FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
|
|
- Dariusz Pawlik
- 5 lat temu
- Przeglądów:
Transkrypt
1 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Úvod, opakování, soustavy sil Jiří Brožovský Kancelář: LP H 406/3 Telefon: jiri.broovsky@vsb.c WWW:
2 Stavební statika? (1) 2
3 Stavební statika? (2) 3
4 Doporučená literatura 1. on-line: přednášky doc. Martina Krejsy: 2. on-line: příklady dr. Vladimíry Michalcové: 3. on-line: příklady dr. Lenky Lausové: 4. učebnice: Jaroslav Kadlčák, Jiří Kytýr: Statika stavebních konstrukcí I., VUTIUM,
5 Průběh koušky vstupní test: kontrola ákladních nalostí (uspěl/neuspěl) písemná část: 3-5 příkladů, pro úspěšné absolvování je a každý příklad nutno ískat nadpoloviční počet bodů ústní část: 3 otáky teorie předmětu + diskuse o písemné části bodování jako v ostatních předmětech (nutno ískat nejméně 51 bodů, možno ískat maimálně 100 bodů) 5
6 Náplň předmětu Silové soustavy v rovině a prostoru (opakování). Vnitřní síly nosníků, integrálně derivační vtahy. Přímé, lomené nosníky, oblouky. Nosníky s klouby. Příhradové nosníky. Průřeové charakteristiky. Pohyblivé atížení, příčinkové čáry. Varování: Znalosti uvedených témat v rosahu učiva střední školy nestačí ani k ískání ápočtu, natož pak k vykonání koušky. Doporučuje se průběžné studium nové látky. 6
7 Systém souřadnic v rovině X-Z Dále budeme tento systém souřadnic používat. 7
8 Opakování pojmů matematiky Pythagorova věta. Goniometrické funkce. Příklady použití goniometrických funkcí. Trojčlenka. 8
9 Opakování: Pythagorova věta Platí poue pro pravoúhlé trojúhelníky! c 2 = a 2 + b 2 b c a c = a = b = a 2 + b 2 c 2 b 2 c 2 a 2 a, b... odvěsny, c... přepona (naproti pravému úhlu). 9
10 Opakování: Goniometrické funkce Uvedené vtahy platí poue pro pravoúhlé trojúhelníky! Sinus α: sin (α) = b c b c Kosinus α: cos (α) = a c Tangens α: tan (α) = b a a α tan α = sin(α) cos(α) a, b... odvěsny, c... přepona (naproti pravému úhlu). 10
11 Aplikace opakování: Roklad síly na pravoúhlé složky Využití Pythagorovy věty a goniometrických funkcí. α F F = F 2 + F 2 y Fy F α cos(α) = F F F = F cos(α) sin(α) = F y F F y = F sin(α) 11
12 Aplikace opakování: Výpočet délky šikmé úsečky Využití Pythagorovy věty a goniometrických funkcí. b α a L a α b L = a 2 + b 2 cos(α) = a L L = a cos(α) sin(α) = b L L = b sin(α) 12
13 Opakování: Trojčlenka b e a b = e = a b e a e = b a Využití: např. podobnost trojúhelníků. 13
14 Opakování: Fyika mechanika Základní předpoklady Přímková soustava sil Rovnoběžník sil Rovinný svaek sil Statický moment síly k bodu Dvojice sil v rovině Rovinná soustava rovnoběžných sil Obecná soustava sil v rovině 14
15 Fyika ákladní předpoklady Zkoumáme objekty lineárně pružného materiálu (platí Hookeův ákon: vtah mei atížením a deformací je lineární) Materiál všech koumaných těles je iotropní (má ve všech směrech stejné vlastnosti) Předpokládáme, že deformace vyvolané atížením jsou malé (vliv deformací na polohu sil můžeme anedbat) Tyto předpoklady umožňují, že můžeme účinky růných atížení (např. sil) na konstrukci sčítat (velké jednodušení výpočtů). 15
