MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata

Wielkość: px
Rozpocząć pokaz od strony:

Download "MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata"

Transkrypt

1 MACIERZE Sobiesiak Łukasz Wilczyńska Małgorzata

2 Podstawowe pojęcia dotyczące macierzy Nie bez przyczyny zaczynamy od pojęcia macierzy, które jest niezwykle przydatne we wszystkich zastosowaniach, obliczeniach i zapisach. Już przy rozwiązywaniu układu równań posługujemy się głównie operacjami elementarnymi na macierzy dołączonej takiego układu, a z zapisu macierzowego różnego typu przekształceń liniowych możemy odczytać wiele ich własności.

3 Często też określonemu typowi przekształcenia liniowego odpowiada określony typ macierzy i odwrotnie. Przyjmujemy tu najprostszą definicję macierzy jako tablicy złożonej z liczb, choć można podać jej bardziej poprawną matematyczną definicję, np. jako funkcji określonej na pewnym zbiorze par(i,j) liczb naturalnych.

4 Liczby zawarte w macierzy będziemy nazywali elementami. Elementy macierzy ułożone są w poziome wiersze i w pionowe kolumny Rozmiar macierzy określony jest przez liczbę wierszy i kolumn. Zatem zapis: A m n

5 Niech m i n będą ustalonymi liczbami naturalnymi. Macierzą (złożoną z m wierszy i n kolumn) nazywamy prostokątną tablicę postaci:

6 Ilość wierszy i kolumn, tj. parę liczb(m,n) nazywamy wymiarem tej macierzy. Np.. Macierz Ma trzy wiersze i cztery kolumny, przy czym a 11 =3, a 23 =7 itd. Elementy macierzy numerowane są dwoma wskaźnikami, np. dla elementu a 24 =6(czytamy a dwa cztery) wskaźnik 2 oznacza numer wiersza, a wskaźnik 4 numer kolumny. Liczba 6 znajduje się na przecięciu się drugiego wiersza i czwartej kolumny.

7 Przykład: Program, który po wypisaniu każdego elementu macierzy, tworzy macierz.

8 #include <iostream> using namespace std; int main() int tablica[4][3]; cout << "Podaj elementy tablicy: " << endl; for(int i = 0; i < 4; i++) for(int j = 0; j < 3; j++) cout << "Element["<< i <<"]["<<j<<"]: "; cin >> tablica[i][j]; cout << "\nwprowadzone elementy tablicy to: " << endl; for(int i = 0; i < 4; i++) for(int j = 0; j < 3; j++) cout <<tablica[i][j]<<" "; cout << endl; return 0;

9 Przekątną główną macierzy tworzą elementy o równych indeksach wierszowych i kolumnowych, np:

10 Macierz nazywamy wektorem wierszowym jeśli składa się tylko z jednego wiersza, np. A 1 4 = a 1 a 2 a 3 a 4 Macierz nazywamy wektorem kolumnowym,jeśli składa się tylko z jednej kolumny, np: A 3 1 =

11 Macierz nazywamy kwadratową jeśli posiada tyle samo wierszy co kolumn, np: A 3 3 =

12 Stopień macierzy kwadratowej określa liczba jej wierszy lub kolumn. Powyższa macierz jest stopnia 4. Macierz nie będąca macierzą kwadratową jest macierzą prostokątną. Macierz nazywamy diagonalną,jeśli jest macierzą kwadratową i wszystkie elementy jej głównej przekątnej są niezerowe, a pozostałe elementy mają wartość równą zero.

13 Macierz nazywamy jednostkową i oznaczamy literą I, jeśli jest macierzą diagonalną, a wszystkie niezerowe elementy są równe 1.

14 Macierz nazywamy trójkątną, jeśli jest macierzą kwadratową i elementy zerowe znajdują się tylko ponad główną przekątną (macierz trójkątna dolna L) lub tylko pod główną przekątną (macierz trójkątna górna U)

15 Macierze mogą być reprezentowane w pamięci komputera przez tablice dwuwymiarowe. Rozwiązanie to przydaje się w przypadku, gdy z góry znany jest rozmiar macierzy.

16 Deklarację tablicy w języku Pascal umieszczamy w sekcji deklaracji zmiennych var. Składnia deklaracji tablicy dwuwymiarowej jest następująca:

17 Słowa array oraz of są słowami kluczowymi, które muszą się pojawić w deklaracji tablicy. Poniżej podajemy kilka przykładów:

18

19 #include <iostream> using namespace std; void p(int m, int n, int ** A) int i,j; for(i = 0; i < m; i++) for(j = 0; j < n; j++) A[i][j] = (i + j) % 2; Program,który tworzy macierz [0,1] for(i = 0; i < m; i++) for(j = 0; j < n; j++) cout << A[i][j] << " "; cout << endl; int main() int ** A,n,m,i; cout << "m = "; cin >> m; cout << "n = "; cin >> n; A = new int * [m]; for(i = 0; i < m; i++) A[i] = new int [n]; p(m,n,a); for(i = 0; i < m; i++) delete [] A[i]; delete [] A; return 0;

20 Pomnożyć macierz A m n przez skalar c. Mnożenie macierzy przez skalar polega na pomnożeniu każdego elementu macierzy przez dany skalar. Mnożąc macierz o wymiarze m n przez stałą k lub przez liczbę, otrzymujemy macierz, która ma również wymiar m n. Jeżeli element w i-tym wierszu i j-tej kolumnie ma postać a ij, to odpowiednim elementem iloczynu jest ka ij.

21

22 Działanie to jest rozdzielne względem dodawania i odejmowania macierzy. Zatem dla dwóch macierzy A i B zachodzi: k(a + B) = ka + kb oraz ka = Ak

23 #include <iostream> #include <iomanip> #include <cstdlib> #include <time.h> using namespace std; int main() int ** A,c,n,m,iw,ik; srand((unsigned)time(null)); m = rand() % 8 + 2; n = rand() % 8 + 2; A = new int * [m]; for(iw = 0; iw < m; iw++) A[iw] = new int[n]; for(iw = 0; iw < m; iw++) for(ik = 0; ik < n; ik++) A[iw][ik] = rand() % 100; c = rand() % 21-10; cout << "m = " << m << endl << "n = " << n << endl << endl; for(iw = 0; iw < m; iw++) for(ik = 0; ik < n; ik++) cout << setw(5) << A[iw][ik]; cout << endl; cout << endl << "c = " << c << endl << endl; Program generuje macierz o losowej liczbie wierszy (od 2 do 9) i losowej liczbie kolumn (od 2 do 9) oraz losowy skalar z zakresu od -10 do 10. Macierz zostaje wypełniona losowymi liczbami (od 0 do 99). for(iw = 0; iw < m; iw++) for(ik = 0; ik < n; ik++) A[iw][ik] *= c; for(iw = 0; iw < m; iw++) for(ik = 0; ik < n; ik++) cout << setw(5) << A[iw][ik]; cout << endl; for(iw = 0; iw < m; iw++) delete [] A[iw]; delete [] A; return 0;

24 Dodać macierz B m n do macierzy A m n i wynik umieścić w macierzy C m n. Operacja dodawania dwóch macierzy polega na dodawaniu ich elementów leżących w tych samych wierszach i kolumnach. Wynika z tego oczywisty wniosek, iż dodawane macierze muszą posiadać takie same wymiary.

25

26 Z określenia tego bezpośrednio wynika, że własności dodawania macierzy są takie same, jak własności struktury, nad którą macierz jest zbudowana - jeżeli dodawanie składowych jest łączne, to łączne jest również dodawanie macierzy itd. W analogiczny sposób odejmujemy macierze.

