 2. Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie

Bardziej szczegółowo

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II J. Szantyr Wykład nr 6 Przepływy w przewodach zamkniętych II W praktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień płynu nie ulega rozgałęzieniu, mówimy o rurociągu prostym.

Bardziej szczegółowo

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar

Bardziej szczegółowo

Wyznaczanie gęstości i lepkości cieczy

Wyznaczanie gęstości i lepkości cieczy Wyznaczanie gęstości i lepkości cieczy A. Wyznaczanie gęstości cieczy Obowiązkowa znajomość zagadnień Definicje gęstości bezwzględnej (od czego zależy), względnej, objętości właściwej, ciężaru objętościowego.

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO 1. Cel ćwiczenia Doświadczalne wyznaczenie zaleŝności współczynnika oporu linioweo przepływu

Bardziej szczegółowo

Pomiar ciśnienia krwi metodą osłuchową Korotkowa

Pomiar ciśnienia krwi metodą osłuchową Korotkowa Ćw. M 11 Pomiar ciśnienia krwi metodą osłuchową Korotkowa Zagadnienia: Oddziaływania międzycząsteczkowe. Siły Van der Waalsa. Zjawisko lepkości. Równanie Newtona dla płynięcia cieczy. Współczynniki lepkości;

Bardziej szczegółowo

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM Ćw. 4 BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM WYBRANA METODA BADAŃ. Badania hydrodynamicznego łoŝyska ślizgowego, realizowane na stanowisku

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

Płyny. ρ 12-1 W Y K Ł A D XI Gęstość. m = V

Płyny. ρ 12-1 W Y K Ł A D XI Gęstość. m = V Wykład z fizyki, Piotr Posmykiewicz 135 W Y K Ł A D XI Płyny. Płynami nazywamy zarówno ciecze jak i gazy. Ciecze pod wpływem grawitacji płyną aŝ zajmą najniŝszą pozycję w naczyniu. Gazy rozprzestrzeniają

Bardziej szczegółowo

1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15)

1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15) 66 Mechanika 1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15) Celem ćwiczenia jest wyznaczenie współczynnika lepkości wody. Współczynnik ten wyznaczany jest z prawa Poiseuille a na podstawie

Bardziej szczegółowo

Pomiar natęŝeń przepływu gazów metodą zwęŝkową

Pomiar natęŝeń przepływu gazów metodą zwęŝkową Temat ćwiczenia: Pomiar natęŝeń przepływu gazów metodą zwęŝkową Cel ćwiczenia: Poznanie zasady pomiarów natęŝenia przepływu metodą zwęŝkową. Poznanie istoty przedmiotu normalizacji metod zwęŝkowych. Program

Bardziej szczegółowo

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera (M8)

Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera (M8) Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera (M8) W P R O W A D Z E N I E Jakikolwiek przepływ cieczy rzeczywistej cechuje zawsze poślizg warstewek. PoniewaŜ w cieczach istnieją

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 5. POMIARY NATĘŻENIA PRZEPŁYWU GAZÓW METODĄ ZWĘŻOWĄ 1. Cel ćwiczenia

Bardziej szczegółowo

ROZWIĄZUJEMY ZADANIA Z FIZYKI

ROZWIĄZUJEMY ZADANIA Z FIZYKI ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY ĆWICZENIE 10 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY Wprowadzenie W strudze przepływającej cieczy każdemu jej punktowi można przypisać prędkość będącą funkcją położenia r i r czasu V = V ( x y z t ).

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o

Bardziej szczegółowo

Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej.

Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej. Ćwiczenie C- Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej. I. Cel ćwiczenia: wyznaczenie współczynnika lepkości wody η w oparciu o wykres zależności wysokości słupa wody w cylindrze

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

RÓWNANIE MOMENTÓW PĘDU STRUMIENIA

RÓWNANIE MOMENTÓW PĘDU STRUMIENIA RÓWNANIE MOMENTÓW PĘDU STRUMIENIA Przepływ osiowo-symetryczny ustalony to przepływ, w którym parametry nie zmieniają się wzdłuż okręgów o promieniu r, czyli zależą od promienia r i długości z, a nie od

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,

Bardziej szczegółowo

Przepływy laminarne - zadania

Przepływy laminarne - zadania Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.

Bardziej szczegółowo

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych.

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych. BADANIE PROCESU SEDYMENTACJI Wstęp teoretyczny. Sedymentacja, to proces opadania cząstek ciała stałego w cieczy, w wyniku działania siły grawitacji lub sił bezwładności. Zaistnienie róŝnicy gęstości ciała

Bardziej szczegółowo

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi Ć w i c z e n i e 5a Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi 1. Wprowadzenie Celem ćwiczenia jest zapoznanie się z przyrządami stosowanymi do pomiarów prędkości w przepływie

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Dlaczego samoloty latają? wykonał: Piotr Lipiarz 229074

Dlaczego samoloty latają? wykonał: Piotr Lipiarz 229074 Dlaczego samoloty latają? wykonał: Piotr Lipiarz 229074 Wprowadzenie Teoretyczne Prawie każdy wie, że odpowiedzią na pytanie dlaczego samolot lata? jest specjalny kształt skrzydła, dokładnie jego przekroju

Bardziej szczegółowo

Wykład 7. Mechanika płynów

Wykład 7. Mechanika płynów Wykład 7 Mechanika płynów Z makroskopowego punktu widzenia powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć, czyli może znacznie zmieniać swoje

Bardziej szczegółowo

J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne

J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym eksperymencie

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI POWIETRZA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI POWIETRZA Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 37 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI POWIETRZA I.WSTĘP Tarcie wewnętrzne Zjawisko tarcia wewnętrznego (lepkości) można

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

12 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I

12 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I 12 K A TEDRA FIZYKI TOOWANEJ P R A C O W N I A F I Z Y K I Ćw. 12. Wyznaczanie współczynnika lepkości dynamicznej metodą tokesa Wprowadzenie Podczas ruchu płynów rzeczywistych (cieczy i gazów) istotne

Bardziej szczegółowo

Temat: Ruch płynów doskonałych. Równanie ciągłości

Temat: Ruch płynów doskonałych. Równanie ciągłości Lekcja 4 Temat: Ruch płynów doskonałych. Równanie ciągłości 1. Rodzaje przepływu płynów 2. Równanie ciągłości Ruch płynów rzeczywistych jest bardzo złożony i ciągle jeszcze nie umiemy go w pełni opisać.

Bardziej szczegółowo

Badanie lepkości cieczy

Badanie lepkości cieczy Ćwiczenie M16 Badanie lepkości cieczy M16.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami niutonowskiej cieczy lepkiej, wyznaczenie współczynnika lepkości metodą Stokesa (metodą opadającej

Bardziej szczegółowo

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu. 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0.0. Podstawy hydrodynamiki. Podstawowe ojęcia z hydrostatyki Ciśnienie: F N = = Pa jednostka raktyczna (atmosfera fizyczna): S m Ciśnienie hydrostatyczne:

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 HYDRODYNAMIKA Płyn doskonały 1. Przepływ laminarny (ustalony) prędkość poruszającego się płynu w każdym wybranym punkcie nie zmienia się z upływem czasu co do wartości oraz kierunku..

Bardziej szczegółowo

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU. KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów.

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Ćwiczenie : Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką

Bardziej szczegółowo

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład XII: Siły sprężyste Opory ruchu Tarcie Lepkość Ruch w ośrodku Siła sprężysta Prawo Hooke a Opisuje zależność siły sprężystej od odkształcenia ciała: L Prawo

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology Mechanika łyn ynów Wykład 9 Wrocław University of Technology 4-I-0 4.I.0 Płyny Płyn w odróŝnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia.

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP OKRĘGOWY

ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP OKRĘGOWY Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP OKRĘGOWY KOD UCZNIA Instrukcja dla ucznia 1. Arkusz liczy 12 stron (z brudnopisem) i zawiera

Bardziej szczegółowo

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

Politechnika Poznańska. Zakład Mechaniki Technicznej

Politechnika Poznańska. Zakład Mechaniki Technicznej Politechnika Poznańska Zakład Mechaniki Technicznej Metoda Elementów Skończonych Lab. Temat: Analiza przepływu stopionego tworzywa sztucznego przez sitko filtra tworzywa. Ocena: Czerwiec 2010 1 Spis treści:

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

Wykład 12. Mechanika płynów

Wykład 12. Mechanika płynów Wykład Mechanika płynów Z makroskopowego punktu widzenia powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć, czyli może znacznie zmieniać swoje

Bardziej szczegółowo

Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2].

Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2]. WYZNACZANIE WSPÓŁCZYNNIKA PRZEPŁYWU W ZWĘŻKACH POMIAROWYCH DLA GAZÓW 1. Wprowadzenie Najbardziej rozpowszechnioną metodą pomiaru natężenia przepływu jest użycie elementów dławiących płyn. Stanowią one

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

Wyznaczanie współczynnika lepkości cieczy.

Wyznaczanie współczynnika lepkości cieczy. Politechnika Warszawska Wydział Fizyki Centralne Laboratorium Fizyki Piotr Jaśkiewicz Krystyna Wosińska 1. Podstawy fizyczne. Wyznaczanie współczynnika lepkości cieczy. Płyny to substancje, które po przyłożeniu

Bardziej szczegółowo

Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI

Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Spis treści Wstęp... 2 Opis problemu... 3 Metoda... 3 Opis modelu... 4 Warunki brzegowe... 5 Wyniki symulacji...

Bardziej szczegółowo

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady.

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady. Zadanie bloczek Przez zamocowany bloczek o masie m przerzucono nierozciągliwą nitkę na której zawieszono dwa obciąŝniki o masach odpowiednio m i m. Oblicz przyspieszenie z jakim będą poruszać się obciąŝniki.

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo