FILTRY Z NIESKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ. IIR od ang. Infinite Impulse Response. Spis treści
|
|
- Halina Kania
- 5 lat temu
- Przeglądów:
Transkrypt
1 FILTRY Z IESKOŃCZOĄ ODPOWIEDZIĄ IMPULSOWĄ. Deiicja iltru IIR. Stabilość iltrów IIR Spi treści 3. Metody projektowaia iltrów IIR 4. Prykład IIR od ag. Iiite Ipule Repoe 5. Dwuiarowe iltry rekurywe 6. Optyaliacyja etoda projektowaia iltrów -D IIR
2 Deiicja iltru IIR M we b a
3 Deiicja iltru IIR M we b a 3
4 4 Traitacja iltru IIR H we M a b H M we b a we a b M we a b M we a b
5 5 Charakterytyki cętotliwościowe iltrów IIR p t / e j j M j e a e b H H A e j Re I arc tg H H H M a b H
6 Prykładowe charakterytyki aplitudowe Dolopreputowe iltry Cebyewa - typ I Rąd 4 Rąd 4 6
7 Prykładowe charakterytyki aowe i odpowiedi ipulowe Dolopreputowe iltry Cebyewa - typ I Rąd 4 Rąd 4 7
8 Odpowied ipulowa iltru ietabilego 8
9 Prykładowe charakterytyki aplitudowe Dolopreputo iltr eliptycy Rąd 3 Rąd - ietabily!!! 9
10 Prykładowe charakterytyki aowe ora odpowiedi ipulowe Dolopreputo iltr eliptycy Rąd 3 Rąd - ietabilość!!!
11 Deiicja tabilości iltru IIR Filtr IIR jet tabily jeżeli itieją ograicoe tałe takie, że waruku ika c c we c c we c c a ogół pryjujey ax
12 Deiicja ayptotycej tabilości Filtr IIR jet ayptotycie tabily jeżeli gdy li T we we dla wytkich T. T
13 3 Twierdeie o tabilości iltrów IIR Filtr IIR jet ayptotycie tabily wtedy i tylko wtedy, gdy wytkie era wieloiau charakterytycego a P leżą wewątr koła jedotkowego, t. dla.,,..., M a b H Re I
14 Graica iterpretacja prektałceia koła jedotkowego w lewą półpłacyę I I Re Re 4
15 5 Twierdeie o prektałceiu waruków tabilości Schura a waruki tabilości Hurwita Dla prektałceń waruek jet rówoważy ierówości. Re Dowód : I Re I e R I Re I e R I e e I e e R R R R Re 4
16 Twierdeie o wieloiaowej tabilości typu Hurwita P c Wytkie pierwiatki wieloiau P dodatii wpółcyikai, t. c c ają ujee cęści recywite wtedy i tylko wtedy, gdy wytkie iory wiodące acika 6
17 7 c.d. twierdeia ą więke od era c c c c c c c c c c c c c
18 8 Try pierwe iory wiodące c 3 c c c c c c c c c c c c
19 9 Projektowaie iltrów IIR w oparciu o iltry aalogowe M H t j j e j j e e j M a b H
20 Powtórka trygooetrii i co j e j i co co co co i i
21 Zależość poiędy arguetai charakterytyk iltrów aalogoch i cyroch j co co j i j i i co j i co j i co i co jco i co ji j tg tg
22 Graica preetacja ależości iędy cętotliwościai.5 - H tg H
23 Algoryt projektowaia. Pryjąć ałożeia projektowe H A e j. Zodyikować ałożeia projektowe poługując ię ależością arc tg M 3. Zaprojektować iltr aalogo 4. W oparciu o poży iltr, licyć -traitację poługując ię podtawieie H H M 3
24 Prykłady iltrów Cebyewa 4-tego i 4-tego redu Charakterytyki aplitudowe 4
25 Charakterytyki aowe Prykłady iltrów Cebyewa 4-tego i 4-tego rędu 5
26 Odpowiedi ipulowe Prykłady iltrów Cebyewa 4-tego i 4-tego rędu 6
27 Charakterytyki iltru eliptycego 4-tego rędu 7
28 Prykład H M b e a j e j - Charakterytyka aplitudowa H M j j Charakterytyka aplitudowa - -3 iltr cyro iltr aalogo iltr aalogo iltr cyro Charakterytyka aplitudowa otryaego iltru cyrowego jet okreowa i różi ię od charakterytyki iltru aalogowego
29 Projektowaie etodą ieieości odpowiedi ipulowej. Odpowied ipulowa Ciągła odpowiedź ipulowa projektowaego iltru ora jej werja dykreta t 9
30 Projektowaie etodą ieieości odpowiedi ipulowej. Odpowied ipulowa H h t Cerwoe kółecka acają wartości h t t 3
31 3 Projektowaie etodą ieieości odpowiedi ipulowej M j j j H H h t t j d e j j t h. iech adaa charakterytyka cętotliwościowa a potać gdie M<. gdie Poieważ otryujey
32 3 Projektowaie etodą ieieości odpowiedi ipulowej t t j e d e j j t h t j exp t j t h H t t e e H Korytając traoraty koku jedotkowego i preuięcia w diediie cętotliwości pobędiey ię całki Zależość poiędy -traitacją a odpowiedią ipulową Z obu rówań otryujey acając uę iekońcoego eregu geoetrycego.