27 Przykład:

28 Program, który oblicza sumę macierzy

29 #include<iostream> using namespace std; void wprowadz_macierz(int macierz[][10],int wiersze, int kolumny); void dodaj_macierze(int macierza[][10], int macierzb[][10], int macierzc[][10],int wiersze, int kolumny); void wyswietl_wynik(int macierzc[][10],int wiersze,int kolumny); int main() int maca[10][10], macb[10][10], macc[10][10]=0,wmac,kmac; cout << "Podaj rozmiar obu macierzy:\nwierszy: "; cin >> wmac; cout << "Kolumn: "; cin >> kmac; if((kmac) && (wmac) && (wmac<11) && (kmac<11)) cout << "\nmacierz A: \n"; wprowadz_macierz(maca,wmac,kmac); cout << "\nmacierz B\n"; wprowadz_macierz(macb,wmac,kmac); dodaj_macierze(maca,macb,macc,wmac,kmac); wyswietl_wynik(macc,wmac,kmac); else cout << "Zly rozmiar macierzy!\n"; return 0; void wprowadz_macierz(int macierz[][10], int wiersze, int kolumny) for(int i=0; i<wiersze; i++) for(int j=0; j<kolumny; j++) cout << "Podaj element (" << i+1 << "," << j+1 << "): "; cin >> macierz[i][j]; void dodaj_macierze(int macierza[][10], int macierzb[][10], int macierzc[][10],int wiersze,int kolumny) for(int i=0; i<wiersze; i++) for(int j=0; j<kolumny; j++) macierzc[i][j]=macierza[i][j]+macierzb[i][j]; void wyswietl_wynik(int macierzc[][10],int wiersze,int kolumny) cout << "\nwynik:\n"; for(int i=0; i<wiersze; i++) for(int j=0; j<kolumny; j++) cout << macierzc[i][j]; if(j<kolumny-1) cout << ", "; cout << "\n"; cout << "\n";

30 Program generuje trzy macierze o losowej lecz równej liczbie wierszy (od 2 do 5) i losowej lecz równej liczbie kolumn (od 2 do 5). Dwie pierwsze macierze zostają wypełnione losowymi wartościami od 0 do 99 i wyświetlone. Następnie program oblicza w trzeciej macierzy ich sumę i wyświetla wynik.

31 #include <iostream> #include <iomanip> #include <cstdlib> #include <time.h> using namespace std; int main() int **A,**B,**C,n,m,iw,ik; srand((unsigned)time(null)); m = rand() % 5 + 2; n = rand() % 5 + 2; A = new int * [m]; B = new int * [m]; C = new int * [m]; for(iw = 0; iw < m; iw++) A[iw] = new int[n]; B[iw] = new int[n]; C[iw] = new int[n]; for(iw = 0; iw < m; iw++) for(ik = 0; ik < n; ik++) A[iw][ik] = rand() % 100; B[iw][ik] = rand() % 100; cout << "m = " << m << endl << "n = " << n << endl << endl << "Matrix A:" << endl; for(iw = 0; iw < m; iw++) for(ik = 0; ik < n; ik++) cout << setw(5) << A[iw][ik]; cout << endl; cout << endl << "Matrix B:" << endl; for(iw = 0; iw < m; iw++) for(ik = 0; ik < n; ik++) cout << setw(5) << B[iw][ik]; cout << endl; for(iw = 0; iw < m; iw++) for(ik = 0; ik < n; ik++) C[iw][ik] = A[iw][ik] + B[iw][ik]; cout << endl << "Matrix C = A + B:" << endl; for(iw = 0; iw < m; iw++) for(ik = 0; ik < n; ik++) cout << setw(5) << C[iw][ik]; cout << endl; for(iw = 0; iw < m; iw++) delete [] A[iw]; delete [] B[iw]; delete [] C[iw]; delete [] A; delete [] B; delete [] C; return 0;

32 KONIEC

Transponowanie macierzy Mnożenie macierzy Potęgowanie macierzy Wyznacznik macierzy

Transponowanie macierzy Mnożenie macierzy Potęgowanie macierzy Wyznacznik macierzy Transponowanie macierzy Mnożenie macierzy Potęgowanie macierzy Wyznacznik macierzy Problem Transponować macierz A m n na A T n m. Operacja transponowania macierzy polega na zamianie wierszy w kolumny i

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

Podstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne

Podstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne 1 Podstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion,

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

typ y y p y z łoż o on o e n - tab a lice c e w iel e owym m ar a o r we, e stru r kt k ury

typ y y p y z łoż o on o e n - tab a lice c e w iel e owym m ar a o r we, e stru r kt k ury typy złożone- tablice wielowymiarowe, struktury Wykład 6 Deklarowanie wskaźników nazwa_typu * nazwa_wskaznika; WSKAŹNIKI: PRZYPOMNIENIE Przypisywanie wskaźnikom wartości double * pn = &zmienna_typu_double;

Bardziej szczegółowo

Część 4 życie programu

Część 4 życie programu 1. Struktura programu c++ Ogólna struktura programu w C++ składa się z kilku części: część 1 część 2 część 3 część 4 #include int main(int argc, char *argv[]) /* instrukcje funkcji main */ Część

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

O podstawowych operacjach na tablicach. Mateusz Ziółkowski, MBiU II

O podstawowych operacjach na tablicach. Mateusz Ziółkowski, MBiU II Wykład Ⅴ O podstawowych operacjach na tablicach Mateusz Ziółkowski, MBiU II Czym są tablice? Tablica (ang. array) to zespół równorzędnych zmiennych, posiadających wspólną nazwę. Jego poszczególne elementy

Bardziej szczegółowo

Algebra WYKŁAD 3 ALGEBRA 1

Algebra WYKŁAD 3 ALGEBRA 1 Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

Programowanie - wykład 4

Programowanie - wykład 4 Programowanie - wykład 4 Filip Sośnicki Wydział Fizyki Uniwersytet Warszawski 20.03.2019 Przypomnienie Prosty program liczący i wyświeltający wartość silni dla wprowadzonej z klawiatury liczby: 1 # include

Bardziej szczegółowo

Wymiar musi być wyrażeniem stałym typu całkowitego, tzn. takim, które może obliczyć kompilator. Przykłady:

Wymiar musi być wyrażeniem stałym typu całkowitego, tzn. takim, które może obliczyć kompilator. Przykłady: 5 Tablice Tablica jest zestawem obiektów (zmiennych) tego samego typu, do których można się odwołać za pomocą wspólnej nazwy. Obiekty składowe tablicy noszą nazwę elementów tablicy. Dostęp do nich jest

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 3.

Ekoenergetyka Matematyka 1. Wykład 3. Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz

Bardziej szczegółowo

Programowanie i struktury danych

Programowanie i struktury danych Programowanie i struktury danych 1 / 30 STL Standard Template Library, STL (ang. = Standardowa Biblioteka Wzorców) biblioteka C++ zawierająca szablony (wzorce), które umożliwiają wielokrotne użycie. Główne

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

r. Tablice podstawowe operacje na tablicach

r. Tablice podstawowe operacje na tablicach 27.03.2014r. Tablice podstawowe operacje na tablicach Tablica - definicja Tablica (ang. array) lub wektor (ang. vector) jest złożoną strukturą danych (ang. compound data structure) zbudowaną z ciągu elementów

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Tytuł pracy dyplomowej

Tytuł pracy dyplomowej Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Tytuł pracy dyplomowej Twoje imię i nazwisko W ydział M atematyki S tosowanej Dzisiejsza data Twoje

Bardziej szczegółowo

A A A A A A A A A n n

A A A A A A A A A n n DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności

Bardziej szczegółowo

tablica: dane_liczbowe

tablica: dane_liczbowe TABLICE W JĘZYKU C/C++ tablica: dane_liczbowe float dane_liczbowe[5]; dane_liczbowe[0]=12.5; dane_liczbowe[1]=-0.2; dane_liczbowe[2]= 8.0;... 12.5-0.2 8.0...... 0 1 2 3 4 indeksy/numery elementów Tablica

Bardziej szczegółowo

Programowanie Procedurale

Programowanie Procedurale Programowanie Procedurale Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Programowanie Procedurale Wykład 6 1 / 27 Zbiór ctime zawiera deklarcję

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Programowanie obiektowe W3

Programowanie obiektowe W3 Programowanie obiektowe W3 Przegląd typów strukturalnych w C++ : tablice statyczne i dynamiczne Dr hab. inż. Lucyna Leniowska, prof. UR Zakład Mechatroniki, Automatyki i Optoelektroniki Typy złożone: tablice

Bardziej szczegółowo

Tablice są typem pochodnym. Poniżej mamy przykłady deklaracji różnych tablic:

Tablice są typem pochodnym. Poniżej mamy przykłady deklaracji różnych tablic: Tablice TEORIA Tablica to ciąg obiektów tego samego typu, które zajmują ciągły obszar w pamięci. Dzięki stosowaniu tablic, zamiast nazywania każdej z np. stu zmiennych osobno możemy zabudować tablicę 100-elementową,

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

1 Wskaźniki. 1.1 Główne zastosowania wskaźników

1 Wskaźniki. 1.1 Główne zastosowania wskaźników 1 Wskaźniki Wskaźnik (ang. pointer) jest obiektem (zmienną) przechowującym adres pamięci. Definiowanie wskaźników: typ *nazwa wskaznika; np.: int *wsk na x;, double *xxx;, char *znak;. Aby można było pracować

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Wskaźniki i dynamiczna alokacja pamięci. Spotkanie 4. Wskaźniki. Dynamiczna alokacja pamięci. Przykłady

Wskaźniki i dynamiczna alokacja pamięci. Spotkanie 4. Wskaźniki. Dynamiczna alokacja pamięci. Przykłady Wskaźniki i dynamiczna alokacja pamięci. Spotkanie 4 Dr inż. Dariusz JĘDRZEJCZYK Wskaźniki Dynamiczna alokacja pamięci Przykłady 11/3/2016 AGH, Katedra Informatyki Stosowanej i Modelowania 2 Wskaźnik to

Bardziej szczegółowo

Zmienne i struktury dynamiczne

Zmienne i struktury dynamiczne Zmienne i struktury dynamiczne Zmienne dynamiczne są to zmienne, które tworzymy w trakcie działania programu za pomocą operatora new. Usuwa się je operatorem delete. Czas ich występowania w programie jest

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

(3 kwiecień 2014) Marika Pankowska Kamila Pietrzak

(3 kwiecień 2014) Marika Pankowska Kamila Pietrzak (3 kwiecień 2014) Marika Pankowska Kamila Pietrzak Wyszukiwanie liniowe (ang. linear search), zwane również sekwencyjnym (ang. sequential search) polega na przeglądaniu kolejnych elementów zbioru Z. Jeśli

Bardziej szczegółowo

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25 Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n

Bardziej szczegółowo

I - Microsoft Visual Studio C++

I - Microsoft Visual Studio C++ I - Microsoft Visual Studio C++ 1. Nowy projekt z Menu wybieramy File -> New -> Projekt -> Win32 Console Application w okienku Name: podajemy nazwę projektu w polu Location: wybieramy miejsce zapisu i

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1

Bardziej szczegółowo

Algebra. macierzy brzegowych z zastosowaniami. Micha Kolupa Zbigniew Âleszyƒski

Algebra. macierzy brzegowych z zastosowaniami. Micha Kolupa Zbigniew Âleszyƒski Algebra macierzy brzegowych z zastosowaniami Micha Kolupa Zbigniew Âleszyƒski Algebra macierzy brzegowych z zastosowaniami Algebra macierzy brzegowych z zastosowaniami Micha Kolupa Zbigniew Âleszyƒski

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania wykład 7 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2016/2017 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Zadeklarowanie tablicy przypomina analogiczną operację dla zwykłych (skalarnych) zmiennych. Może zatem wyglądać na przykład tak:

Zadeklarowanie tablicy przypomina analogiczną operację dla zwykłych (skalarnych) zmiennych. Może zatem wyglądać na przykład tak: Tablice Tablice jednowymiarowe Jeżeli nasz zestaw danych składa się z wielu drobnych elementów tego samego rodzaju, jego najbardziej naturalnym ekwiwalentem w programowaniu będzie tablica. Tablica (ang.

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 11 1 / 52 Pętla for # i n c l u d e

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

Dariusz Brzeziński. Politechnika Poznańska, Instytut Informatyki

Dariusz Brzeziński. Politechnika Poznańska, Instytut Informatyki Dariusz Brzeziński Politechnika Poznańska, Instytut Informatyki int getmax (int a, int b) { return (a > b? a : b); float getmax (float a, float b) { return (a > b? a : b); long getmax (long a, long b)

Bardziej szczegółowo

Podstawy algorytmiki i programowania - wykład 1 Tablice powtórzenie Tablice znaków Tablice dwuwymiarowe

Podstawy algorytmiki i programowania - wykład 1 Tablice powtórzenie Tablice znaków Tablice dwuwymiarowe Podstawy algorytmiki i programowania - wykład 1 Tablice powtórzenie Tablice znaków Tablice dwuwymiarowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie

Bardziej szczegółowo

Liczby całkowite i rzeczywiste

Liczby całkowite i rzeczywiste Wykład 4(20 marzec 2014r.) Liczby całkowite i rzeczywiste Paulina Rogowiecka Klaudia Kamińska Adrianna Znyk 1 Spis treści: Czynniki pierwsze metoda próbnych dzieleń Pierwszość liczby naturalnej algorytmy

Bardziej szczegółowo

> C++ wskaźniki. Dane: Iwona Polak. Uniwersytet Śląski Instytut Informatyki 26 kwietnia 2017

> C++ wskaźniki. Dane: Iwona Polak. Uniwersytet Śląski Instytut Informatyki 26 kwietnia 2017 > C++ wskaźniki Dane: Iwona Polak iwona.polak@us.edu.pl Uniwersytet Śląski Instytut Informatyki 26 kwietnia 2017 >??? Co to jest WSKAŹNIK? ++ wskaźniki 2 / 20 >??? Co to jest WSKAŹNIK? To po prostu ADRES

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Anna Sobocińska Sylwia Piwońska

Anna Sobocińska Sylwia Piwońska Anna Sobocińska Sylwia Piwońska Problem Wyszukiwanie liniowe W n-elementowym zbiorze Z wyszukać element posiadający pożądane własności. Wyszukiwanie liniowe (ang. linear search), zwane również sekwencyjnym

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania wykład 6 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2017/2018 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji

Bardziej szczegółowo

Informacje wstępne #include <nazwa> - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char

Informacje wstępne #include <nazwa> - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char Programowanie C++ Informacje wstępne #include - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char = -128 do 127, unsigned char = od

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Algorytmika i programowanie. Wykład 2 inż. Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie

Algorytmika i programowanie. Wykład 2 inż. Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Algorytmika i programowanie Wykład 2 inż. Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Tablice Tablica jest zbiorem elementów tego samego typu. Każdy element jest identyfikowany (numer

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Tablice są typem pochodnym. Poniżej mamy przykłady deklaracji różnych tablic:

Tablice są typem pochodnym. Poniżej mamy przykłady deklaracji różnych tablic: Tablice TEORIA Tablica to ciąg obiektów tego samego typu, które zajmują ciągły obszar w pamięci. Dzięki stosowaniu tablic, zamiast nazywania każdej z np. stu zmiennych osobno możemy zabudować tablicę 100-elementową,

Bardziej szczegółowo

Rozwiązanie. #include <cstdlib> #include <iostream> using namespace std;

Rozwiązanie. #include <cstdlib> #include <iostream> using namespace std; Programowanie C++ Zadanie 1 Napisz program do obliczenia sumy i iloczynu ciągu liczb zakooczonego liczbą zero. Zakładamy, że ciąg zawiera co najmniej jedną liczbę (założenie to jest konieczne przy obliczeniu

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

wykład IV uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C, a C++. wykład IV dr Jarosław Mederski Spis Język C++ - wstęp

wykład IV uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C, a C++. wykład IV dr Jarosław Mederski Spis Język C++ - wstęp Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 2 3 4 Historia C++ został zaprojektowany w 1979 przez Bjarne Stroustrupa jako rozszerzenie języka C o obiektowe mechanizmy abstrakcji danych i

Bardziej szczegółowo

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Mechanizm dziedziczenia

Mechanizm dziedziczenia Mechanizm dziedziczenia Programowanie obiektowe jako realizacja koncepcji ponownego wykorzystania kodu Jak przebiega proces dziedziczenia? Weryfikacja formalna poprawności dziedziczenia Realizacja dziedziczenia

Bardziej szczegółowo

Wskaźniki. nie są konieczne, ale dają językowi siłę i elastyczność są języki w których nie używa się wskaźników typ wskaźnikowy typ pochodny:

Wskaźniki. nie są konieczne, ale dają językowi siłę i elastyczność są języki w których nie używa się wskaźników typ wskaźnikowy typ pochodny: Wskaźniki nie są konieczne, ale dają językowi siłę i elastyczność są języki w których nie używa się wskaźników typ wskaźnikowy typ pochodny: typ nw; /* definicja zmiennej nw typu typ */ typ *w_nw; /* definicja

Bardziej szczegółowo

Zajęcia nr 2 Programowanie strukturalne. dr inż. Łukasz Graczykowski mgr inż. Leszek Kosarzewski Wydział Fizyki Politechniki Warszawskiej

Zajęcia nr 2 Programowanie strukturalne. dr inż. Łukasz Graczykowski mgr inż. Leszek Kosarzewski Wydział Fizyki Politechniki Warszawskiej Zajęcia nr 2 Programowanie strukturalne dr inż. Łukasz Graczykowski mgr inż. Leszek Kosarzewski Wydział Fizyki Politechniki Warszawskiej Pętla while #include using namespace std; int main ()

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Techniki Programowania wskaźniki 2

Techniki Programowania wskaźniki 2 Techniki Programowania wskaźniki 2 Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wykłady opracowane we współpracy z Danutą Szeligą, Łukaszem Sztangretem Jeżeli wskaźnik pokazuje na element

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

D1. Algebra macierzy. D1.1. Definicje

D1. Algebra macierzy. D1.1. Definicje D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla

Bardziej szczegółowo

> C++ dynamiczna alokacja/rezerwacja/przydział pamięci. Dane: Iwona Polak. Uniwersytet Śląski Instytut Informatyki

> C++ dynamiczna alokacja/rezerwacja/przydział pamięci. Dane: Iwona Polak. Uniwersytet Śląski Instytut Informatyki > C++ dynamiczna alokacja/rezerwacja/przydział pamięci Dane: Iwona Polak iwona.polak@us.edu.pl Uniwersytet Śląski Instytut Informatyki 1429536600 > Dzisiejsze zajęcia sponsorują słówka: new oraz delete

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2015

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2015 POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2015 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 4 : Napisy. Tablice dwuwymiarowe. Formaty

Bardziej szczegółowo