Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Wielkość: px
Rozpocząć pokaz od strony:

Download "Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava"

Transkrypt

1 Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 2. století (reg. č. CZ..7/2.2./7.332), na kterém se společně podílela Vysoká škola báňská Technická univerzita Ostrava a Západočeská univerzita v Plzni

2 Motivace: Kvadratické formy popisují potenciální energii Rozložení hustoty nábojů Mějme elektrodu nabitou jednotkovým nábojem. Hledáme (po trojúhelnících konstantní) hustotu povrchového náboje q R n, která minimalizuje potenciální energii min { E(q) := q T A q } n vzhledem k q i =,,Obsah, kde (A) i,j := /(4πε ) T i T j x i x j dv (x j)dv (x i ) vychází z Coulombovské síly mezi nabitými trojúhelníky T i a T j. A je symetrická matice. i=

3 Motivace: Kvadratické formy popisují potenciální energii Rozložení proudové hustoty ve vodiči Mějme vodič protékaný jednotkovým proudem. Hledáme (po trojúhelnících konstantní) proudovou hustotu j R n, která minimalizuje potenciální energii min { E(j) := j T A j } n vzhledem k j i =,,Obsah, kde (A) i,k := µ /(4π) T i T k x i x k dv (x k)dv (x i ) vychází z Lorentzovy magnetické síly mezi proudovodiči s trojúhelníkovými profily T i a T k. A je symetrická matice. i=

4 Lineární zobrazení Princip superpozice 2A(v 2 ) A(v ) + A(v 2 ) A(v 2 ) A(v ) v = v 2 = 2 v + v 2 2v 2 Lineární zobrazení Mějme vektorové prostory V, U. Zobrazení A : V U je lineární, pokud. v,v 2 V : A(v + v 2 ) = A(v ) + A(v 2 ), 2. α R v V : A(αv) = αa(v).

5 Lineární zobrazení = matice Každou matici lze chápat jako lineární zobrazení. Mějme matici A R m n, pak následující zobrazení A : R n R m je lineární A(x) := A x. Matice lineárního zobrazení Mějme lineární zobrazení A : V U, bázi E := (e,...,e n ) prostoru V a bázi F := (f,...,f m ) prostoru U. Vezměme v V a jeho souřadnice [v] E = (α,...,α n ) R n v bázi E, tj. v = α e + + α n e n. Vyjádřeme obraz A(v) U v bázi F [A(v)] F = [A(α e + + α n e n )] F = [α A(e ) + + α n A(e n )] F = ([A(e )] F,...,[A(e n )] F ) [v] }{{} E, =:A E,F kde A E,F R m n je matice lineárního zobrazení vzhledem k bázím E a F.

6 Lineární formy Definice Mějme vektorové prostory V a U. Lineární zobrazení A : V U je lineární forma, pokud U = R. Příklad: A(x) := a x = a x + a 2 x 2 je lineární forma na R x x 2.5

7 Lineární formy = aritmetické vektory Každý aritmetický vektor lze chápat jako lineární formu. Mějme vektor a R n, pak následující zobrazení A : R n R je lineární n A(x) := a x = a i x i. i= Vektor lineární formy Mějme lineární formu A : V R a bázi E := (e,...,e n ) prostoru V. Vezměme v V a jeho souřadnice [v] E = (α,...,α n ) R n v bázi E, tj. Vyjádřeme obraz A(v) R v = α e + + α n e n. A(v) = A(α e + + α n e n ) = α A(e ) + + α n A(e n ) = (A(e ),...,A(e n )) [v] }{{} E, =:a E kde a E R n je vektor lineární formy vzhledem k bázi E.