16 Přímková soustava sil F4 = 10 kn F3 = 40 kn F2 = 20 kn R = 20 kn F1 = 10 kn Všechny síly leží v jedné přímce Na místě působení v rámci přímky neáleží Výslednice (síla, kterou le soustavu sil nahradit a která má stejný účinek) : R = n i=1 F i Příklad: R = 4 i=1 F i = = 20 kn 16
17 Přímková soustava sil Stanovte směr a velikost výslednic Určete, da nějaká e soustav je v rovnováe (R = 0) a) b) c)
18 Rovnoběžník sil φ F1 Výpočet výslednice dvou sil číselně pomocí kosinové věty: F2 180 φ R R = P F F 1F 2 cos(φ) Např. F1 = 10 kn, F2 = 11 kn, φ = 20 o : R = cos(20 0 ) = 20,68kN 18
19 Roklad síly na pravoúhlé složky Zvláštní (jednodušší, tedy užitečnější) případ rovnoběžníku sil α F F = F 2 + F 2 y Fy F α cos(α) = F F F = F cos(α) sin(α) = F y F F y = F sin(α) Silový pravoúhelník je de obdélník. 19
20 Rovinný svaek sil Skupina sil se společným působištěm Výslednici hledáme ve třech krocích: 1. roklad všech sil na složky ve směru α R os X a Y 2. suma složek v jednotlivých směrech: R = n i=1 F,i, R = n i=1 F y,i 3. Určíme výslednici a její úhel od osy : R = R 2 + R 2, cos(α) = R R 20
21 Rovinný svaek sil příklad (1) Stanovte směr a velikost výslednice svaku sil: F 1 = 10 kn, F 2 = 12 kn. F2 215 o 30 o F1 21
22 Rovinný svaek sil příklad (2) Roklad síly F1: F 1 = F 1 sin 30 o = 10 0, 5 = 5 kn ( ) F 1 = F 1 cos 30 o = 10 0, 866 = 8.66 kn ( ) F2 215 o F1 30 o F1 F1 F1 22
23 Rovinný svaek sil příklad (3) Roklad síly F2: F 2 = (F 2 cos 55 o ) = (20 0, 574) = 6, 89 kn ( ) F 2 = (F 2 sin 55 o ) = (12 0, 819) = 9, 83 kn ( ) F2 30 o 215 o F2 215 o F2 F1 o 55 F2 23
24 Rovinný svaek sil příklad (4) Výslednice F sil ve směru osy : n i=1 F i, = F 1 + F 2 = 5, 0 6, 89 = 1, 89 kn ( ) F2 215 o F1 o 55 F2 F2 F1 F1 24
25 Rovinný svaek sil příklad (5) Výslednice F sil ve směru osy : n i=1 F i, = F 1 + F 2 = 8, 66 9, 83 = 0, 17 kn ( ) F2 215 o F1 o 55 F2 F2 F1 F1 25
26 Rovinný svaek sil příklad (6) Výslednice F : F = F 2 + F 2 = ( 1, 89) 2 + (0, 17) 2 = 1, 90 kn ( ) F2 β F F F F1 cos β = F F = 0, 17 1, 90 β = 5, 13o 26
27 Statický moment síly k bodu (1) s rameno síla Stanovíme: M = P p Jednotka: [N m] bod p 90 o paprsek síly P + Moment se nemění, pokud se síla libovolně posunuje po svém paprsku. Moment je kladný, otáčí-li proti směru hodinových ručiček. 27
28 Statický moment síly k bodu (2) s p = 0,6 m 90 o P = N Výpočet velikosti momentu: M = P p + M = , 6 = N m 28
29 Statický moment síly k bodu (3) Stanovte výsledný moment sil k bodu s (úhly jsou ve stupních): 20 kn 12 s kn 6 kn 12 kn 29
30 Dvojice sil p P P Stanovíme: M = P p Jednotka: [N m] P p P Otáčením dvojice sil se moment nemění. Výslednice více dvojic sil je jejich algebraickým součtem. P Moment dvojice sil je stejný ke všem bodům p tělesa. P 30
31 Dvojice sil Stanovte výsledný moment dvojic sil na obráku
32 Varignonova momentová věta M d = R d p d = n i=1 P i p i + m j=1 M j, kde M j je moment j-té dvojice sil a P i p i statický moment i-té síly k momentovému středu d. 32
33 Rovinná soustava rovnoběžných sil S Výslednice: d R R = n P i i=1 Výsledný statický moment (k bodu S): M r = R d = n i=1 Poloha výslednice (k bodu S): P i p i pi Pi d = M r R 33
34 Stanovte polohu a velikost výslednice M = F i r i = = 708 knm R = F i = 37 kn ( ), r = M R = = 19, 14 m 34
35 Podmínky rovnováhy obecné rovinné soustavy sil Vždy 3, obvykle ve složení: R = n i=1 R = n i=1 P i, = 0 P i, = 0 M s = n (P i, p i, + P i, p i, ) + m i=1 j=1 M j = 0 35
36 Výsledný účinek rovinné soustavy sil (1) P1 P2 a. Roložíme všechny síly P1 P2 P1 P1 P1 P2 P2 P i na složky P i, a P i,. b. Posuneme působiště všech P i, do osy c. Posuneme působiště P2 všech P i, do osy 36
37 Výsledný účinek rovinné soustavy sil (2) d. Stanovíme výslednice α P c1 P d1 P P1 d2 P2 sil ve směrech a : P = n P i, i=1 c2 P1 P2 P1 P2 P = n P i, i=1 e. Stanovíme velikost a směr výslednice: P = P 2 + P 2 y, sin(α) = P P 37
38 Výsledný účinek rovinné soustavy sil (3) d1 c1 Μ P1 d2 P2 f. Stanovíme moment c2 P1 P1 soustavy sil k počátku: P2 P2 M = n i=1 P i, c i + n i=1 P i, d i 38
39 Výsledný účinek rovinné soustavy sil (4) Varianty vyjádření M R R R, R, M složky výslednice v počátku a moment k libovolnému bodu v rovině M α R R, (α), M výslednice v počátku (a její směr) a moment k libovolnému bodu v rovině Zo d R, (α), d posunutá výslednice (a směr) a její α R rameno 39
40 Soustava sil příklad (1) Stanovte výslednici a výsledný moment rovinné soustavy sil. 0, ο kn ο kn 40
41 Soustava sil příklad (2) 0,0 5 4 P1 ο 30 P1 12 P2 50 ο P1 = 10 kn P2 P2 = 12 kn 7 P 1, P 1, = 10 sin(30 o ) = 5,0kN( ) = 10 cos(30 o ) = 8,660kN( ) P 2, = 12 cos(50 o ) = = 7,714kN( ) P 2, = 12 sin(50 o ) = 9,193kN( ) Znaménka jednotlivým složkám přiřaujeme podle jejich smyslu (kladná síla jde ve směru kladné souřadnicové osy)! 41
42 Soustava sil příklad (3) 0, P1 = 5,0 P1 = 8,660 P2 = 9,193 4 P2 = 7,714 7 P1 = 10 kn P2 = 12 kn Moment k bodu [0,0]: P = 2 i=1 P = 2 P = P = i=1 P i, = 5,0 7,714 = 2,714kN( P i, = 8, ,193 = 17,853kN( P 2 + P 2 ( 2,714) 2 + (17,953) 2 = 18,058kN M = 2 i=1 P i, d + 2 i=1 P i, d M = 5,0 4 7,714 7 = 8, , = 196,226kN m 42
43 Soustava sil příklad (4) Výsledný účinek: P = 2,714 0,0 α P = 17,853 P = 18,058 Μ = 196,226 tan(α) = P P = 2,714 18,057 = 0,150 α = arctan( P P ) = = 8,53 o Pon: Kladný moment otáčí proti směru hodinových ručiček (de vyšel áporný vi výpočet M). 43
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Robotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D.
Robotika Kinematika 13. dubna 2017 Ing. František Burian Ph.D., Řízení stacionárních robotů P P z q = f 1 (P) q z Pøímá úloha q U ROBOT q P R q = h(u) P = f (q) DH: Denavit-Hartenberg (4DOF/kloub) A i
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Energetické principy a variační metody ve stavební mechanice
Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
2 Sférická trigonometrie. Obsah. 1 Základní pojmy. Kosinová věta pro stranu. Podpořeno z projektu FRVŠ 584/2011.
Obsah 1 2 Kosinová věta pro úhel Pravoúhlý sférický trojúhelník Podpořeno z projektu FRVŠ 584/2011. Referenční plochy, souřadnicové soustavy Důležité křivky - loxodroma, ortodroma Kartografická zobrazení,
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu
Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ
Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Obsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
2 5 C). Bok rombu ma długość: 8 6
Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Funkce více proměnných: limita, spojitost, derivace
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů (Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace (průhyby,
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
III. Dvojný a trojný integrál
III. vojný a trojný integrál III.. Eistence Necht je měřitelná v Jordanově smslu množina v E resp. E a funkce f je omezená na. Necht množina bodů nespojitosti funkce f v má míru. Potom f je integrovatelná
POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY
POLIURETAOWE SPRĘŻYY ACISKOWE. POLYURETHAOVÉ TLAČÉ PRUŽIY Oferowane są wymiary wyrobów o różnych twardościach. Konstrukcja tych sprężyn umożliwia zastąpienie sprężyn tradycyjnych tam, gdzie korozja, wibracje,
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Referenční plochy. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma
OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ temperatury)
Poliechnika Poznańska Wydział Achiekuy Budownicwa i Inżynieii Śodowiska ĆWICZENIE NR 4 OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ empeauy) Sieocki Damian ok sudiów: III semes: VI g. 8 Poznań METODA PRZEMIESZCZEŃ
Co byste měl/a zvládnout po 1. týdnu
Co byste měl/a zvládnout po 1. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: Lineární algebra, ZS 2017 Zvládnutá látka po 1. týdnu 1/5 Upozornění Řada z následujících
x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].
II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.
Martin Pergel. 26. února Martin Pergel
26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:
Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Pracovní listy. Stereometrie hlavního textu
v tomto dodatu jsou sebrána zadání všech úloh řešených v aitolách Planimetrie a tereometrie hlavního textu slouží ta jao racovní listy samostatnému rocvičení uvedených úloh Zracoval Jiří Doležal 1 eznam
Obecná orientace (obvykle. Makroskopická anizotropie ( velmi mnoho kluzných rovin )
Fyzikální zdůvodnění plasticity (1) Změny v krystalické mřížce Schmidtův zákon : τ τ τ max (1) Dosažení napětí τ max vede ke změnám v krystalické mřížce Deformace krystalické mřížky pružná deformace Změny
Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.
Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha
ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční
Numerické metody a statistika
Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 2016-2017 ( ) Numerické metody a statistika 2016-2017 1 / 17 Číslo předmětu: 714-0781/02 Rozsah: 2+2 Hodnocení: 6 kreditů Přednáší: Radek Kučera
Paradoxy geometrické pravděpodobnosti
Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh
Geometry of the quadrilateral
STŘEOŠKOLSKÁ OORNÁ ČINNOST Obor SOČ: 01. Matematika a statistika Geometrie čtyřúhelníka Geometry of the quadrilateral utor: Škola: Konzultant: Le nh ung Gymnázium, Tachov Pionýrská 1370 Mgr. Michal Rolínek,
z geoinformatických dat
z geoinformatických dat 30. listopadu 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 Dvě DN na úseku Příklad Najděte mezní situaci pro dvě DN na úseku délky L metrů tak, aby se ještě
KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO POČÍTAČOVÁ GEOMETRIE JIŘÍ KOBZA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:
Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30
Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II
Výzvy, které před matematiku staví
1 / 21 Výzvy, které před matematiku staví výpočetní technika Edita Pelantová Katedra matematiky, FJFI, České vysoké učení technické v Praze 25. pledna 2018 Praha Zápisy čísel v minulosti 2 / 21 Římský
GEOMETRIE. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ / /0016. základu studia.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA GEOMETRIE Jiří Doležal Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 Studijní opory s převažujícími distančními
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
IEL Přechodové jevy, vedení
Přechodové jevy Vedení IEL/přechodové jevy 1/25 IEL Přechodové jevy, vedení Petr Peringer peringer AT fit.vutbr.cz Vysoké učení technické v Brně, Fakulta informačních technologíı, Božetěchova 2, 61266
Podstawy elektrotechniki
Wydział Mechaniczno-Energetyczny Podstawy elektrotechniki Pro. dr hab. inż. Juliusz B. Gajewski, pro. zw. PWr Wybrzeże. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 tara kotłownia, pokój 359 el.: 71 320 3201
Funkcje trygonometryczne
Funkcje trygonometryczne Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Kąt α [ o ] 30 o 45 o 60 o sin α ½ 2 / 2 3 / 2 cos α 3 / 2 2 / 2 ½ tg α 3 / 3 1 3 ctg α 3 1 3 / 3 Związki między funkcjami
(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala