Laboratorium Techniki Obliczeniowej i Symulacyjnej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium Techniki Obliczeniowej i Symulacyjnej"

Transkrypt

1 Ćwiczenie 10. Metody numeryczne rozwiązywania układów równań liniowych. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z algorytmami numerycznymi przetwarzania macierzy i wyznaczników, wykorzystywanymi w rozwiązywaniu liniowych układów równań, w szczególności metodami dokładnymi. 2. Wprowadzenie 2.1. Macierze i wyznaczniki Macierzą A, nazywamy prostokątną tablicę zbudowaną z m wierszy i n kolumn. Element macierzy umieszczony wi-tym wierszu ij-tej kolumnie oznaczamya ij. Macierz 0, to macierz, której wszystkie elementy są zerami. Macierz kwadratową E, której wszystkie elementy poza główną przekątną są zerami, a elementy na głównej przekątneja 11,a 22,...a nn są jedynkami, nazywamy macierzą jednostkową. Macierz A T, powstałą przez zamianę wierszy i kolumn w macierzy A, nazywamy macierzą transponowaną. Najważniejszymi operacjami macierzowymi są: dodawanie, odejmowanie, mnożenie, mnożenie przez liczbę, odwracanie (macierz kwadratowa), przekształcenia nie zmieniające rzędu macierzy. Sumą macierzy A i B (o tych samych rozmiarach) nazywamy macierz C taką, że: C ij = A ij + B ij. (1) Różnicą macierzy A i B (o tych samych rozmiarach) nazywamy macierz C taką, że: C ij = A ij B ij. (2) Iloczynem (Cauchy ego) macierzy A (n m) i B (m k) nazywamy macierz C taką, że: m C ik = A ij B jk. (3) j=1 Mnożenie macierzy AB nie jest przemienne i wymaga, aby liczba kolumn A równa była liczbie wierszy B. Jeżeli macierz A ma wymiarm n, a macierz B wymiarn k, to 1

2 Ćwiczenie 10. Metody numeryczne rozwiązywania układów równań liniowych. ZTMAiPC macierz będąca ich iloczynem ma wymiar m k. Poniżej przedstawiono algorytm mnożenia macierzy w postaci pseudokodu. całkowite:n,m,k,i,j,s rzeczywiste: sum macierze:a,b,c Podaj:m,n,k Dlai := 1, 2,...,m Dlaj:= 1, 2,...,n Dlai := 1, 2,...,m Podaja ij Dlai := 1, 2,...,m Dlaj:= 1, 2,...,n Podajb ij Dlaj:= 1, 2,...,k Podstaw sum := 0 Dlas = 1, 2,...,n (4) Obliczsum :=sum +a is b sj Podstawc ij :=sum Dlai := 1, 2,...,m Dlaj:= 1, 2,...,k Drukujc ij Pierwsze dwie pętle Dla, służą jedynie wczytaniu elementów macierzy i w dalszych zapisach algorytmów nie będą stosowane. Wyznacznikiem stopnia n nazywamy tablicę kwadratową: W = a 11 a a 1n a 21 a a 2n a n1 a n2... a nn. (5) Minorem (podwyznacznikiem)α ij wyznacznikaw, nazywamy wyznacznik, który powstaje poprzez skreślenie i-tego wiersza i j-tej kolumny w wyznaczniku W. Dopełnieniem algebraicznyma ij nazywamy wyrażenie:a ij = ( 1) i+j α ij. Wartość wyznacznika jest sumą iloczynów elementów dowolnego wiersza (kolumny) i ich dopełnień algebraicznych. Wyznacznik nie zmienia swojej wartości, jeśli elementy wiersza (kolumny) pomnożymy przez dowolną liczbę i dodamy do elementów innego wiersza (kolumny). Wyznacznik, który ma wiersz lub kolumnę złożoną z samych zer, ma wartość równą zero. Wyznacznik, który ma dwa identyczne wiersze (kolumny) ma wartość równą zero. wyznacznik który ma dwa wiersze (kolumny) proporcjonalne ma wartość równą zero. Z punktu widzenia rozwiązywania układów równań, ważnym wyznacznikiem jest wy- 2 Częstochowa 2007

3 ZTMAiPC znacznik typu: W = a 11 a 12 a a 1n 0 a 22 a a 2n 0 0 a a 2n a 2n. (6) Ma on pod główną przekątną elementy zerowe. Wyznacznik taki jest nazywany trójkątnym (w tym przypadku górnym). Wartość wyznacznika równa jest iloczynowi elementów leżących na głównej przekątnej. Jeżeli choć jeden element głównej przekątnej jest zerowy, wartość wyznacznika wynosi 0. W metodach numerycznych, w celu obliczenia wyznacznika stosuje się algorytm sprowadzenia go do postaci trójkątnej. Poniżej przedstawiono zapis algorytmu w postaci pseudokodu. całkowite:n,i,j,s rzeczywiste: wyz macierze: a, b Wczytaj a Podstawwyz :=a 11 Dlas := 1, 2,...,n 1 Dlaj:=s + 1,s + 2,...,n Obliczb sj := a sj a ss Dlai :=s + 1,s + 2,...,n Dlaj :=s + 1,s + 2,...,n (7) Oblicza ij :=a ij a is b si Obliczwyz :=wyza s+1,s+2 Drukuj wyz Bardzo ważnym zagadnieniem jest odwracanie macierzy. Macierzą odwrotną, kwadratowej, nieosobliwej macierzy A jest macierz A 1, taka, że: AA 1 = A 1 A = E. (8) Nieosobliwość macierzy oznacza, że jej wyznacznik jest różny od zera. Istnieje wiele algorytmów odwracania macierzy. Z uwagi na podobieństwo do algorytmu obliczania wy- Częstochowa

4 Ćwiczenie 10. Metody numeryczne rozwiązywania układów równań liniowych. ZTMAiPC znacznika, poniżej przedstawiono jeden z tych algorytmów w postaci pseudokodu: całkowite:n,i,j,s rzeczywiste: c, d macierze: b Podaj n Dlai := 1, 2,...,n Dlaj:=n + 1,n + 2,..., 2n Podstawb ij := 0 Dlai : 1, 2,...,n Podstawb i,n+i := 1 Dlai := 1, 2,...,n Podstawc :=b i,i Podstawb i,i :=b i,i 1 Dlas :=i + 1,i + 2,..., 2n Obliczd := b is c Dlaj:= 1, 2,...,n Obliczb js :=b js db ji Dlai := 1, 2,...,n Dlaj:=n + 1,n + 2,..., 2n Drukujb ij (9) 2.2. Dokładne metody rozwiązywania układów równań W dalszej części wprowadzenia będzie rozpatrywany układ n równań z n niewiadomymi (układ cramerowski). a 11 x 1 +a 12 x a 1n x n =b 1 a 21 x 1 +a 22 x a 2n x n =b 2. (10)... a n1 x 1 +a n2 x a nn x n =b n Powyższy układ można zapisać w postaci macierzowej: AX = B, (11) Macierz A nazywa się macierzą główną układu: a 11 a a 1n a A = 21 a a 2n (12) a n1 a n2... a nn Pozostałe wektory to: X wektor niewiadomych, B wektor wyrazów wolnych. 4 Częstochowa 2007

5 ZTMAiPC Układy, w których tylko główna przekątna macierzy A ma elementy niezerowe rozwiązuje się w sposób natychmiastowy. x i = b i a ii,a ii 0,i = 1, 2,...,n. (13) Dość łatwo rozwiązuje się trójkątne układy równań. W takim przypadku obowiązują następujące wzory: x n = b n a nn x i = b i n s=i+1 a is x s a ii,i =n 1,n 2,..., 1. Poniżej przedstawiono algorytm rozwiązywania trójkątnego układu n równań w postaci pseudokodu. całkowite:n,i,j,s rzeczywiste: sum macierze:a,b,x Podaj: n Oblicz:x n := bn a nn Dlai :=n 1,n 2,... 1 (15) Podstaw: sum := 0 Dlas :=i + 1,i + 2,n Oblicz:sum :=sum +a is x s Oblicz:x i := b i sum a ii Dla:i := 1, 2,...,n Drukujx i Innym sposobem rozwiązywania układów równań są wzory Cramera. Oznaczmy symbolemw wyznacznik główny układu równań (11) a przezw j, wyznacznik, który powstaje przez wpisanie w miejscej-tej kolumny wyznacznika głównego wektora wyrazów wolnych. Można wykazać, że: x j = W j, W 0, j = 1, 2,...n. (16) W Niestety, w praktyce wzory Cramera nie są stosowane z powodu dużej złożoności obliczeniowej. Dodatkowo, algorytm ten jest wrażliwy na błędy arytmetyki zmiennoprzecinkowej. Algorytm Thomasa może być stosowany w rozwiązywaniu układów trójprzekątniowych. Układ trójprzekątniowy przedstawiono poniżej. b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3... a n 1 b n 1 c n 1 a n b n x 1 x 2 x 3. x n 1 x n = d 1 d 2 d 3. d n 1 d n (14). (17) Częstochowa