33 Powtórka eregu geoetrycego b b q q b t q e 33
34 Stabilość iltru aprojektowaego etodą ieieicej odpowiedi ipulowej j e t t j t e e t e Cyli e tabilości iltru aalogowego ika tabilość iltru cyrowego. 34
35 35 Optyaliacyje etody projektowaia iltrów M a b H j e j M j e a e b H,5 d e A H Q j Podtawiając otryujey Kryteriu oceiające jakość iltru oże być w potaci
36 36 Koleje kryteria,5 d A H Q,5 d e A H w Q j,5 d A H w ] [ gdie
37 Prykład Miialiując poże kryteriu aprojektować iltr 3-go rędu dolopreputo cętotliwością odcięcia 3 kh i liiową charakterytyką aową t, ek jet adaą gętością próbkowaia ygału. Cyli cętotliwość yquita t. połowa cętotliwości próbkowaia ax 5kH 37
38 c.d prykładu Zgodie teate adaia projektoway iltr a potać we we we we b b b b3 3 a a a3 3 38
39 Rowiąaia prykładu Tab. Paraetry iltru cyrowego IIR Butterwortha Eliptycy Metoda Cebyewa optyaliacyja b b b b a a a
40 Graica preetacja rowiąań Charakterytyka aplitudowa 4 Charakterytyka aowa Cętotliwość H Cętotliwość H 4
41 Projektowaie w środowiku MATLAB v6.5 4
42 Stoując atępujące kryteriu: Podoby prykład Q,5 ad w H H d pry ukcji wagowej w rówej, aprojektować iltr IIR dolopreputo 3. rędu =3 górą cętotliwością graicą kh, dla cętotliwości próbkowaia: p kh Otryay iltr ależy porówać ikie projektowaia a poocą traoracji biliiowej dla iltrów typu: Butterwortha, Cebyewa typ I ora iltru eliptycego. 4
43 Podoby prykład c.d. Makyala cętotliwość cętotliwość yquita ax 5kH Ideala charakterytyka aowa Zoraliowaa cętotliwość graica: g g p, 43
44 Zgodie teate adaia projektoway iltr a potać we we we we b b b b3 3 a a a 3 Wpółcyiki iltru Butterwortha: 3 b,985,956,956,985 a -,577,48 -,563 Wpółcyiki iltru Cebyewa I: 3 b,476,47,47,476 a -,346,74 -,475 Wpółcyiki iltru eliptycego: 3 3 b,7,378,378,7 a -.793,79 -,4736 Wpółcyiki iltru optyalego: 3 b,547,456,455,547 a -,77,877 -,347 44
45 Charakterytyki cętotliwościowe Aplitudowe Faowe Filtry: aday worec Butterwortha Cebyewa I eliptycy optyaly ray π / p 45
46 Charakterytyki cętotliwościowe w powiękeiu Aplitudowe Faowe Filtry: aday worec Butterwortha Cebyewa I eliptycy optyaly ray π / p 46
47 Bieguy a płacyźie epoloej 47
48 Filtracja -D IIR FILTR 48
49 Graica preetacja iltru -D IIR we b -, b, a -, b,- Kieruek obliceń 49
50 Dwuiarowe iltry iekońcoą odpowiedią ipulową k, l, R we b we, k, l a, k, l, R H x, y, R, R b we, a, x x y y x e j x y e j y 5
51 Stabilość iltrów -D IIR Pierwiatki M wewatr D Stabiloc M dla I x Re Bieguy tabile y Bieguy H x, y cyli era M x, y = wewątr x i y D StabilocM, x y dla x lub y 5
52 oraliacja cętotliwości Gętość próbkowaia x y X Y / M / Wioek twierdeia o próbkowaiu ax x ax y,5/ x,5/ y orowaie cętotliwości x y x y x y 5
53 53 Prykład kryteriu dla optyaliacyjej etody projektowaia iltrów -D IIR,5,5,,,,,, y x y x we y x j y x j R R j e A e a e b Q x y y x j R R j d d A e a e b y x we y x,,,,, ] [ gdie
54 Prykład projektowaia iltru k, l, R we b we, k, l, R a, k, l Q H x, Q ap Q ph y, R we, R b, a e, j e x j x y y Q ap Q ph,5,5,5,5 H H x,, x y y A A x x,, y y e j, gdie, x y x y d x, y y d d x y d x 54
55 Projektowaie iltrów D IIR w środowiku Widow 55
56 Eekty projektowaia w ależości od rędu iltru Tylko 4+3=7 wpółcyików było do aceia Do aceia było 9+8=7 wpółcyików 56
57 Eekty projektowaia w ależości od rędu iltru Aż 6+5=3 wpółcyików było do aceia Założeia projektowe 57
58 Zależość iędy ręde iltru a jego jakością i cae projektowaia Ca Jakość. 3 4 rąd 58
59 Filtracja obraów prykład krawędie liie poioe 59
60 Filtracja obraów prykład krawędie liie pioowe 6
61 Filtracja obraów prykład krawędie liie poioe 6
62 Filtracja obraów prykład krawędie liie pioowe 6
63 Filtracja obraów prykład uharp ak 63
FILTRY Z NIESKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ. IIR od ang. Infinite Impulse Response. Spis treści
FILTRY Z IESKOŃCZOĄ ODPOWIEDZIĄ IMPULSOWĄ IIR od ag. Iiite Ipule Repoe Spi treści. Deiicja iltru IIR. Stabilość iltrów IIR 3. Metody projektowaia iltrów IIR 4. Prykład 5. Dwuiarowe iltry rekurywe 6. Optyaliacyja
FILTRY ZE SKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ
FILTRY ZE SKOŃCZOĄ ODPOWIEDZIĄ IMPULSOWĄ FIR od ag. Fiite Impule Repoe Spi treści 1. Deiicja iltru FIR. Caraktertki cętotliwościo 3. Filtr FIR liiową caraktertką aową 4. Projektowaie iltrów pr pomoc eregów
FILTRY ZE SKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ
FILTRY ZE SKOŃCZOĄ ODPOWIEDZIĄ IMPULSOWĄ FIR od ag. Fiite Impule Repoe Spi treści. Deiicja iltru FIR. Caraktertki cętotliwościo 3. Filtr FIR liiową caraktertką aową 4. Projektowaie iltrów pr pomoc eregów
Algorytm projektowania dolnoprzepustowych cyfrowych filtrów Buttlewortha i Czebyszewa
Zadanie: Algorytm projektowania dolnopreputowych cyfrowych filtrów Buttlewortha i Cebyewa Zaprojektować cyfrowe filtry Buttlewortha i Cebyewa o natępujących parametrach: A p = 1,0 db makymalne tłumienie
Z-TRANSFORMACJA Spis treści
Z-TRANSFORMACJA Spi treści. Deiicja. Pryłady traormat 3. Właości -traormacji 4. Zwiąe -traormacji traormacją Fouriera 5. Z-traormacja ygału dwuwymiarowego Deiicja -traormacji Z-traormata jet eregiem Laureta
W(s)= s 3 +7s 2 +10s+K
PRZYKŁAD (LINIE PIERWIASTKOWE) Tramitacja operatorowa otwartego układu regulacji z jedotkowym ujemym przęŝeiem zwrotym daa jet wzorem: G O K ( + )( + 5) a) Podaj obraz liii pierwiatkowych układu zamkiętego.
Układy równań - Przykłady
Układy równań - Prykłady Dany układ równań rowiąać trea sposobai: (a) korystając e worów Craera, (b) etodą aciery odwrotnej, (c) etodą eliinacji Gaussa, + y + = y = y = (a) Oblicy wynacnik deta aciery
PODSTAWY AUTOMATYKI 1 ĆWICZENIA
Automatyka i Robotyka Podtawy Automatyki PODSTAWY AUTOMATYKI ĆWICZENIA lita adań nr Tranformata Laplace a. Korytając wprot definicji naleźć tranformatę Laplace a funkcji: y t y t y t y e t. Dana jet odpowiedź
Napęd elektryczny - dobór regulatorów
Napęd elektryczy - dobór regulatorów Regulacja prędkości i prądu Kztałtowaie charakterytyki ograiczeie prądu I i jedocześie mometu (M, ag. ) Kztałtowaie charakterytyk mechaiczych W W W zad 1 W zad1 I W
PRZEKSZTAŁCENIE ZET. definicja. nst. Stąd po dokonaniu podstawienia zgodnie z definicją otrzymamy wyrażenie jak dla ciągu.
CPS 6/7 PREKSTAŁCENIE ET Defiicja rekstałceia Prekstałceie ET jest w diediie casu dyskretego odowiedikiem ciągłego rekstałceia Lalace a w diediie casu ciągłego. Podamy dwie rówoważe defiicje rekstałceia
Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.
Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła
1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
1. ALGEBRA Liczby zespolone
ALGEBRA Licby espoloe Opracowaie: Vladimir Marcheko WYKŁAD Postać algebraica i trygoometryca licby espoloe; dodawaie, możeie, potęgowaie i dieleie licb espoloych A+B+C (Wstęp: pochodeie licb espoloych)
Filtry aktywne czasu ciągłego i dyskretnego
Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki czau ciągłego i dykretnego Wrocław 9 Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki odzaje Ze względu
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
jako analizatory częstotliwości
jako analiatory cęstotliwości Widmo fourierowskie: y = cos p f t Widmo sygnału spróbkowanego Problem rodielcości Transformaty cyfrowe: analia wycinka sygnału xt wt próbek, T sekund Widmo wycinka: f*wf
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białotocka Wydiał Elektrycny Katedra elekomunikaci i Aparatury Elektronicne Intrukca do aęć laoratorynych predmiotu: Pretwaranie Sygnałów Kod: SC47 emat ćwicenia: Badanie charakterytyk caowych
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Wymiana ciepła przez żebra
Katedra Silników Spalinowych i Pojadów TH ZKŁD TERMODYNMIKI Wymiana ciepła pre era - - Cel ćwicenia Celem ćwicenia jet adanie wpływu atoowania eer na intenywność wymiany ciepła. Badanie preprowada ię na
FILTRY ANALOGOWE Spis treści
FILTRY AALOGOWE Spis treśi. Modele iltrów aalogowyh. Idealy iltr doloprzepustowy 3. Rzezywiste iltry doloprzepustowe 4. Stabilość iltrów 5. Filtr Butterwortha 6. Filtr Czebyszewa 7. Filtry eliptyze 8.
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Porównanie dwu populacji
Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :
Mechanika kwantowa III
Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści
ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW Spi reści. Dykree widmo ygałów okreowych. Związek między zeregiem i raormacją Fouriera 3. Waruki iieia i odwracalości raormacji Fouriera 4. Widma ygałów 5. Właości raormacji
Transmitancja widmowa bieguna
Tranmitancja widmowa bieguna Podtawienie = jω G = G j ω = j ω Wyodrębnienie części rzeczywitej i urojonej j G j ω = 2 ω j 2 j ω = ω Re {G j ω }= ω 2 Im {G j ω }= ω ω 2 Arg {G j ω }= arctg ω 2 Moduł i faza
23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA
. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna
ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści
ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW Spi reści. Dykree widmo ygałów okreowych. Związek między zeregiem i raormacją Fouriera 3. Waruki iieia i odwracalości raormacji Fouriera 4. Widma ygałów 5. Właości raormacji
ZASADY ZACHOWANIA ENERGII MECHANICZNEJ, PĘDU I MOMENTU PĘDU
ZASADY ZACHOWANIA ENERGII MECHANICZNEJ PĘDU I MOMENTU PĘDU Praca W fiyce racą eleentarną dw nayway wielkość dw Fd Fdr (4) gdie F jet iłą diałającą na drode d d F Pracę eleentarną ożna także redtawić w
PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE
PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE Si reści 1. Deiicja róbkowaia ygału. Twierdzeie Shaoa 3. Aliaig czyli uożamiaie 4. Przewarzaie obrazów aalogowych a dykree 1 Próbkowaie ygałów ag.
Filtry aktywne czasu ciągłego i dyskretnego
Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki czau ciągłego i dykretnego Wrocław 9 Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki odzaje Ze względu
SKRĘCANIE PRĘTÓW 1 1. SFORMUŁOWANIE ZAGADNIENIA. q vz. q vy
SKĘCNE PĘTÓW 1 1. SFOUŁOWNE ZGDNEN S q v L q v - oś pręta,, - oe główe, cetrale prekroju poprecego pręta pręt prmatc, utwerdo "puktowo" w pkt. S (0, 0, 0) poocca wola od ocążeń deko = L ocążoe łam o gętośc
Modelowanie i obliczenia techniczne. Model matematyczny w postaci transmitancji
Modelownie i obliceni technicne Model mtemtycny w potci trnmitncji Model mtemtycny w potci trnmitncji Zkłdjąc, że leżność międy y i u możn opić linowym równniem różnickowym lub różnicowym, możliwe jet
XI International PhD Workshop OWD 2009, 17 20 October 2009 MACHINES
XI Iteratioal PhD Workhop OWD 009, 17 0 October 009 ZASTOSOWANIE PREDYKCYJNYCH HYBRYDOWYCH UKŁADÓW STEROWANIA DO CELÓW STEROWANIA ZESPOŁEM SERWONAPĘDÓW W OBRABIARKACH NUMERYCZNYCH CNC USING THE HYBRID
1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej
. Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość
Kolokwium dodatkowe II (w sesji letniej) Maszyny Elektryczne i Transformatory st. st. sem. IV 2014/2015
Kolokwium dodatkowe II (w eji letiej) Wariat A azyy Elektrycze i Traformatory t. t. em. IV 04/05 azya Aychroicza Trójfazowy ilik idukcyjy pierścieiowy ma atępujące dae zamioowe: P 90 kw η 0,9 U 80 V (
STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.
Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
Modelowanie w pakiecie Matlab/Simulink
Modelowanie w paiecie Matlab/Siulin I. Siłowni pneuatycny ebranowy I.1. Model ateatycny siłownia pneuatycnego ebranowego apisany a poocą równań różnicowych Sygnałe wejściowy siłownia jest ciśnienie P podawane
Propagacja fali w falowodzie Falowody
Propagacja fali w falowoie Falowoy Kąt graicy > si i g płytkowy paskowy Fala prowaoa w falowoie la i>ig i Brak spełieia waruku fala cęściowo wycieka poa falowó α płasc A i reń płasc α B α C Moy falowou
PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE
PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE Si reści 1. Deiicja róbkowaia ygału. Twierdzeie Shaoa 3. Aliaig czyli uożamiaie 4. Przewarzaie obrazów aalogowych a dykree 1 Próbkowaie ygałów ag.
0, co implikuje tezę. W interpretacji geometrycznej: musi istnieć punkt, w którym styczna ( f (c)
RACHUNEK RÓŻNCZKOWY cd Twierdzeie Lagrage a: Jeżeli jest ciągła w [a,b], jest różiczkwala w a,b), t ca,b) : b)-a)= c) b-a) b) Dwód Wystarczy rzpatrzyć ukcję t) t) t a), t[a,b], która b a spełia załżeia
Elementy optyki zintegrowanej
Eleety optyki itegrowaej Dlacego w falowoie pole e- ie aika? W jaki sposób wygląa pole e- w falowoie? Jak buowae są struktury falowoowe o astosowań iterferoetrycych? Propagacja fali w falowoie Falowoy
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Własności dynamiczne układów dyskretnych
Akademia Morka w Gdyni Katedra Automatyki Okrętowej eoria terowania Właności dynamicne układów dykretnych Matlab Miroław omera. WPROWADZENIE W układach terowania dykretnego ygnały wytępują w formie impulów
ORGANIZACJA I ZARZĄDZANIE
P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Poziom rozszerzony. 5. Ciągi. Uczeń:
PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia
z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9
Wprowadzenie do laboratorium 1
Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja
Specyficzne filtry cyfrowe
Specyicne iltry cyrowe Materiał w nacnej cęści acerpnięty książki Sanjit K. Mitra Digital Signal Processing. A Computer-Based Approach Charakterystyki cęstotliwościowe iltrów IIR p t / sin cos j e j N
9. OCENA JAKOŚCI PRACY UKŁADU REGULACJI
9. Ocea jakości acy układu egulacji 9. OENA JAOŚI PRAY UŁADU REULAJI amy edukoway układ egulacji: R() - E() () H() - Z() () Ry. 9. amy ty tyy UAR e wględu a elacje międy R(), () i Z(): a) Układy tabiliujące
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6
achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo
Wykład 4 Soczewki. Przyrządy optyczne
Wykład 4 Soczewki. Przyrządy optycze Soczewka cieka - rówaie zlifierzy oczewek Rozważyy teraz dwie powierzchi ferycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
III. LICZBY ZESPOLONE
Pojęcie ciała 0 III LICZBY ZESPOLONE Defiicja 3 Niech K będie dowolm biorem Diałaiem wewętrm (krótko będiem mówić - diałaiem) w biore K awam każdą fukcję o : K K K Wartość fukcji o dla elemetów K oacam
O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności
Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
Równoważniki dyskretne dla transmitancji układów ciągłych
Akademia Morka w Gdyni Katedra Automatyki Okrętowej eoria terowania Równoważniki dykretne dla tranmitancji układów ciągłych Miroław omera. WPROWADZENIE W układach terowania wymaga ię modyfikacji dynamiki
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony
Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości
ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18
dr Aa Barbaszewska-Wiśiowska ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 17/18 1 Elemety logiki matematyczej Zdaia i formy zdaiowe fuktory zdaiotwórcze Tautologie Wartości logicze
Szeregi liczbowe. 15 stycznia 2012
Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i
STEROWANIE KASKADOWE POZIOMEM WODY W UKŁADZIE DWÓCH ZBIORNIKÓW
Zezyty Naukowe Wydziału Elektrotechiki i Automatyki olitechiki Gdańkiej Nr 40 XXV Semiarium ZASOSOWANE OMUERÓW W NAUCE ECHNCE 04 Oddział Gdańki EiS SEROWANE ASADOWE OZOMEM WODY W UŁADZE DWÓCH ZBORNÓW Miroław
I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n
I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
teorii optymalizacji
Poltechka Gdańska Wydzał Oceaotechk Okrętowctwa St. II stop. se. I Podstawy teor optyalzac wykład 7 M. H. Ghae Ma 5 Podstawy teor optyalzac Oceaotechka II stop. se. I 5 Podstawy teor optyalzac Oceaotechka
Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny
odstawy iforatyki Wykład r 9 /44 odstawy iforatyki olitechika Białostocka - Wydział Elektryczy Elektrotechika, seestr II, studia stacjoare Rok akadeicki 006/007 la wykładu r 9 Obliczaie liczby π etodą
Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.
Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech
EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPULSY LASEROWE. prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy
EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPUSY ASEROWE T t N t Dwa główe mehaizmy powoująe ziekształeie impulsów laserowyh: ) GVD-group veloity isspersio ) SMP-self phase moulatio 3 E E τ () 0 t /
Opis ruchu we współrzędnych prostokątnych (kartezjańskich)
Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Układ uśrednionych równań przetwornicy
Układ uśrednionych równań przetwornicy L C = d t v g t T d t v t T d v t T i g t T = d t i t T = d t i t T v t T R Układ jet nieliniowy, gdyż zawiera iloczyny wielkości zmiennych w czaie d i t T mnożenie
Funkcja wykładnicza i logarytm
Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a
+ ln = + ln n + 1 ln(n)
"Łatwo z domu rzeczywistości zajśd do lasu matematyki, ale ieliczi tylko umieją wrócid." Hugo Dyoizy Steihaus Niech (a ) będzie ieskooczoym ciągiem rzeczywistym. Def. Szeregiem = a azywamy parę ciągów
Moduł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae
Transformata Z Matlab
Aademia Morsa w Gdyi Katedra Automatyi Orętowej Teoria sterowaia Trasformata Z Matlab Mirosław Tomera. WPROWADZENIE W uładach sterowaia cora cęściej stosowae są regulatory cyfrowe i stąd oiecość oreślaia
1.8. PROSTE ŚCINANIE
.8. PROSTE ŚCINNIE.8.. Wprowadeie Proste ściaie wstępuje wówcas, gd obciążeie ewętre redukuje się do wektora sił poprecej T, której kieruek pokrwa się główą, cetralą osią prekroju O. Prostm ściaie praktcie
Filtry aktywne czasu ciągłego i dyskretnego
Politechnika Wrocławka Wydział Elektroniki, atedra 4 czau ciągłego i dykretnego Wrocław 8 Politechnika Wrocławka Wydział Elektroniki, atedra 4 Filtry toowanie iltrów w elektronice ma na celu eliminowanie
3. Metody matematycznego opisu właściwości liniowych elementów i układów automatyki
38 3. etody matematyczego opiu właściwości liiowych elemetów i układów automatyki W automatyce ako właściwość elemetu lub układu rozumie ię poób działaia daego elemetu układu, czyli zachowaie ię ego wielkości
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
5. Równanie Bernoulliego dla przepływu płynów rzeczywistych
5. Równanie Bernoulliego dla przepływu płynów rzeczywitych Protota równania Bernoulliego prawia że toowane jet ono również dla przepływu płynu lepkiego, io że w ty przypadku wzytkie przeiany energii ą
, +, - przestrzeń afiniczna, gdzie w wprowadzono iloczyn
EUKLIDESOWA PRZESTRZEŃ AFINICZNA (WEKTOROWA) RZECZYWISTA Deiicja 1,, +, u = ( x x x ) v = ( y y y ),,..., 1 2,,..., 1 2 1 1 2 2 u/ v : = x y + x y +... + xy - aywamy ilocyem skalarym Możemy go rówież oacać
Fizyka, II rok FS, FiTKE, IS Równania różniczkowe i całkowe, Zestaw 2a
N : iyka II rok S itk IS Równania różnickowe i całkowe estaw 2a. Prosę definiować pojęcie fory kwadratowej a następnie podać acier fory kwadratowej i określić rąd fory (a!#%$ (b 2. Prosę określić rąd równania
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie
SYSTEMY DYSKRETNE LTI
CPS 6/7 SYSTEMY DYSKRETNE LTI Odpoiedź impuloa UOdpoiedź impuloau h[] ytemu jet to ygał a yjściu ytemu, gdy a jego δ. ejściu ymuzoo chili = impul jedotkoy δ[] Sytem dykrety h[] Odpoiedź impuloa h[] jet
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..
Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.
Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.
WPŁYW TEMPERATURY NA KONSOLIDACJĘ OŚRODKA POROWATEGO NASYCONEGO CIECZĄ. 1. Wstęp. 2. Równania termokonsolidacji. Jan Gaszyński*
Górnictwo i Geoinżynieria ok 3 Zeyt 8 Jan Gayńki* WPŁYW MPAUY NA KONSOLIDACJĘ OŚODKA POOWAGO NASYCONGO CICZĄ. Wtęp Potreba rowiąywania agadnień wiąanych budownictwem ora inżynierią i ochroną środowika
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
UKŁADY TENSOMETRII REZYSTANCYJNEJ
Ćwicenie 8 UKŁADY TESOMETII EZYSTACYJEJ Cel ćwicenia Celem ćwicenia jest ponanie: podstawowych właściwości metrologicnych tensometrów, asad konstrukcji pretworników siły, ora budowy stałoprądowych i miennoprądowych
Wykªad 2. Szeregi liczbowe.
Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY
Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe