SYSTEMY DYSKRETNE LTI

Wielkość: px
Rozpocząć pokaz od strony:

Download "SYSTEMY DYSKRETNE LTI"

Transkrypt

1 CPS 6/7 SYSTEMY DYSKRETNE LTI Odpoiedź impuloa UOdpoiedź impuloau h[] ytemu jet to ygał a yjściu ytemu, gdy a jego δ. ejściu ymuzoo chili = impul jedotkoy δ[] Sytem dykrety h[] Odpoiedź impuloa h[] jet kompletą charakterytyką ytemu LTI, pozalającą określić odpoiedź ytemu a doole ie ymuzeie. Iloczy ygału x[] oraz impulu δ [ ] możemy zapiać jako: δ = [ ] δ x x Ogólie zależość ta dla impulu przeuiętego czaie jet atępująca: δ [ ] = δ [ ] x k x k k gdzie reprezetuje idek czau, x[] opiuje ygał. Moża zauażyć, że możeie ygału i impulu przeuiętego daje yiku impul przeuięty o polu róym artości fukcji miejcu przeuięcia impulu. Ta łaściość pozala zapiać ymuzeie x[] jako: [ ] δ [ ] [ ] δ[ ] [ ] δ [ ] δ[ ] [ ] δ[ ] x= + x + + x + + x + x + x +

2 CPS 6/7 lub krócoej formie : = δ [ x x k k k = ] Wykorzytując Uliioość i tacjoarośću ytemu odpoiedź yoi: [ ] [ y = x k h k] k = Tz. jeżeli ymuzeiem ytemu LTI x[] jet uperpozycja ażoych impuló przeuiętych czaie to jego odpoiedzią będzie uperpozycja idetyczie ażoych odpoiedzi h[] impuloych idetyczie przeuiętych czaie. Operację pozalającą yzaczyć odpoiedź ytemu a doole ymuzeie azya ię UplotemU i ozacza giazdką * jak yrażeiu: UPrzykład: Odpoiedź impuloa ytemu LTI yoi: h = = [ ] y x h xk h k, =± =, =, ie k = h[]

3 CPS 3 6/7 Należy yzaczyć odpoiedź ytemu a ymuzeie: URoziązaie: x, = 3, = =, =, ie Wymuzeie yoi: = δ + 3 δ[ ] δ[ ] x Odpoiedź będzie uperpozycją odpoiedzi impuloych: = + 3 [ ] [ ] y h h h Poieaż odpoiedź impuloa yoi: Zatem odpoiedź ytemu = δ [ + ] + δ + δ[ ] h = ( δ[ + ] + δ + δ[ ] ) 3 ( δ[ ] δ[ ] δ[ ] ) ( δ[ ] δ[ ] δ[ 3] ) y = δ[ + ] + 4δ + δ[ ] 3δ[ ] 6δ[ ] 3δ[ ] δ[ ] 4δ[ ] δ[ 3] y Stąd otateczie odpoiedź yoi: y = δ [ + ] + 7δ[ ] + 6δ[ ] δ[ ] δ[ 3] Matlab (plot dóch ygałó) h=[ ]; x=[ 3 ]; y=cov(h,x))

4 CPS 4 6/7 Roziązaie graficzie: x[] v [] x[] 3 v [] x[] 3 v [] x[] y[]

5 CPS 5 6/7 Właości plotu: UPrzemieość x[ ] h[ ] = h[ ] x[ ] UŁączość ( x[ ] h[ ] ) h[ ] = x[ ] ( h[ ] h[ ] ) URozdzielość { + } = + x h h x h x h Korzytając z przemieości plotu moża odpoiedź ytemu obliczać jako: Odpoiedź jedotkoa. = [ ] y hk x k k = Odpoiedź jedotkoa ytemu dykretego, jet do odpoiedź k[] a ymuzeie potaci koku jedotkoego [], może być yzaczoa ze plotu: = = [ ] = k h h k k h k k= k= Zależość między odpoiedzią impuloą i jedotkoą: = [ ] h k k Właości ytemu dykretego LTI: UPamięć ytemó W ytemach bez pamięci odpoiedź ytemu y[] zależy tylko od teraźiejzych artości ymuzeia x[]. Poieaż ytemach LTI zależość między odpoiedzią i ymuzeiem opiuje róaie: = [ ] y hk x k k =

6 CPS 6 6/7 zatem mui być pełioy aruek dla odpoiedzi impuloej: = dlak hk UPrzyczyoość ytemó: Odpoiedź układu przyczyoego zależy tylko od przezłych i teraźiejzych artości ygału ejścioego. Przezłe i teraźiejze artości ymuzeia k plotu x, x, x,... ą ziązae z idekem = [ ] y hk x k k = atomiat przyzłe artości ymuzeia ą ziązae z k <. Zatem dla ytemó przyczyoych mui być pełioy aruek dla odpoiedzi impuloej: Wtedy plot a atępującą potać: = dlak< hk = [ ] lub alteratyie y = xk h [ k] y hk x k k = k = UStabilość ytemó: Układ jet tabily ( eie BIBO), jeżeli przy ograiczoym ygale ejścioym ygał yjścioy jet także ograiczoy: x M < y M < x Możemy yzaczyć aruki jakie mui pełiać odpoiedź impuloa, aby garatoała tabilość ytemu. y y = h x = y hk x k k =

7 CPS 7 6/7 Poieaż a+ b a + b oraz a b = a b [ ] y hkx k k = [ ] y hk x k k = Jeżeli ymuzeie jet ograiczoe, x M < oraz x k M < x x to odpoiedź y M hk x k = Zatem aby odpoiedź była ograiczoa mui być pełioy aruek ograiczoej abolutej umy odpoiedzi impuloej: k = hk < Róaia różicoe x[] Sytem dykrety y[] Rolę róań różiczkoych opiujących ytemy aalogoe ytemach dykretych pełią róaia różicoe.

8 CPS 8 6/7 Zależości między ymuzeiem x[] i odpoiedzią y[] ytemach liioychtacjoarych (LTI) opiują Uróaia różicoeu ogólie N-tego rzędu, liioe potaci: N M ay k k = bx l l k= l= gdzie półczyiki ak, bl ą rzeczyite i tałe, a N określający rząd róaia, jet ajiękzym opóźieiem odpoiedzi y[]. Róaia, różicoe moża roziązyać metodą klayczą ykorzytując aalogie do metod roziązujących róaia różiczkoe. UPrzykład: Należy obliczyć odpoiedź dóch różych ytemó (dykretego i ciągłego) metodą klayczą przy zadaych róaiach opiujących ytemy, arukach początkoych, i ymuzeiach (aalogie metodzie klayczej). Sytem dykrety Sytem ciągły Róaie różicoe: [ ] α y[ ] = + β, y[ ] y + + = γ Róaie różiczkoe t ( ) α ( ) = +, ( ) d β y t + y t e y = γ dt Roziązaie potaci kładoych: y y y = + y ( t) = y ( t) + y ( t) Składoa oboda pełia róaie jedorode: y α y [ + ] + = d y ( ) α ( ) + t y dt t Róaie charakterytycze: + α = + α = Pieriatek róaia charakterytyczego = α = α Składoa oboda y [ ] = A ( α ) αt y( t) = Ae =

9 CPS 9 6/7 Składoa ymuzoa: y[ + ] + α y[ ] = + β d βt y( t dt ) + α y( t) = + e jet potaci (charakter ymuzeia): y A B β t = + y ( t) = A+ B e β ( ) + β + + α ( + β ) = + β d t t ( e ) + α dt ( e ) A B A B A A = + α β B = αβ + ( + α) + B α + β = + β β y β + α αβ + t A+ B β A+ B β = + e β βt βt ( ) αa B α β e e + + = + A = α B = α + β α α + β [ ] = + β t y () t = + e β Stała całkoaia z arukó początkoych: y [ ] = A = y[ ] y [ ] y ( ) = A = y( ) y ( ) A β = γ + α αβ + A = γ α Zatem odpoiedź ytemu: β β β + α αβ + + α αβ + = + + γ ( α ) βt αt y() t = + e + γ e y odp. ymuzoa odp. oboda α α + β α odp. ymuzoa odp. oboda UPrzykład: Obliczaie odpoiedzi jedotkoej ytemu Sytem dykrety opiay jet róaiem różicoym [ + ].9 = y y x x= i y = ależy obliczyć przebieg yjścioy y[], jeżeli [ ]