6 Ćwiczenie 10. Metody numeryczne rozwiązywania układów równań liniowych. ZTMAiPC Algorytm Thomasa w postaci pseudokodu przedstawiono poniżej. całkowite: n, i macierze:a,b,c,d,x,β,γ Podaj n Obliczβ 1 := c 1 b 1 Obliczγ 1 := d 1 b 1 Dlai = 1, 2,...,n c i Obliczβ i := a i β i 1 +b i Obliczγ i := d i a i γ i 1 a i β i 1 +b i Podstawx n :=γ n Dlai :=n 1,n 2,..., 1 (18) Obliczx i :=β i x i+1 +γ i Dlai := 1, 2,...,n Drukujx i W metodzie eliminacji Gaussa układ równań (11) zapisuje się w postaci jednej macierzy C. W macierzy tejnpierwszych kolumn zawiera elementya ij macierzy głównej A. Kolumnęn + 1 tworzą wyrazy wolneb i. Elementy macierzy oznacza się symbolemc ij. Macierz ta ma następującą postać: C = c 11 c c 1n c 1,n+1 c 21 c c 2n c 2,n c n1 c n2... c nn c n,n+1 (19) Wariant podstawowy metody eliminacji polega na takich przekształceniach macierzy C, aby jej pierwszychnkolumn utworzyło macierz trójkątną. W drugim etapie rozwiązuje się następnie trójkątny układ współrzędnych. Algorytm rozwiązywania układu równań 6 Częstochowa 2007

7 ZTMAiPC metodą eliminacji w postaci pseudokodu, przedstawiono poniżej. całkowite:n,i,j,s rzeczywiste: sum macierze: c, x Podaj n Dlas := 1, 2,...,n Dlai :=s + 1,s + 2,...,n Podstawx n := c n,n+1 c nn Dlai :=n 1,n 2,..., 1 Podstaw sum := 0 Dlas :=i + 1,i + 2,...,n Dlaj:=s + 1,s + 2,...,n + 1 Obliczc ij :=c ij c is c ss c sj (20) Obliczsum :=sum +a is x s Obliczx i := c i,n+1 sum c ii Dlai := 1, 2,...,n Drukujx i 3. Program ćwiczenia 1. Uruchomienie programu MATLAB. W ćwiczeniu wykorzystano program MATLAB w wersji 5.3 (R11.1). Uruchomienie programu następuje poprzez skrót na pulpicie (Matlab5.3) lub bezpośrednio z katalogu C:\MatlabR11\ bin\. 2. Uruchomienie programu Wordpad.exe. Program można uruchomić poprzez wywołanie: Start\Programy\Akcesoria\ Wordpad lub poprzez skrót na pulpicie. 3. Przejście do katalogu roboczego dla grupy laboratoryjnej. Domyślnym katalogiem startowym (roboczym) programu MATLAB jest C:\Matlab R11\ work\. Zadanie polega na przejściu do podkatalogu katalogu work. Podkatalog (utworzony na pierwszych zajęciach laboratoryjnych) nazwany jest wybranymi 2 nazwiskami studentów, wchodzących w skład grupy laboratoryjnej. (a) Wprowadzić: >>pwd W programie MATLAB każde wprowadzone polecenie zatwierdza się klawiszem <ENTER>. Zwrócić uwagę na ścieżkę dostępu do katalogu bieżącego. Częstochowa

