Edita Pelantová, katedra matematiky / 16
|
|
- Edyta Czerwińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010
2 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a (xy)z = x(yz) (asociativní zákon) Axiom 3. x(y + z) = xy + xz (distributivní zákon) Axiom 4. Existuje prvek 0 R takový, že x + 0 = x pro každé x R. Axiom 5. Pro každé x R existuje prvek v R (označovaný jako x) takový, že x + ( x) = 0 Axiom 6. Existuje prvek 1 R různý od 0 takový, že 1.x = x pro každé x R. Axiom 7. Pro každé x 0 existuje prvek v R (označovaný jako x 1 ) takový, že xx 1 = 1. seminář současné matematiky, září
3 Axiomy reálných čísel Uspořádání na M Relace na množině M se nazývá uspořádání, když má následující tři vlastnosti: pro každé x M platí x x jestliže x y a y x, pak x = y jestliže x y a y z, pak x z (reflexivita) (antisymetrie) (tranzitivita) seminář současné matematiky, září
4 Axiomy reálných čísel Axiomy uspořádání Axiom 8. Pro každé x R platí bud x y nebo y x. Axiom 9. Když x y, pak x + z y + z pro každé z R. Axiom 10. Když x y a 0 z, pak xz yz. seminář současné matematiky, září
5 Axiomy reálných čísel Axiom úplnosti seminář současné matematiky, září
6 Axiomy reálných čísel Axiom úplnosti Řekneme, že množina A R je omezená shora, když existuje K R nazývané horní závora, že pro všechny x A platí x K. Množinu horních závor množiny A označujeme A. seminář současné matematiky, září
7 Axiomy reálných čísel Axiom úplnosti Řekneme, že množina A R je omezená shora, když existuje K R nazývané horní závora, že pro všechny x A platí x K. Množinu horních závor množiny A označujeme A. Řekneme, že číslo a A R je minimem množiny A, když pro všechny x A platí a x. seminář současné matematiky, září
8 Axiomy reálných čísel Axiom úplnosti Řekneme, že množina A R je omezená shora, když existuje K R nazývané horní závora, že pro všechny x A platí x K. Množinu horních závor množiny A označujeme A. Řekneme, že číslo a A R je minimem množiny A, když pro všechny x A platí a x. Axiom úplnosti Množina horních závor A má minimum pro každou neprázdnou shora omezenou množinu A seminář současné matematiky, září
9 Dedekindovy řezy, 1872 Uvažujeme těleso Q s obvyklým uspořádaním a operacemi + a. Definice řezu Uspořádanou dvojici (A, B) nazveme Dedekindovým řezem, když 1 A Q a B Q, 2 A B = Q, 3 ( a A)( b B)(a < b), 4 A nemá maximum, tj. ke každému a A existuje a A tak, že a < a. Množinu všech Dedekindových řezů označíme R. seminář současné matematiky, září
10 Uspořádání Dedekindových řezů ostře větší (A 1, B 1 ) (A 2, B 2 ), když ( a 2 A 2 )( b 1 B 1 )(b 1 < a 2 ). Definice uspořádání (A 1, B 1 ) (A 2, B 2 ), když (A 1, B 1 ) = (A 2, B 2 ) nebo (A 1, B 1 ) (A 2, B 2 ) Nutno ověřit pro relaci reflexivitu symetrii transitivitu seminář současné matematiky, září
11 Sčítání Dedekindových řezů Konstrukce by měla zachovat Q R. Jak to formálně zařídit? Definice součtu (A 1, B 1 ) (A 2, B 2 ) := (A, B), kde A := A 1 +A 2 = {a 1 +a 2 a 1 A 1, a 2 A 2 } a B := {b b Q a b / A} Který řez má roli nulového prvku? Který řez je opačný k danému řezu? Definice součinu (A 1, B 1 ) (A 2, B 2 ) :=? seminář současné matematiky, září
12 Splnění axiomu úplnosti Necht M R je shora omezená množina. Označme (C, D) její horní závoru. Tedy platí (A, B) (C, D) pro každé (A, B) M. Definice suprema E := A a F := {x Q x / E}. (A,B) M Nutno ověřit, že i) (E, F ) je řez, ii) (E, F ) je horní závora množiny M a iii) (E, F ) je nejmenší horní závora množiny M. seminář současné matematiky, září
13 Cantorova konstrukce reálných čísel, 1871 Uvažujeme těleso Q s obvyklým uspořádaním a operacemi + a. Označme B množinu všech cauchyovských posloupnosti na Q, tedy posloupnosti (a n ) n N takových, že a n Q pro každé n N a navíc ( ε > 0)( n 0 N)( n, m N, n, m > n 0 )( a n a m < ε) Definice ekvivalence na B Necht (a n ) n N, (b n ) n N B. Řekneme, že (a n ) (b n ), pokud ( ε > 0)( n 0 N)( n N, n > n 0 )( a n b n < ε). Nutno ověřit, že je ekvivalence (nutné využít trojúhelníkovou nerovnost).
14 Zúplnění Q Ekvivalence na množině rozděĺı množinu do navzájem disjunktních tříd ekvivalence, sjednocení všech tříd dá celou původní množinu. Definice R Třídu ekvivalence na množině B nazveme reálné číslo; množinu reálných čísel označíme R. Nutno definovat, a uspořádání.
15 a Definice Necht A, B R. Zvolme (a n ) A a (b n ) B. Pak (a n + b n ) je cauchyovská posloupnost s racionálními prvky. Oznčme C třídu ekvivalence, do které (a n + b n ) patří. Klademe A B = C. Ukázat nezávislost C na volbě (a n ) A a (b n ) B. Co je nulový prvek? Co je opačný prvek? Definice???? Ověřit všechny axiomy tělesa.
16 uspořádání Ostře větší Varianta 1 Necht A, B R a A B. Řekneme, že A B, když ( )( )( ) (a n ) A (b n ) B n 0 N )( n > n 0 )(a n < b n Ostře větší Varianta 2 Necht A, B R a A B. Řekneme, že A B, když ( )( )( )( ) ε > 0 (a n ) A (b n ) B n 0 N )( n > n 0 )(a n + ε < b n Definice uspořádání???? Ověřit všechny axiomy uspořádání. Ověřit platnost axiomu úplnosti.
17 Kolik různých konstrukcí reálných čísel existuje? Věta Každé dvě struktury R 1, 1, 1, 1 a R 2, 2, 2, 2, které splňují axiomy 1-11 jsou navzájem izomorfní, tj. existuje bijekce φ : R 1 R 2 taková, že pro všechny x, y R 1 platí: φ(x 1 y) = φ(x) 2 φ(y), φ(x 1 y) = φ(x) 2 φ(y), x 1 y φ(x) 2 φ(y). Co je izomorfizmus mezi Cantorovými a Dedekindovými reálnými čísly?
18 poučení Bůh je jen jeden
19 poučení Bůh je jen jeden až na izomorfizmus
20 Úlohy pro samostatnou práci Definovat násobení Dedekindových řezů, ukázat, ze to je skutečně řez, ověřit existenci jednotkového prvku a inverzního prvku.
21 Úlohy pro samostatnou práci Definovat násobení Dedekindových řezů, ukázat, ze to je skutečně řez, ověřit existenci jednotkového prvku a inverzního prvku. Pro Dedekindovy řezy ověřit axiomy uspořádání.
22 Úlohy pro samostatnou práci Definovat násobení Dedekindových řezů, ukázat, ze to je skutečně řez, ověřit existenci jednotkového prvku a inverzního prvku. Pro Dedekindovy řezy ověřit axiomy uspořádání. Ověřit platnost axiomu úplnosti v Cantorově konstrukci
23 Úlohy pro samostatnou práci Definovat násobení Dedekindových řezů, ukázat, ze to je skutečně řez, ověřit existenci jednotkového prvku a inverzního prvku. Pro Dedekindovy řezy ověřit axiomy uspořádání. Ověřit platnost axiomu úplnosti v Cantorově konstrukci Najít izomorfizmus mezi Cantorovými a Dedekindovými reálnými čísly.
24 Úlohy pro samostatnou práci Definovat násobení Dedekindových řezů, ukázat, ze to je skutečně řez, ověřit existenci jednotkového prvku a inverzního prvku. Pro Dedekindovy řezy ověřit axiomy uspořádání. Ověřit platnost axiomu úplnosti v Cantorově konstrukci Najít izomorfizmus mezi Cantorovými a Dedekindovými reálnými čísly. Rešerše o jiných konstrukcích reálných čísel (Eudoxova reálná čísla bez použití racionálních), popř. důkaz jedoznačnosti R.
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
1 Dedekindovy řezy (30 bodů)
Pokročilá matematická analýza úlohy pro zimní semestr Dedekindovy řezy ( bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval
1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A
1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
6 Dedekindovy řezy (30 bodů)
Pokročilá lineární algebra 3. série 6 Dedekindovy řezy (3 bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval Dedekind
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice
Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se
Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
ÚVOD DO ARITMETIKY Michal Botur
ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.
1 Kapitola 1 Množiny 1.1 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky. Pro známé množiny
Základy obecné algebry
. Základy obecné algebry Ústav matematiky, Fakulta strojního inženýrství VUT v Brně, 2013 Obsah 1 Algebraické struktury 3 1.1 Operace a zákony................................. 3 1.2 Některé důležité typy
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
02GR - Odmaturuj z Grup a Reprezentací
02GR - Odmaturuj z Grup a Reprezentací podle přednášky doc. Ing. Goce Chadzitaskose, CSc 27. června 2019 Obsah 1 Grupy 4 1.1 Algebraický koncept................................ 4 1.2 Vlastnosti grup...................................
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
NDMI002 Diskrétní matematika
NDMI002 Diskrétní matematika prof. RNDr. Martin Loebl, CSc. ZS 2016/17 Obsah 1 Množiny 2 1.1 Relace....................................... 2 1.2 Ekvivalence.................................... 3 1.3 Částečné
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7
Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí
Nekomutativní Gröbnerovy báze
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Kombinatorika a komplexní aritmetika
a komplexní aritmetika katedra matematiky, FEL ČVUT v Praze, http://math.feld.cvut.cz/ Jan Hamhalter Datum Komplexní čísla, kombinatorika 1/56 Historie: Zavedení komplexních čísel bylo motivováno snahou
Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
Univerzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita arlova v Praze Matematicko-fyzikální fakulta BAALÁŘSÁ PRÁCE Matěj Novotný Operátory skládání na prostorech funkcí atedra matematické analýzy Vedoucí bakalářské práce: doc. RNDr. Jiří Spurný
MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.
MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy
1 Úvodem Prezentace předmětu VMP je vytvořena pro nový předmět, který si klade za cíl seznámit studenty se základy lineární algebry a se základy numerické matematiky. Zejména v prvním tématu budeme pracovat
Kompaktnost v neklasických logikách
Univerzita Karlova v Praze Filozofická fakulta Katedra logiky Diplomová práce Petra Ivaničová Kompaktnost v neklasických logikách Compactness in non-classical logics Praha, 2010 Vedoucí práce: Prof. RNDr.
Univerzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Lukáš Perůtka Hledání optimálních strategií číselného síta Katedra algebry Vedoucí diplomové práce: Prof. RNDr. Aleš Drápal, CSc.,
Minimalizace automatů. Z. Sawa (VŠB-TUO) Teoretická informatika 2. října / 53
Minimlizce utomtů Z. Sw (VŠB-TUO) Teoretická informtik 2. říjn 2018 1/ 53 Minimlizce konečného utomtu Předpokládejme deterministický konečný utomt A = (Q,Σ,δ,q 0,F). Definice Stvy q,q Q nzýváme ekvivlentní,
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Chyby, podmíněnost a stabilita
Chyby, podmíněnost a stabilita Numerické metody 4. března 2018 FJFI ČVUT v Praze 1 Úvod Čísla v počítači Chyby Citlivost Stabilita 1 Čísla v počítači Čísla v počítači - Celá čísla jméno bity rozsah typy
Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30
Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
(A B) ij = k. (A) ik (B) jk.
Příklady z lineární algebry Michael Krbek 1 Opakování 1.1 Matice, determinanty 1. Je dána matice 1 2 0 M = 3 0 1. 1 0 1 Určete M 2, MM T, M T M a vyjádřete M jako součet symetrické a antisymetrické matice!
Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets
Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Pavel Boček, Karel Vrbenský:
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Pracovní listy. Stereometrie hlavního textu
v tomto dodatu jsou sebrána zadání všech úloh řešených v aitolách Planimetrie a tereometrie hlavního textu slouží ta jao racovní listy samostatnému rocvičení uvedených úloh Zracoval Jiří Doležal 1 eznam
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Základní pojmy pravděpodobnosti prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek,
Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 1/20
Lineární kódy, část 1 Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 7.1.2016: Lineární kódy, část 1 1/20 Dnešní přednáška 1 Základní myšlenky
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
Úvod do Informatiky (FI:IB000)
Fakulta Informatiky Masarykova Univerzita Úvod do Informatiky (FI:IB000) Doc. RNDr. Petr Hliněný, Ph.D. hlineny@fi.muni.cz 15. března 2010 Obsažný a dobře přístupný úvod do nezbytných formálních matematických
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky
Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156
Vysvětlování modelovacích chyb Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Co nás čeká 1 Konjunktivní dotazy 2 Vyhodnocování konjunktivních dotazů v jazyce ALC
VŠB-Technická univerzita Ostrava
VŠB-Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky Využití metod nehladké optimalizace v tvarové optimalizaci Ing. Petr Beremlijski Obor: Informatika a
Zobecněné metriky Různé poznámky 12. METRIZACE. Miroslav Hušek, Pavel Pyrih KMA MFF UK. 12. Poznámky
12. METRIZACE Poznámky Miroslav Hušek, Pavel Pyrih KMA MFF UK 2009 Jak bylo zmíněno v úvodních kapitolách tohoto textu, axiómy metrik (nebo pseudometrik) se často oslabují, aby bylo možné popsat další
Kvalitativní analýza nelineárních rovnic typu reakce-difuze
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Diplomová práce Kvalitativní analýza nelineárních rovnic typu reakce-difuze Plzeň, 2018 Bc. Martin Kaisler cistylist listzadani1
Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Stručné poznámky z MA4 LS 2011/2012 Proseminář z matematické analýzy Zapisovatelé: Zúčastnění posluchači Přednášející: Mgr. Robert Šámal, Ph.D.
Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.
Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010
Karel Vostruha. evolučních rovnic hyperbolického typu
Univerzita Karlova v Praze Matematicko-fyzikální fakulta Diplomová práce Karel Vostruha Asymptotické chování nelineárních evolučních rovnic hyperbolického typu Katedra matematické analýzy Vedoucí diplomové
Matematická analýza 2. Kubr Milan
Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Hana Marková Pseudospektrum matice
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Hana Marková Pseudospektrum matice Katedra numerické matematiky Vedoucí diplomové práce: Doc. RNDr. Vladimír Janovský, DrSc. Studijní
Matematika pro ekonomiku
Statistika, regresní analýza, náhodné procesy 7.10.2011 1 I. STATISTIKA Úlohy statistiky 2 1 Sestavit model 2 Odhadnout parametr(y) 1 Bodově 2 Intervalově 3 Testovat hypotézy Častá rozdělení ve statistice:
Západočeská univerzita v Plzni Fakulta aplikovaných věd. Katedra matematiky. Semestrální práce - matematika a byznys
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Obor: Matematické inženýrství Optimální výrobní program Semestrální práce - matematika a byznys Vypracovala: Radka Zahradníková
Obsah. Aplikovaná matematika I. Vlivem meze Vlivem funkce Bernhard Riemann. Mendelu Brno. 3 Vlastnosti určitého integrálu
Určitý integrál Aplikovná mtemtik I Dn Říhová Mendelu Brno Obsh Zákldní úloh integrálního počtu Definice určitého integrálu 3 Vlstnosti určitého integrálu 4 Výpočet určitého integrálu 5 Geometrické plikce
Funkce více proměnných: limita, spojitost, derivace
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více
Matematická analýza pro učitele (text je v pracovní verzi)
Matematická analýza pro učitele (text je v pracovní verzi) Martina Šimůnková 6. června 208 2 Obsah Úvod 7. Co je to funkce.......................... 7.2 Co budeme na funkcích zkoumat................. 9.2.
Mendelova univerzita v Brně user.mendelu.cz/marik
INŽNÝRSKÁ MATMATIKA Robert Mařík Mendelova univerzita v Brně marik@mendelu.cz user.mendelu.cz/marik ABSTRAKT. Učební text k mým přednáškám z předmětu Inženýrská matematika. Text je poměrně hutný a není
3.1 Derivace funkce Definice derivace Vlastnosti derivace Derivace elementárních funkcí... 49
Obsh Číselné množiny reálné funkce 5. Množin reálných čísel...................................... 5. Množin kompleních čísel.....................................3 Reálné funkce jedné reálné proměnné..............................
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/YDATA: Přednáška I. 5. říjen, / 37
Databázové systémy Relační Model Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci Petr Krajča (UP) KMI/YDATA: Přednáška I. 5. říjen, 2018 1 / 37 Organizační informace email: petr.krajca@upol.cz
Tabulky, součin tabulek
Výpočet marginálních podmíněných pravděpodobností v bayesovské síti Úmluva: Zajímáme se pouze o bayesovské sítě, jejichž graf je spojitý. Jinak uvažujeme každou komponentu zvlášť. Tabulky, součin tabulek
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Ústav teorie informace a automatizace. Tato prezentace je k dispozici na:
Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obsah přednášky Podmíněná pravděpodobnost,
Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
TGH08 - Optimální kostry
TGH08 - Optimální kostry Jan Březina Technical University of Liberec 11. dubna 2017 Problém profesora Borůvky elektrifikace Moravy Jak propojit N obcí vedením s minimální celkovou délkou? Zjednodušující
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
10 TEORIE KOLEKTIVNÍHO
10 TEORIE KOLEKTIVNÍHO ROZHODOVÁNÍ 420 SPOLEČENSKÁ VOLBA Jak spojit preference jednotlivců ve volbu celé společnosti Hlavní předmět zájmu: volby = základní pilíř demokracie Uvažujme n alternativ, z nichž