8 Bilineární formy Definice Mějme vektorový prostor V. Zobrazení B : V V R je bilineární forma, pokud pro libovolné a V. B (v) := B(v,a) je lineární forma na V a 2. B 2 (v) := B(a,v) je lineární forma na V. Příklad: B(x,y) := xy je bilineární forma na R y x

9 Bilineární formy = čtvercové matice Každou čtvercovou matici lze chápat jako bilineární formu. Mějme matici B R n n, pak následující zobrazení B : R n R n R je bilin. forma n n B(u,v) := u T B v = (B) ij v j. Matice bilineární formy Mějme bilineární formu B : V V R a bázi E := (e,...,e n ) prostoru V. Vezměme u,v V a jejich souřadnice [u] E = (α,...,α n ) R n, [v] E = (β,...,β n ) R n, tj. i= u i j= u = α e + + α n e n, v = β e + + β n e n. B(u,v) = B(α e + + α n e n,v) =. α B(e,v) + + α n B(e n,v) n n B(e,e )... B(e,e n ) 2. = α i β j B(e i,e j )= [u] T E..... [v] E, i= j= B(e n,e )... B(e n,e n ) }{{} =:B E kde B E R n n je matice bilineární formy vzhledem k bázi E.

10 Kvadratické formy Definice Mějme vektorový prostor V a bilineeární formu B : V V R. Zobrazení Q : V R je kvadratická forma, pokud Q(v) := B(v,v). Příklady kvadratických forem na R Q(x) := x 2 Q(x) := x 2 Q(x) := Q(x) x Q(x) x Q(x) x

11 Kvadratické formy Příklady kvadratických forem na R 2 Q(x) := (x ) 2 + (x 2 ) 2 Q(x) := (x ) 2 Q(x) := (x ) 2 (x 2 ) 2 Příklad: Q(x) := x T Q x, kde Q R n n je kvadratická forma, nebot Q(x) = B(x,x), kde B(x,y) := x T Q y je bilineární forma. Jsou kvadratické formy libovolné čtvercové matice?

12 Kvadratické formy = symetrické matice Antisymetrická bilineární forma dává nulovou kvadratickou formu. Mějme vektorový prostor V a antisymetrickou bilineární formu B A : V V R, pak a tedy v V : B A (v,v) = B A (v,v), B A (v,v) =. Matice kvadratické formy je vždy symetrická. Mějme bilineární formu B : V V R, pak příslušná kvadratická forma je určena pouze symetrickou částí Q(v) := B(v,v) = B S (v,v) + B A (v,v) = B }{{} S (v,v). = Mějme dále bázi E := (e,...,e n ) prostoru V a vektor v V, pak Q(v) = [v] T E B E [v] E = [v] T E (B S E + B A E) [v]e = = [v] T E B }{{} S E [v] E + [v] T E B A E [v] E. }{{} =:Q E =

13 Kvadratické formy = symetrické matice Matice kvadratické formy Mějme bilineární formu B : V V R, k ní příslušející kvadratickou formu Q(v) := B(v,v) = B S (v,v) a bázi E := (e,...,e n ) prostoru V. Pak pro každý v V platí: Q(v) = [v] T E Q E [v] E, kde Q E := B S E = ( ) BE + B T E 2 je matice kvadratické formy v bázi E. Příklad: Najděte matici kvadratické formy Q(x) := (x ) 2 x x 2 2(x 2 ) 2 na R 2 v kanonické bázi. Příslušná bilineární forma je např. B(x,y) := x y x y 2 2x 2 y 2, její matice v kanonické bázi E := ((, ), (, )) je ( ) B E = 2 a matice kvadratické formy tedy je Q E = 2 ( BE + B T E ( ) ) + = 2 = 2 2 ( ) 2 2 2

14 Kvadratické formy = symetrické matice Příklad: Najděte matici kvadratické formy Q(x) := (x ) 2 x x 3 (x 2 ) 2 + x 2 x 3 + (x 3 ) 2 na R 3 v kanonické bázi. Příslušná bilineární forma je např. B(x,y) := x y x y 3 x 2 y 2 + x 2 y 3 + x 3 y 3, její matice v kanonické bázi E := ((,, ), (,, ), (,, )) je B E = a matice kvadratické formy tedy je Q E = ( ) BE + B T E = =

15 Kvadratické formy = symetrické matice Příklad: Najděte matici kvadratické formy Q(p(x)) := (p(x))2 dx na P v kanonické bázi E := (, x). Příslušná bilineární forma je např. B(p(x),q(x)) := p(x)q(x)dx. Napočítejme si její matici v kanonické bázi E := (, x): a tedy B(, ) = B(x, ) = což je zároveň i matice kvadratické formy. dx =, B(,x) = x dx = 2 x dx = 2, B(x,x) = x x dx = 3, ( ) B E = = Q E, 2 2 3

16 Klasifikace kvadratických forem Kladné, záporné, neurčité formy Q(x) := (x ) 2 + (x 2 ) 2 Q(x) := (x ) 2 (x 2 ) 2 Q(x) := (x ) 2 (x 2 ) 2 pozitivně definitní x : Q(x) > negativně definitní x : Q(x) < indefinitní x : Q(x) >, y : Q(y) <

17 Nezáporné, nekladné formy Klasifikace kvadratických forem Q(x) := (x ) 2 Q(x) := (x ) 2 pozitivně semidefinitní x : Q(x), y : Q(y) = negativně semidefinitní x : Q(x), y : Q(y) =

18 Klasifikace kvadratických forem Definice Mějme vekt. prostor V. Řekneme, že kvadratická forma Q : V R je pozitivně definitní, pokud v V \ {} : Q(v) >, negativně definitní, pokud v V \ {} : Q(v) <, indefinitní, pokud v V : Q(v) > a w V : Q(w) < pozitivně semidefinitní, pokud v V : Q(v) a w V \ {} : Q(w) =, negativně semidefinitní, pokud v V : Q(v) a w V \ {} : Q(w) =.

19 Klasifikace kvadratických forem Klasifikace kvadratických forem = klasifikace symetrických matic Mějme vektorový prostor V o dimenzi n, bázi E prostoru V a kvadratickou formu Q : V R. Pro v V označme α := [v] E R n, pak platí Q(v) = α T Q E α =: Q(α) a klasifikace kvadratické formy Q : V R je shodná s klasifikací kvadratické formy Q, tedy s klasifikací matice Q E. Řekneme, že symetrická matice Q E je pozitivně (negativně) definitní, pokud indefinitní, pokud α R n \ {} : α T Q E α > (<), α R n : α T Q E α > a β R n : β T Q E β <, pozitivně (negativně) semidefinitní, pokud α R n : α T Q E α ( ) a β Rn \ {} : β T Q E β =.

20 Klasifikace kvadratických forem = klasifikace symetrických matic Klasifikace diagonálních matic Má-li kvadratická forma v nějaké bázi E diagonální matici, tj. d... Q E = D = d ,... d nn pak pro libovolný v V, resp. pro jeho souřadnice [v] E =: (α,...,α n ) R n platí n Q(v) = [v] T E D [v] E = d ii (α i ) 2 a znaménko Q(v) je určeno znaménky diagonálních prvků. I := {, 2,...,n}. D je pozitivně (negativně) definitní, pokud i I : d ii > (<), indefinitní, pokud i,j I : d ii >, d jj <, pozitivně (negativně) semidefinitní, pokud i I : d ii ( ) a j I : d jj =, i=

21 Klasifikace kvadratických forem = klasifikace symetrických matic Příklady: Klasifikujte následující diagonální matice (kvadrat. forem) a) b) c) D := je indefinitní (neurčitá), nebot d = > a d 22 = <. D := 2 je negativně semidefinitní (nekladná), nebot d, d 22, ale d 33 =. D := 2 3 je pozitivně definitní (kladná), nebot d, d 22,d 33 >.

22 Klasifikace kvadratických forem = klasifikace symetrických matic Kongruentní matice Mějme vektorový prostor V a jeho báze E := (e,...,e n ) a F := (f,...,f n ). Uvažujme identické zobrazení I : V V a jeho matici vzhledem k bázím E a F označme T := I E,F. Ta realizuje přechod mezi bázemi v V : [v] F = T [v] E. Mějme dále kvadratickou formu Q : V R. Matice Q E a Q F jsou kongruentní: Q(v) = [v] T F Q F [v] F = (T [v] E ) T Q F (T [v] E ) = [v] T E (T T Q F T ) [v] }{{} E. =Q E Klasifikace ostatních symetrických matic kongruencí na diagonální Mějme kvadratickou formu Q : V R. Hledáme bázi E prostoru V tak, aby v ní byla matice kvadratické formy diagonální, tj. Q(v) = [v] T E Q E [v] E, kde Q E je diagonální matice.

23 Klasifikace kvadratických forem = klasifikace symetrických matic Algoritmus: Gaussova eliminace + kongruentní transformace. Začneme s maticí kvadratické formy Q F v libovolné bázi F a provedeme Gaussovu eliminaci bez záměny řádků (Q F I) Gauss bez záměn řádků (U T T ) T T Q F = U, kde U je horní trojúhelníková a T T dolní trojúhelníková. 2. Následující kongruentní transformace nám dá diagonáĺní matici D := Q E := T T Q F T= U T. Oba kroky lze sjednotit. Rozepišme Gaussovu eliminaci T T = T n T 2 T, pak Q E = T n T 2 (T ) Q F T T T T 2 T T n. }{{} } kongruence {{ } } kongruence 2 {{ } kongruence n

24 Klasifikace kvadratických forem = klasifikace symetrických matic Příklad: Klasifikujte ( ) 2. 2 Ad. ( 2 2 Ad 2. ) D := U L T = r 2 :=r 2 2r ( ) 2 5 a jelikož d >, d 22 <, matice je indefinitní. ( ( ) 2 = ) =: (U L), ( ), 5 Oba kroky lze sjednotit takto: ( ) ( ) ( ) r 2 :=r 2 2r 5 s 2 :=s 2 2s 5 }{{} kongruence

25 Klasifikace kvadratických forem = klasifikace symetrických matic 4 2 Příklad: Klasifikujte r 2:=2r 2 r 4 s 2:=2s 2 s 8 4 r 2 3 :=4r 3 r s :=4s 3 s 4 28 }{{} kongruence , r 3 :=2r 3 +r 2 s 52 3 :=2s 3 +s 2 4 }{{} kongruence 2 a jelikož d, d 22,d 33 >, matice je pozitivně definitní. r 3 :=2r 3 +r 2

26 Klasifikace kvadratických forem = klasifikace symetrických matic 2 Příklad: Klasifikujte r := r +r s := s +s 2 3 výroba pivota }{{} kongruence r 2 :=r 2 +r 4 s 2:=s 2 +s 4 r 3 :=r 3 r s 3 3 :=s 3 s 3 }{{} kongruence 2 r 2 :=r 2 +r r 3 :=r 3 r r 3 :=4r 3 +r 4 4, r 3 :=4r 3 +r s 3 :=4s 3 +s 44 }{{} kongruence 3 a jelikož d < a d 22 >, matice je indefinitní.

27 Gaussova eliminace pro symetrické matice Choleského (LDL T ) rozklad Uvažujme soustavu se symetrickou matici A x = b. Po kongruentních transformacích dostáváme ekvivalentní soustavu s diagonální maticí D = T T A T: =T {}} T =T {{}}{ T } n T {{ 2 T A } T T T T 2 T T n y }{{} =U =x = } T n T {{ 2 T b }. =:c Odtud vidíme, že řešení soustavy lze provést v následujících krocích:. (A b I) 2. D y = c y, 3. x := T y. Gauss bez záměn řádků (U c T T ), D := U T

28 Gaussova eliminace pro symetrické matice Příklad: Řešte soustavu Choleského (LDL T ) rozkladem. ( ) T T = ( ) 2 5 ( 2 r 2 :=r 2 2r ( ), T = 2 s 2 :=s 2 2s ) ( 5 ), y =, y 2 =,, x = y 2y 2 =,x 2 = y 2 =.

29 Gaussova eliminace pro symetrické matice Příklad: Řešte soustavu Choleského (LDL T ) rozkladem T T = r 2:=r 2 +r r 3 :=r 3 r r 3 :=r 3 r s 2:=s 2 +s s 3 :=s 3 s s 3 :=s 3 s 2, T = x := y =, x := x + x 2 x 3 = 2, x 2 := y 2 y 3 = 2, x 2 := x 2 = 2 x 3 := y 3 =, x 3 := x 3 =., y =,, y 2 = 3 y 3 =

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text

Bardziej szczegółowo

(A B) ij = k. (A) ik (B) jk.

(A B) ij = k. (A) ik (B) jk. Příklady z lineární algebry Michael Krbek 1 Opakování 1.1 Matice, determinanty 1. Je dána matice 1 2 0 M = 3 0 1. 1 0 1 Určete M 2, MM T, M T M a vyjádřete M jako součet symetrické a antisymetrické matice!

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě

Bardziej szczegółowo

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

Lineární algebra II, přednáška Mgr. Milana Hladíka, Ph.D.

Lineární algebra II, přednáška Mgr. Milana Hladíka, Ph.D. Lineární algebra II, přednáška Mgr. Milana Hladíka, Ph.D. Poznámky sepsal Robert Husák Letní semestr 29/21 Obsah 1 Permutace 1 2 Determinant 3 3 Polynomy 7 4 Vlastní čísla 9 5 Positivně definitní matice

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

Co byste měl/a zvládnout po 1. týdnu

Co byste měl/a zvládnout po 1. týdnu Co byste měl/a zvládnout po 1. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: Lineární algebra, ZS 2017 Zvládnutá látka po 1. týdnu 1/5 Upozornění Řada z následujících

Bardziej szczegółowo

Tvarová optimalizace pro 3D kontaktní problém

Tvarová optimalizace pro 3D kontaktní problém Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik

Bardziej szczegółowo

(13) Fourierovy řady

(13) Fourierovy řady (13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx

Bardziej szczegółowo

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy

algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy 1 Úvodem Prezentace předmětu VMP je vytvořena pro nový předmět, který si klade za cíl seznámit studenty se základy lineární algebry a se základy numerické matematiky. Zejména v prvním tématu budeme pracovat

Bardziej szczegółowo

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2. Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5

Bardziej szczegółowo

Lineární algebra - iterační metody

Lineární algebra - iterační metody Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je

Bardziej szczegółowo

Matematické modelování elmg. polí 2. kap.: Magnetostatika

Matematické modelování elmg. polí 2. kap.: Magnetostatika Matematické modelování elmg. polí 2. kap.: Magnetostatika Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/ Text byl

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

Numerické metody minimalizace

Numerické metody minimalizace Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace

Bardziej szczegółowo

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra. Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární

Bardziej szczegółowo

Matematika 2, vzorová písemka 1

Matematika 2, vzorová písemka 1 Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

(a). Pak f. (a) pro i j a 2 f

(a). Pak f. (a) pro i j a 2 f Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D.   pf.jcu.cz Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36 (1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,

Bardziej szczegółowo

MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.

MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny. MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:

Bardziej szczegółowo

Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

Robotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D.

Robotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D. Robotika Kinematika 13. dubna 2017 Ing. František Burian Ph.D., Řízení stacionárních robotů P P z q = f 1 (P) q z Pøímá úloha q U ROBOT q P R q = h(u) P = f (q) DH: Denavit-Hartenberg (4DOF/kloub) A i

Bardziej szczegółowo

Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe

Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję

Bardziej szczegółowo

heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha

heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha Pořadové testy v regresi při rušivé heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha Robust 2014, Jetřichovice 22.1.2014 Radim Navrátil,

Bardziej szczegółowo

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets

Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Pavel Boček, Karel Vrbenský:

Bardziej szczegółowo

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3 NUMERICKÉ METODY.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,

Bardziej szczegółowo

Univerzita Palackého v Olomouci

Univerzita Palackého v Olomouci Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

Základy obecné algebry

Základy obecné algebry . Základy obecné algebry Ústav matematiky, Fakulta strojního inženýrství VUT v Brně, 2013 Obsah 1 Algebraické struktury 3 1.1 Operace a zákony................................. 3 1.2 Některé důležité typy

Bardziej szczegółowo

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, derivace

Funkce více proměnných: limita, spojitost, derivace Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura

Bardziej szczegółowo

Základní elektrotechnická terminologie,

Základní elektrotechnická terminologie, Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1

Bardziej szczegółowo

Kapitola 2. Nelineární rovnice

Kapitola 2. Nelineární rovnice Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné

Bardziej szczegółowo

Poznámky z matematiky

Poznámky z matematiky Poznámky z matematiky Verze: 6. října 04 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu

Bardziej szczegółowo

Katedra fyziky. Dvourozměrné sigma modely. Two-Dimensional Sigma Models

Katedra fyziky. Dvourozměrné sigma modely. Two-Dimensional Sigma Models ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta jaderná a fyzikálně inženýrská Katedra fyziky Obor: Matematické inženýrství Zaměření: Matematická fyzika Dvourozměrné sigma modely Two-Dimensional Sigma Models

Bardziej szczegółowo

nejsou citlivé na monotónní transformace vstupů, dost dobře se vyrovnají s nerelevantními vstupy.

nejsou citlivé na monotónní transformace vstupů, dost dobře se vyrovnají s nerelevantními vstupy. Přednosti rozhodovacích stromů Přirozeně pracují s kategoriálními i spojitými veličinami, přirozeně pracují s chybějícími hodnotami, jsou robustní vzhledem k outliers vybočujícím pozorováním, nejsou citlivé

Bardziej szczegółowo

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Lukáš Perůtka Hledání optimálních strategií číselného síta Katedra algebry Vedoucí diplomové práce: Prof. RNDr. Aleš Drápal, CSc.,

Bardziej szczegółowo

Cauchyova úloha pro obyčejnou diferenciální rovnici

Cauchyova úloha pro obyčejnou diferenciální rovnici Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

Matematická analýza 2. Kubr Milan

Matematická analýza 2. Kubr Milan Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................

Bardziej szczegółowo

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T

Bardziej szczegółowo

Periodický pohyb obecného oscilátoru ve dvou dimenzích

Periodický pohyb obecného oscilátoru ve dvou dimenzích Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta

Bardziej szczegółowo

ń Ó ź Ę Ę ń ń ĘĘ ĘĘ Ą ĄĘ Ę Ę ć Ą Ę Ę Ę Ń ń Ń ń ń Ż Ś ń ń ć Ż Ó ń Ś ń ń Ś Ś Ą Ż ć ń ń ń Ą Ó Ę ń Ó Ź ń Ó Ś Ó Ś ĘĘ ń Ż Ó Ó Ó ń Ż Ś ź Ś Ę Ę Ś Ę Ę Ę Ę ń Ę Ę Ę Ń ń ń ć ź Ę Ń ń Ń Ż ć ć ń ń Ę Ę ń Ż ń Ę Ę ć Ę ń

Bardziej szczegółowo

Ą ń ń ć Ę Ę ć ć ń ń Ż ń ń Ą Ą ń Ż Ń Ż ć Ą ń ŚĆ ć Ę Ę Ą ń Ś ń ć Ę Ą ń Ę ń ń ń ń ć ń ń Ś Ź ń ć ć ń ć ń Ś Ż Ę Ń ń ń ń ń ń ć Ń Ę Ę Ę Ę Ę ńń ź ĄĘ Ę ź ń Ąń Ę Ę Ę Ź Ę Ę Ą Ś Ę Ę ć Ś Ą Ń ć ń ń ć Ś ć Ń Ó ń ń ć

Bardziej szczegółowo

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky

Bardziej szczegółowo

Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7

Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7 Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí

Bardziej szczegółowo

Poslední úprava dokumentu: 7. května 2019

Poslední úprava dokumentu: 7. května 2019 Poslední úprava dokumentu: 7. května 2019 Budu velmi vděčný za upozornění na případné chyby a překlepy. 1 Podmíněné hustoty, podmíněné momenty Z teorie pravděpodobnosti (NMSA 333 víme, že podmíněná střední

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Úvod, opakování, soustavy sil Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.broovsky@vsb.c WWW:

Bardziej szczegółowo

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace) Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice

Bardziej szczegółowo

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých

Bardziej szczegółowo

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Bardziej szczegółowo

Hana Marková Pseudospektrum matice

Hana Marková Pseudospektrum matice Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Hana Marková Pseudospektrum matice Katedra numerické matematiky Vedoucí diplomové práce: Doc. RNDr. Vladimír Janovský, DrSc. Studijní

Bardziej szczegółowo

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17

Bardziej szczegółowo

Numerické metody a statistika

Numerické metody a statistika Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 2016-2017 ( ) Numerické metody a statistika 2016-2017 1 / 17 Číslo předmětu: 714-0781/02 Rozsah: 2+2 Hodnocení: 6 kreditů Přednáší: Radek Kučera

Bardziej szczegółowo

CHEMIE PRO NEJLEPŠÍ. Masarykova Universita, Brno

CHEMIE PRO NEJLEPŠÍ. Masarykova Universita, Brno EMIE PR EJLEPŠÍ Lukáš Žídek Masarykova Universita, Brno Proteiny Globulární Fibrilární Membránové euspořadané Struktura proteinů Struktura proteinů Struktura proteinů Struktura Konfigurace Konformace -

Bardziej szczegółowo

Ó Ó Ź Ó ź Ń Ó Ó ź Ł Ó Ę Ę Ó Ę Ę Ź Ę Ó Ą ć Ł Ą Ę ć Ę Ę Ę ć Ę Ó ć Ł ź ć Ź ć Ę Ę Ę ć Ą Ń ć ć ć Ż ć ć ŚĆ Ó Ź ć Ę Ź ć Ś Ż ć ć Ź ć Ą ć ĘĘ Ą Ó ć ź Ę Ź Ź ć Ę ć ć ć Ź ć ć Ź Ó ć Ó Ź ć ć Ź ź Ó ć ć Ó ć ć Ż ź ć Ź

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Bardziej szczegółowo

David Nádhera Kontinuace implicitně zadané křivky

David Nádhera Kontinuace implicitně zadané křivky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE David Nádhera Kontinuace implicitně zadané křivky Katedra numerické matematiky Vedoucí bakalářské práce: Doc. RNDr. Vladimír Janovský

Bardziej szczegółowo

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument) KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A

Bardziej szczegółowo

Diferenciální rovnice základní pojmy. Rovnice se

Diferenciální rovnice základní pojmy. Rovnice se Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Bardziej szczegółowo

DFT. verze:

DFT. verze: Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály

Bardziej szczegółowo

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové

Bardziej szczegółowo

Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś

Bardziej szczegółowo

Ź Ę Ę Ś Ś Ś ć Ę ć Ś ć Ź Ż Ś ć Ż Ź Ż Ą Ż Ę Ś Ź Ę Ź Ż Ó Ś ć ć Ś Ż Ć ź Ś Ń Ź ć Ó ź Ś Ń ź Ń Ź Ź ź Ż Ź Ź Ź Ź Ż Ź ć Ż Ę ź Ę ź ć Ń ć ć ć ć Ź Ę Ą ć Ę ć Ń ć ć Ź Ż ć Ó Ó Ó Ż ć Ó Ż Ę Ą Ź Ó Ń Ł ź ź Ń ć ć Ż ć Ś Ą

Bardziej szczegółowo

Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ

Bardziej szczegółowo

Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż

Bardziej szczegółowo

Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?

Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))? Ondřej Pokora M5120 Lineární statistické modely I poznámky do cvičení podzim 2011 1 / 36 12.12.2011 Maximálně věrohodné odhady Náhodný výběr X 1,..., X n rosahu n z rozdělení pravděpodobnosti P: X i P

Bardziej szczegółowo