10 CPS 6/7 UI. Roziązaie przez bezpośredie podtaieie: Dla kolejych artości : y [] = +.9 y [ ] = + ( +.9).9 = ( ) y = = Stąd ogólie: yk = k 3 Korzytając z zależości a umę czątkoą ciągu geometryczego: k +.9 = =.9, k=,,,....9 k + ( ) yk MATLAB clear; % % obliczae rekurecyjie y=; y=y; for k=: y=+.9*y; yy(k)=y; ed y=[y yy]; figure(); tem(y); % % ykorzytaie roziązaia i=:; yu=*(-.9.^(i+)) figure(); tem(yu)

11 CPS 6/7 UII. Roziązaie metodą klayczą: [ ].9, [ ] y+ y= y = Spodzieae roziązaie jet umą kładoych ymuzoej i obodej = + y y y Składoa oboda jet roziązaiem ogólym róaia jedorodego: Róaie charakterytycze: [ ].9 y + y =.9 = Pieriatek róaia charakterytyczego yoi =.9 Składoa oboda ma zatem potać zeregu ykładiczego: = A.9 y Składoa ymuzoa ma charakter ymuzeia (fukcja tała) i jet zczególym roziązaiem róaia iejedorodego y [ ] = A ( cot) Wartość A obliczymy z róaia różicoego poprzez poróaie półczyikó z leej i praej troy dla kładoej ymuzoej: [ ].9 y + y = A.9A = A = y [ ] =

12 CPS 6/7 Stałą A obliczamy z arukó początkoych, dla = = + y y y [ ] = [ ] + y y y = + A.9 Roziązaie końcoe: A = 9 ( 9).9 = + = + = (.9.9 ) y y y + ( ) y =.9, =,,,... Schematy blokoe Sytemy LTI moża przedtaić potaci chematu blokoego, który jet graficzym zapiem róaia różicoego. UMożeie kalare x[] y[]=cx[] UDodaaie x[] + y[]=x[]+[] [] UPrzeuaie czaie x[] z - y[]=x[-]

13 CPS 3 6/7 UPołączeie róoległe: h [] x[] + y[] h [] + x[] h []+ h [] y[] + = ( + ) x h x h x h h UPołączeie kakadoe: x[] h [] h [] y[] x[] h []* h [] y[] { x[ ] h[ ] } h[ ] = x[ ] { h[ ] h[ ] } UPrzykład: Wyzacz odpoiedź ytemu dykretego a ymuzeie: = δ δ [ ] x h [] x[] h [] + + h 3 [] + - y[] h 4 []

14 CPS 4 6/7 jeżeli odpoiedzi impuloe pozczególych ytemó yozą: 3 4 = [ ] = [ + ] = δ [ ] = h h h h a URoziązaie: = ( + ) 3 4 h h h h h = + [ + ] = [ + ] h h [ ] = [ + ] δ [ ] = [ ] 3 Odpoiedź impuloa całego ytemu yoi: = ( ) h a Odpoiedź a zadae ymuzeie: y = x h = ( δ δ[ ] ) y h = [ ] y h h = ( ) ( ) [ ] y a a

15 CPS 5 6/7 UPrzykład: Wyzaczyć odpoiedź układu (dla zeroych arukó początkoych) -6 x[] y[+] y[+] + Z - Z - y[] 5 a ymuzeie potaci koku jedotkoego. URoziązaie: Róaie różicoe ze chematu blokoego: lub [ + ] = [ + ] y x y y [ + ] 5 [ + ] + 6 = y y y x Wtaiając do róaia ymuzeie: [ ] 5 [ ] 6 y+ y+ + y= UMetoda klaycza: Zakładamy roziązaie z potaci kładoych: = + y y y Dla kładoej obodej: y + 5y + + 6y =

16 oblicza CPS 6 6/7 Róaie charakterytycze 5 + 6= Pieriatki róaia charakterytyczego: =, = 3 Składoa oboda będzie miała potać: *) y [ ] = A + A 3 Składoa ymuzoa ma charakter ymuzeia: Stałe AB Bi ABB y [ ] = A [ ] 5 [ ] 6 y + y + + y = A 5A+ 6A= A 5A+ 6A= y = A= ię z arukó początkoych dla = i =: = + y y y [ ] = [ ] + [ ] [] = [] + [] y y y y y y Stąd tałe: = + A + A 3 = + A + A 3 A = A =