8 Ćwiczenie 10. Metody numeryczne rozwiązywania układów równań liniowych. ZTMAiPC (b) Wprowadzić: >>cd nazwa_podkatalogu Parametr nazwa_pod-katalogu powinien składać się z nazwisk 2 wybranych studentów grupy laboratoryjnej (np. >>cd KowalskiNowak). 4. Operacje na macierzach i wyznacznikach (a) Na podstawie wzoru (1) utworzyć w języku MATLAB skrypt obliczający sumę dwóch macierzy. W edytorze programu MATLAB wprowadzić: % skrypt oblicza sumę macierzy A i B i umieszcza ją w zmiennej C. % Uwaga! wymiary macierzy muszą być zodne. [m,n]=size(a) for i=1:n for j=1:n C(i,j)=A(i,j)+B(i,j); end end A B C Przetestować działanie skryptu dla następujących przypadków: i. ii. A = A = j , B =, B = j j Sprawdzić wyniki z wykorzystaniem operatora,+ programu MATLAB. Zawartość (b) Na podstawie wzoru (2) utworzyć w języku MATLAB skrypt obliczający różnicę dwóch macierzy. Przetestować działanie skryptu dla przypadków z pkt,4a. Sprawdzić wyniki z wykorzystaniem operatora,- programu MATLAB. Zawartość (c) Na podstawie pseudokodu (4) utworzyć w języku MATLAB skrypt obliczający iloczyn dwóch macierzy. Przetestować działanie skryptu dla przypadków z pkt,4a. Sprawdzić wyniki z wykorzystaniem operatora,* programu MA- TLAB. Zawartość okna głównego oraz okna edytora skopiować do programu Wordpad. 8 Częstochowa 2007

9 ZTMAiPC (d) Na podstawie pseudokodu (7) utworzyć w języku MATLAB skrypt obliczający wyznacznik macierzy. Przetestować działanie skryptu dla macierzy z pkt,4a. Sprawdzić wyniki z wykorzystaniem funkcji det programu MATLAB. Zawartość (e) Na podstawie pseudokodu (9) utworzyć w języku MATLAB skrypt odwracający macierz. Przetestować działanie skryptu dla macierzy z pkt,4a. Sprawdzić wyniki z wykorzystaniem funkcji inv oraz operatora ˆ(-1) programu MATLAB. Zawartość 5. Rozwiązywanie układów równań metodami dokładnymi (a) Na podstawie zależności (13) utworzyć w języku MATLAB skrypt rozwiązujący układ równań, w którym macierz główna zawiera elementy niezerowe jedynie na głównej przekątnej. Przetestować działanie skryptu dla układu równań danego w postaci następujących macierzy: A = , B = (21) Sprawdzić wyniki z wykorzystaniem operatora,\ programu MATLAB. Wprowadzić: x=a\b Zawartość (b) Na podstawie pseudokodu (15) utworzyć w języku MATLAB skrypt rozwiązujący trójkątny układ równań. Przetestować działanie skryptu dla układu równań danego w postaci następujących macierzy: A = , B = (22) Sprawdzić wyniki z wykorzystaniem operatora,\ programu MATLAB. Wprowadzić: x=a\b Zawartość (c) Na rys. 1 przedstawiono obwód rozgałęziony obwód elektryczny prądu stałego. Obliczyć rozkład prądów w obwodzie metodą oczkową, wiedząc, że:e 1 = 15V, E 2 = 2V,E 3 = 5V,E 4 = 3V,R 1 =R 2 = 1Ω,R 2 =R 5 = 2Ω.R 4 = 3Ω,R 6 = Częstochowa

10 Ćwiczenie 10. Metody numeryczne rozwiązywania układów równań liniowych. ZTMAiPC R 1 E 1 R 5 R 2 R 4 I 1 I 2 E 2 E 3 R 3 R 6 I 3 E 4 R 7 Rys. 1. Obwód rozgałęziony prądu stałego 1, 5Ω,R 7 = 10Ω. Na podstawie pseudokodu (16) utworzyć w języku MATLAB skrypt rozwiązujący układ równań metodą Cramera. Przetestować działanie skryptu dla układu równań ułożonego dla obwodu elektrycznego. Równania mają postać: (R 1 +R 2 +R 3 )I 1 R 4I 2 R 3I 3 =E 1 E 3 R 4 I 1 + (R 4 +R 5 +R 6 )I 2 R 6I 3 =E 3 E 2 R 3 I 1 R 6I 2 + (R 3 +R 6 +R 7 )I 3 =E 4 (23) Po wstawieniu danych liczbowych, układ można przedstawić za pomocą macierzy: A = , B = 3 (24) Sprawdzić wyniki z wykorzystaniem operatora,\ programu MATLAB. Zawartość (d) Na podstawie pseudokodu (18) utworzyć w języku MATLAB skrypt rozwiązujący trójprzekątniowy układ równań. Przetestować działanie skryptu dla układu równań danego w postaci następujących macierzy: A = Częstochowa 2007, B = (25)

11 ZTMAiPC Sprawdzić wyniki z wykorzystaniem operatora,\ programu MATLAB. Zawartość 6. Na podstawie pseudokodu (20) utworzyć w języku MATLAB skrypt rozwiązujący układ równań. Przetestować działanie skryptu dla: (a) układu równań z pkt.5a, (b) układu równań z pkt.5b, (c) układu równań z pkt.5c, (d) układu równań z pkt.5d. Sprawdzić wyniki z wykorzystaniem operatora,\ programu MATLAB. Zawartość 4. Opracowanie sprawozdania W sprawozdaniu należy umieścić polecenia oraz wyniki ich działania skopiowane w trakcie ćwiczenia z okna środowiska MATLAB. Do każdej linii kodu oraz do każdego wyniku, należy dodać komentarz objaśniający. Przykład round(6/9+3*2)/2 3 obliczenie wartości wyrażenia. Funkcja round(6/9+3*2) zaokrągla wynik działania 6/9+3*2 do najbliższej liczby całkowitej... Częstochowa

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 3.

Ekoenergetyka Matematyka 1. Wykład 3. Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

Wykład 7 Macierze i wyznaczniki

Wykład 7 Macierze i wyznaczniki Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

A A A A A A A A A n n

A A A A A A A A A n n DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH

UKŁADY RÓWNAŃ LINIOWYCH Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Laboratorium Komputerowego Wspomagania Analizy i Projektowania

Laboratorium Komputerowego Wspomagania Analizy i Projektowania Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 2. Podstawowe operacje macierzowe. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A = 04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,

Bardziej szczegółowo

Laboratorium Komputerowego Wspomagania Analizy i Projektowania

Laboratorium Komputerowego Wspomagania Analizy i Projektowania Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 6. Symulacja obiektów dynamicznych w środowisku SIMULINK. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x. Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Obliczenia w programie MATLAB

Obliczenia w programie MATLAB Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3 3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy

Bardziej szczegółowo

OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY

OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY Dodawanie i odejmowanie macierzy jest możliwe tylko dla dwóch macierzy o takich samych wymiarach! Wynikiem tych operacji jest macierz o takich samych

Bardziej szczegółowo

Podstawowe operacje na macierzach

Podstawowe operacje na macierzach Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.

Bardziej szczegółowo

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym 1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub

Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza. Gabriel Laub "Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Metody numeryczne II. Układy równań liniowych

Metody numeryczne II. Układy równań liniowych Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Algebra. macierzy brzegowych z zastosowaniami. Micha Kolupa Zbigniew Âleszyƒski

Algebra. macierzy brzegowych z zastosowaniami. Micha Kolupa Zbigniew Âleszyƒski Algebra macierzy brzegowych z zastosowaniami Micha Kolupa Zbigniew Âleszyƒski Algebra macierzy brzegowych z zastosowaniami Algebra macierzy brzegowych z zastosowaniami Micha Kolupa Zbigniew Âleszyƒski

Bardziej szczegółowo

Algebra WYKŁAD 3 ALGEBRA 1

Algebra WYKŁAD 3 ALGEBRA 1 Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę

Bardziej szczegółowo

MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata

MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata MACIERZE Sobiesiak Łukasz Wilczyńska Małgorzata Podstawowe pojęcia dotyczące macierzy Nie bez przyczyny zaczynamy od pojęcia macierzy, które jest niezwykle przydatne we wszystkich zastosowaniach, obliczeniach

Bardziej szczegółowo

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25 Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

9 Układy równań liniowych

9 Układy równań liniowych 122 II PRZESTRZENIE WEKTOROWE 9 Układy równań liniowych 1 Istnienie rozwiązań układu równań liniowych W tym paragrafie przerwiemy chwilowo ogólną analizę struktur pojawiających się w przestrzeniach wektorowych,

Bardziej szczegółowo

D1. Algebra macierzy. D1.1. Definicje

D1. Algebra macierzy. D1.1. Definicje D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań.

Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Wydział Matematyki Politechniki Wrocławskiej Układy Cramerowskie Układem Cramera nazywamy układ równań liniowych: AX = B, w którym A jest macierzą

Bardziej szczegółowo

MATLAB - laboratorium nr 1 wektory i macierze

MATLAB - laboratorium nr 1 wektory i macierze MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na

Bardziej szczegółowo