17 CPS 7 6/7 Otateczie odpoiedź ytemu yoi: y = 3 + kl. ymuzoa kl. oboda USchemat blokoy układu rzędu Schemat przedtaia typoy dykrety ytem LTI opiay róaiem różicoym rzędu: x[] b [] + + y[] z - z - x[-] b + + -a y[-] z - z - x[-] b -a y[-] Sygał ejścioy jet da razy przeuięty czaie, a yjściach blokó opóźiających otrzymuje ię ygały x[-] i x[-]. Sygały te ą kaloae oraz umoae yiku czego otrzymuje ię ygał: = + [ ] + [ ] bx bx bx Natępie możemy apiać dla ygału yjścioego y[] zależości od []: = [ ] [ ] y ay ay Stąd: y = bx + bx [ ] + bx [ ] ay [ ] ay [ ] y + ay [ ] + ay [ ] = bx + bx [ ] + bx [ ] lub k l [ ay k = bx l k= l= ]

18 CPS 8 6/7 UAlteratyy chemat blokoy dla układu rzędu x[] b + + f[] y[] z - -a b + + f[-] z - -a f[-] b UPrzykład: Sytem opiay róaiem ależy przedtaić potaci chematu blokoego: + 3 [ 3] = + [ ] y y y x x Roziązaie x[] + + y[] z - z - z - + -/ z - z - /3

19 CPS 9 6/7 Róaia tau Opi ytemu przetrzei tau polega a utorzeiu Uukładu róań różicoych pierzego rzęduu opiujących przebiegi zmieych tau ytemu oraz zależości odpoiedzi ytemu od zmieych tau i ymuzeia. Róaia te przedtaia ię formie macierzoej. Na chemacie blokoym ygały f[-], f[-], które zajdują ię a yjściach blokó opóźiających ozaczymy odpoiedio qbb[] oraz qbb[]. Wielkości te azya ię Uzmieymi tauu. x[] y[] + + z - -a b + + q [] z - -a q [] b Wartości zmieych tau zgodie ze chematem blokoym yozą: [ + ] = + q aq a q x q [ + ] = q [ ] Ze chematu możemy także yzaczyć zależość odpoiedzi od ymuzeia i zmieych tau: = + + y x aq aq bq bq W formie macierzoej poyżze róaia: [ + ] q a a q = + x q + q [ ] q = + q [] y b a b a x

20 CPS 6/7 Defiiując ektor tau jako : Q [ ] [ ] q = q Róaia tau zapizemy: Q[ + ] = AQ[ ] + b x[ ] = cq + y Dx gdzie: a a A=, b = [ b a b a ] c=, D = Opi ytemu przetrzei tau ykorzytuje ię częto obliczeiach umeryczych. UPrzykład: Sytem opiay jet róaiem różicoym. Wyzacz macierze tau tego ytemu: URoziązaie + 3 [ ] = + [ ] y y y x x Potać ogóla róaia różicoego: zatem: y + ay [ ] ay [ ] = bx + bx [ ] + bx [ ] 3 A=, = b c= [ 3], D = [ ]

Mechanika analityczna wprowadzenie

Mechanika analityczna wprowadzenie Mechaika aalitycza wprowadzeie 1. Więzy i wpółrzęde uogólioe Jeśli rozważamy ruch układów iewobodych ależy określić ograiczeia ałożoe a ruch tzw. więzy. Gdy układ puktów jet ograiczoy więzami wówcza wpółrzęde

Bardziej szczegółowo

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW Spi reści. Dykree widmo ygałów okreowych. Związek między zeregiem i raormacją Fouriera 3. Waruki iieia i odwracalości raormacji Fouriera 4. Widma ygałów 5. Właości raormacji

Bardziej szczegółowo

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych CAŁKOWE SFORMUŁOWANIE ZADANIA STATECZNOŚCI POCZĄTKOWEJ PŁYTY

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych CAŁKOWE SFORMUŁOWANIE ZADANIA STATECZNOŚCI POCZĄTKOWEJ PŁYTY . umiiak - Aaiza płt ciekic metoą eemetó brzegoc... 6 6.. CAŁKOWE SFORUŁOWAIE ZADAIA SAECZOŚCI POCZĄKOWEJ PŁYY Róaie różiczkoe tateczości płt moża zapiać atępująco [8]: D 4 p 6. gzie p jet obciążeiem zatępczm

Bardziej szczegółowo

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW Spi reści. Dykree widmo ygałów okreowych. Związek między zeregiem i raormacją Fouriera 3. Waruki iieia i odwracalości raormacji Fouriera 4. Widma ygałów 5. Właości raormacji

Bardziej szczegółowo

W(s)= s 3 +7s 2 +10s+K

W(s)= s 3 +7s 2 +10s+K PRZYKŁAD (LINIE PIERWIASTKOWE) Tramitacja operatorowa otwartego układu regulacji z jedotkowym ujemym przęŝeiem zwrotym daa jet wzorem: G O K ( + )( + 5) a) Podaj obraz liii pierwiatkowych układu zamkiętego.

Bardziej szczegółowo

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a WYKŁAD r. Elemey rachuku operaorowego Podawą rachuku operaorowego je zw. przekzałceie Laplace a, mające poać przekzałceia całkowego, przyporządkowujące fukcjom pewe owe fukcje, iego argumeu. Mówi ię, że

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 3 Optyka geometryczna

Metody Optyczne w Technice. Wykład 3 Optyka geometryczna Metody Optycze w Techice Wykład 3 Optyka geometrycza Promień świetly Potraktujmy światło jako trumień czątek eergii podróżujących w przetrzei Trajektorie takich czątek to promieie świetle W przypadku wiązki

Bardziej szczegółowo

3. Metody matematycznego opisu właściwości liniowych elementów i układów automatyki

3. Metody matematycznego opisu właściwości liniowych elementów i układów automatyki 38 3. etody matematyczego opiu właściwości liiowych elemetów i układów automatyki W automatyce ako właściwość elemetu lub układu rozumie ię poób działaia daego elemetu układu, czyli zachowaie ię ego wielkości

Bardziej szczegółowo

Z-TRANSFORMACJA Spis treści

Z-TRANSFORMACJA Spis treści Z-TRANSFORMACJA Spi treści. Deiicja. Pryłady traormat 3. Właości -traormacji 4. Zwiąe -traormacji traormacją Fouriera 5. Z-traormacja ygału dwuwymiarowego Deiicja -traormacji Z-traormata jet eregiem Laureta

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA Na prawach rękopiu do użytku łużbowego INSTYTUT ENEROELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport erii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA ĆWICZENIE Nr SPOSOBY

Bardziej szczegółowo

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1, 1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =

Bardziej szczegółowo

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW DYSKRETNYCH

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW DYSKRETNYCH AALIZA CZĘSTOTLIWOŚCIOWA SYGAŁÓW DYSKRETYCH Spi treści. Zależości pomiędz aalizą czętotliościoą gałó aalogoch i dretch. Deiica i łaości drete traormaci Fouriera. Aaliza czętotliościoa dretch obrazó Dreta

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 1 ĆWICZENIA

PODSTAWY AUTOMATYKI 1 ĆWICZENIA Elektrotechnika Podtawy Automatyki PODSTAWY AUTOMATYKI ĆWICZENIA lita zadań nr Tranformata Laplace a. Korzytając wprot z definicji znaleźć tranformatę Laplace a funkcji: y ( t 3 y( t y ( t ( ) 3 t y t

Bardziej szczegółowo

1 Przekształcenie Laplace a

1 Przekształcenie Laplace a Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

Układ uśrednionych równań przetwornicy

Układ uśrednionych równań przetwornicy Układ uśrednionych równań przetwornicy L C = d t v g t T d t v t T d v t T i g t T = d t i t T = d t i t T v t T R Układ jet nieliniowy, gdyż zawiera iloczyny wielkości zmiennych w czaie d i t T mnożenie

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Wykład X. ZASADA SUPERPOZYCJI. PRZENOSZENIE ŹRÓDEŁ W OBWODZIE. TWIERDZENIA: THEVENINA, NORTONA, O WZAJEMNOŚCI, O KOMPENSACJI

Wykład X. ZASADA SUPERPOZYCJI. PRZENOSZENIE ŹRÓDEŁ W OBWODZIE. TWIERDZENIA: THEVENINA, NORTONA, O WZAJEMNOŚCI, O KOMPENSACJI 4. oziązyaie obodó prądu stałego 8 Wyład X. ZSD SUPPOZYCJ. PZNOSZN ŹÓDŁ W OBWODZ. TWDZN: THVNN, NOTON, O WZJMNOŚC, O KOMPNSCJ Zasada superpozyci Zgodie z róaiami (4. i (4.7, liioy obód eletryczy o g gałęziach

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Steroania i Systemó Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Semestr letni 2010 Laboratorium nr 4 LINIOWE

Bardziej szczegółowo

PODSTAWY AUTOMATYKI ĆWICZENIA

PODSTAWY AUTOMATYKI ĆWICZENIA lita zadań nr Tranformata Laplace a Korzytając wprot z definicji znaleźć tranformatę Laplace a funkcji: a y ( t+ y ( t b y ( t+ d ( ) t y t e + Dana jet odpowiedź na impul Diraca (funkcja wagi) g ( Znaleźć

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

x k3 y k3 x k1 y k1 x 2

x k3 y k3 x k1 y k1 x 2 A. RANFORMACJA RZEMEZCZEŃ obrębie bryły ztynej Andrzej Wite odtay ontrcji mazyn y x - - y x - C x - O x x - x y - - Ry.. chemat tranformacji przemiezczeń Znany jet mały rch bryły ztynej (ry.) pncie O opiany

Bardziej szczegółowo

1 Dwuwymiarowa zmienna losowa

1 Dwuwymiarowa zmienna losowa 1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

SZEREGOWY SYSTEM HYDRAULICZNY

SZEREGOWY SYSTEM HYDRAULICZNY LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 1 SZEREGOWY SYSTEM HYDRAULICZNY 1. Cel ćwiczenia Sporządzenie wykreu Ancony na podtawie obliczeń i porównanie zmierzonych wyokości ciśnień piezometrycznych z obliczonymi..

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,...

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,... Model Lesliego Macierze Lesliego i Markowa K. Leśiak Wyodrębiamy w populaci k grup wiekowych. Po każde edostce czasu astępuą arodziy i zgoy oraz starzeie (przechodzeie do astępe grupy wiekowe). Chcemy

Bardziej szczegółowo

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW DYSKRETNYCH

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW DYSKRETNYCH AALIZA CZĘSTOTLIWOŚCIOWA SYGAŁÓW DYSKRETYCH Spi treści. Zależości pomiędz aalizą czętotliościoą gałó aalogoch i dretch. Deiica i łaości drete traormaci Fouriera. Aaliza czętotliościoa dretch obrazó Dreta

Bardziej szczegółowo

interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie

interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie Simulink Wprowadzenie: http://me-www.colorado.edu/matlab/imulink/imulink.htm interaktywny pakiet przeznaczony do modelowania, ymulacji, analizy dynamicznych układów ciągłych, dykretnych, dykretno-ciągłych

Bardziej szczegółowo

ZASTOSOWANIA PRZEKSZTAŁCENIA ZET

ZASTOSOWANIA PRZEKSZTAŁCENIA ZET CPS - - ZASTOSOWANIA PRZEKSZTAŁCENIA ZET Rozwiązywanie równań różnicowych Dyskretny system liniowy-stacjonarny można opisać równaniem różnicowym w postaci ogólnej N M aky[ n k] bkx[ n k] k k Przekształcenie

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Systemy i sygnały dyskretne w czasie

Systemy i sygnały dyskretne w czasie Systemy i sygnały dyskretne w czasie Podstawowe definicje: Sygnały dyskretne w czasie reprezentowane są przez ciągi liczb, oznacza się przez {x[n]} Elementy tych ciągów nazywa się próbkami, wartości próbek

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Wprowadzenie do laboratorium 1

Wprowadzenie do laboratorium 1 Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja

Bardziej szczegółowo

5. Ogólne zasady projektowania układów regulacji

5. Ogólne zasady projektowania układów regulacji 5. Ogólne zaay projektowania ukłaów regulacji Projektowanie ukłaów to proce złożony, gzie wyróżniamy fazy: analizę zaania, projekt wtępny, ientyfikację moelu ukłau regulacji, analizę właściwości ukłau

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Mazyn Roboczych tudia inżynierkie prowadzący: mgr inż. Sebatian Korczak Poniżze materiały tylko dla tudentów uczęzczających na zajęcia. Zakaz

Bardziej szczegółowo

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne.

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne. Technika Próżniowa Przyszłość zależy od dobrego wyboru produktu Wydanie Specjalne www.piab.com P6040 Dane techniczne Przepływ podciśnienia Opatentowana technologia COAX. Dostępna z trójstopniowym wkładem

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B

Bardziej szczegółowo

Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych).

Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych). Zadanie Podaj model matematyczny uładu ja na ryunu: a w potaci tranmitancji, b w potaci równań tanu równań różniczowych. a ranmitancja operatorowa LC C b ównania tanu uładu di dt i A B du c u c dt i u

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

WZORY Z FIZYKI POZNANE W GIMNAZJUM

WZORY Z FIZYKI POZNANE W GIMNAZJUM WZORY Z IZYKI POZNANE W GIMNAZJM. CięŜa ciała. g g g g atość cięŝau ciała N, aa ciała kg, g tały ółczyik zay zyiezeie zieki, N g 0 0 kg g. Gętość ubtacji. getoc aa objetoc ρ V Jedotką gętości kładzie SI

Bardziej szczegółowo

Porównanie dwu populacji

Porównanie dwu populacji Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :

Bardziej szczegółowo

Podstawy Automatyki. Karol Cupiał

Podstawy Automatyki. Karol Cupiał Poawy Automatyki Karol Cupiał Czętochowa tyczeń Kierunek Energetyka tudia tacjonarne em. 3 we 3 l3 c Kierunek Mechanika i BM tudia tacjonarne em 4 5 w 3 l Kierunek Mechatronika tudia tacjonarne em. 5 w

Bardziej szczegółowo

STEROWANIE KASKADOWE POZIOMEM WODY W UKŁADZIE DWÓCH ZBIORNIKÓW

STEROWANIE KASKADOWE POZIOMEM WODY W UKŁADZIE DWÓCH ZBIORNIKÓW Zezyty Naukowe Wydziału Elektrotechiki i Automatyki olitechiki Gdańkiej Nr 40 XXV Semiarium ZASOSOWANE OMUERÓW W NAUCE ECHNCE 04 Oddział Gdańki EiS SEROWANE ASADOWE OZOMEM WODY W UŁADZE DWÓCH ZBORNÓW Miroław

Bardziej szczegółowo

2. Wyznaczyć K(s)=? 3. Parametry układu przedstawionego na rysunku są następujące: Obiekt opisany równaniem: y = x(

2. Wyznaczyć K(s)=? 3. Parametry układu przedstawionego na rysunku są następujące: Obiekt opisany równaniem: y = x( Przykładowe zadania EGZAMINACYJNE z przedmiotu PODSTAWY AUTOMATYKI. Dla przedtawionego układu a) Podać równanie różniczkujące opiujące układ Y b) Wyznacz tranmitancję operatorową X C R x(t) L. Wyznaczyć

Bardziej szczegółowo

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej . Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA LABORATORYJNA Na prawach rękopisu do użytku służbowego NYU ENERGOELERY OLEHN ROŁAEJ Raport serii RAOZANA Nr LABORAORUM OA AUOMAY NRUJA LABORAORYJNA EROANE RAĄ LNA Z YORZYANEM L Mirosław Łukowicz łowa kluczowe: sterowik

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy RYTERIA OCENIANIA ODPOIEDZI Próbna Matura z OPERONEM Fizyka i atronoia Pozio podtawowy Litopad 03 niniejzy cheacie oceniania zadań otwartych ą prezentowane przykładowe poprawne odpowiedzi. tego typu ch

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE Si reści 1. Deiicja róbkowaia ygału. Twierdzeie Shaoa 3. Aliaig czyli uożamiaie 4. Przewarzaie obrazów aalogowych a dykree 1 Próbkowaie ygałów ag.

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Metody numeryczne Laboratorium 5 Info

Metody numeryczne Laboratorium 5 Info Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych

Bardziej szczegółowo

FILTRY Z NIESKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ. IIR od ang. Infinite Impulse Response. Spis treści

FILTRY Z NIESKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ. IIR od ang. Infinite Impulse Response. Spis treści FILTRY Z IESKOŃCZOĄ ODPOWIEDZIĄ IMPULSOWĄ IIR od ag. Iiite Ipule Repoe Spi treści. Deiicja iltru IIR. Stabilość iltrów IIR 3. Metody projektowaia iltrów IIR 4. Prykład 5. Dwuiarowe iltry rekurywe 6. Optyaliacyja

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

FILTRY Z NIESKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ. IIR od ang. Infinite Impulse Response. Spis treści

FILTRY Z NIESKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ. IIR od ang. Infinite Impulse Response. Spis treści FILTRY Z IESKOŃCZOĄ ODPOWIEDZIĄ IMPULSOWĄ. Deiicja iltru IIR. Stabilość iltrów IIR Spi treści 3. Metody projektowaia iltrów IIR 4. Prykład IIR od ag. Iiite Ipule Repoe 5. Dwuiarowe iltry rekurywe 6. Optyaliacyja

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZETWARZAIE SYGAŁÓW SEMESTR V Człowie- ajlepza iwetycja Projet wpółfiaoway przez Uię Europeją w ramach Europejiego Fuduzu Społeczego Dotoowaie arzędzi matematyczych do potrzeb pratyczej aalizy ygałów

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub

Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza. Gabriel Laub "Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

PODSTAWOWE UKŁADY PRĄDU STAŁEGO

PODSTAWOWE UKŁADY PRĄDU STAŁEGO 3. lemety obodó prądu stałego 5 Wykład V. ODSTAWOW KŁADY ĄD STAŁO zeczyiste ódło apięcioe obciążoe rezystacją Na rysuku pokazao schemat i charakterystykę zeętrzą rzeczyistego stałoprądoego ódła apięcioego,

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

{ x n } = {,1.1, 0.2,2.1,3.0, 1.2, }

{ x n } = {,1.1, 0.2,2.1,3.0, 1.2, } CPS 6/7 Defiicje: SYGNAŁY DYSKRETNE USygały dyskree w czasieu rerezeowae są rzez ciągi liczb i ozaczae jako {x[]} Elemey ych ciągów azywa się UróbkamiU, warości róbek sygałów ozacza się jako x[] dla całkowiych

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Wykład 4 Soczewki. Przyrządy optyczne

Wykład 4 Soczewki. Przyrządy optyczne Wykład 4 Soczewki. Przyrządy optycze Soczewka cieka - rówaie zlifierzy oczewek Rozważyy teraz dwie powierzchi ferycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Podstawowe układy pracy tranzystora bipolarnego

Podstawowe układy pracy tranzystora bipolarnego L A B O A T O I U M U K Ł A D Ó W L I N I O W Y C H Podtawowe układy pracy tranzytora bipolarnego Ćwiczenie opracował Jacek Jakuz 4. Wtęp Ćwiczenie umożliwia pomiar i porównanie parametrów podtawowych

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Wymiana ciepła przez żebra

Wymiana ciepła przez żebra Katedra Silników Spalinowych i Pojadów TH ZKŁD TERMODYNMIKI Wymiana ciepła pre era - - Cel ćwicenia Celem ćwicenia jet adanie wpływu atoowania eer na intenywność wymiany ciepła. Badanie preprowada ię na

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE Si reści 1. Deiicja róbkowaia ygału. Twierdzeie Shaoa 3. Aliaig czyli uożamiaie 4. Przewarzaie obrazów aalogowych a dykree 1 Próbkowaie ygałów ag.

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI. LABORATORIUM nr 01. dr inż. Robert Tomkowski

METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI. LABORATORIUM nr 01. dr inż. Robert Tomkowski METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI LABORATORIUM r 01 Temat: PERCEPTRON dr iż. Robert Tomkowski pok. 118 bud. C robert.tomkowski@tu.koszali.pl tel. 94 3178 251 Metody i zastosowaia sztuczej iteligecji

Bardziej szczegółowo

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH XLIII Sympozjon Modelowanie w mechanice 004 Wieław GRZESIKIEWICZ, Intytut Pojazdów, Politechnika Warzawka Artur ZBICIAK, Intytut Mechaniki Kontrukcji Inżynierkich, Politechnika Warzawka MATEMATYCZNY OPIS

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu Odpowiedzi i rozwiązania:. C. D (po włączeniu baterii w uzwojeniu pierwotny płynie prąd tały, nie zienia ię truień pola agnetycznego, nie płynie prąd indukcyjny) 3. A (w pozotałych przypadkach na trunie

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo