Energetické principy a variační metody ve stavební mechanice
|
|
- Maksymilian Matysiak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1
2 Přetvárná práce vnějších sil (1) F a b w w(b) Přetvárná práce v. s.: F df F dle Le d L e = F (w) d w, (1) L e = w 0 F (w) d w. (2) w dw w(b) 2
3 Přetvárná práce vnějších sil (2) Lineárně pružná odezva konstrukce: F F df dle Le w Clapeyronova věta: L e = 1 F w. (3) 2 dw w(b) 3
4 Přetvárná práce vnějších sil (3) Lagrangeova věta: Z (2) plyne: F = F (w) = d L e d w (4) a pro případ obecného počtu sil: F i = L e u i, (5) 4
5 Přetvárná práce vnějších sil (4) a F w Le * F b w(b) Doplňková (komplementární) přetvárná práce v. s.: d L e = w(f ) d F, (6) L e = F 0 w(f ) d F. (7) F df dle * Pro lineárně pružnou odezvu konstrukce: dw w(b) w L e = L e = 1 F w. (8) 2 5
6 Přetvárná práce vnějších sil (5) Přetvárná práce vnějších sil L e : práce vnějších sil vykonaná v průběhu zatěžování. Komplementární přetvárná práce vnějších sil L e : práce nutná k tomu, aby působení síly F na dráze w mělo statický charakter (možno představit jako práci brzdící síly působící proti F na dráze w); práce nutná k navrácení konstrukce do nedeformované polohy. L e + L e = F w. (9) 6
7 Přetvárná práce vnějších sil (6) Castiglianova věta: Z (7) plyne: w = w(f ) = d L e d F (10) a pro případ obecného počtu sil: w i = L e F i, (11) 7
8 Castiglianova metoda určování deformací Ze znalosti Castiglianovy věty w = d L e d F a znalosti Π i = L e lze psát: w i = Π i F i. (12) Dosazením za Π i a úpravou lze získat vztah pro výpočet deformace nosníku pod silou (bez vlivu práce posouvajících sil): w i = L 0 N E A N F i dx + L 0 M E I M F i dx (13) 8
9 Potenciální energie vnitřních sil Dokonale pružné těleso plně akumuluje energii odpovídající vykonané přetvárné práci: Π i = L e (14) 9
10 Přetvárná práce vnitřních sil Vnitřní síly brání deformaci, proto: L i = L e (15) a L i 0 (16) tedy: Π i = L i. (17) 10
11 Deformační energie (1) Příspěvek normálových napětí: σ dσ σ W* * dw dw W ε W σ = Wσ = ε 0 σ 0 σ(ε) d ε, (18) ε(σ) d σ. (19) Příspěvek smykových napětí: dε W ε = Wε = γ 0 τ 0 τ(γ) d γ, (20) γ(τ) d τ. (21) 11
12 Deformační energie (2) Lineárně pružná odezva materiálu: σ W* Příspěvek normálových napětí: σ dσ dw* dw W ε W σ = W σ = 1 2 σ ε. (22) Příspěvek smykových napětí: dε W ε = W ε = 1 2 τ γ. (23) 12
13 Deformační energie (3) Tedy potenciální energie vnitřních sil (pro lin. pružnou odezvu materiálu): Π i = = 1 2 (24) V (σ x ε x + σ y ε y + σ z ε z + τ xy γ xy + τ yz γ yz + τ zx γ zx ) d V. V maticovém zápisu: Π i = Π i = 1 2 V σt ε d V. (25) 13
14 Přímý prut (bez vlivu smyku) Normálové síly (σ = N A ): Π i,n = 1 2 V 1 E σ2 x dv = = 1 2 l N 2 E A d x (26) Momenty (σ = M y I ): Π i,m = 1 2 V 1 E σ2 x dv = = 1 2 l M 2 y E I d x (27) Tedy: Π i = 1 2 l N 2 E A d x l M 2 y E I d x (28) 14
15 Potenciální energie vnějších sil Potenciální energie vnějších sil (Π e ): a b F Π e = F w, (29) a pro obecné zatížení: F b w(b) Π e = n i=1 F i u i n i=1 d M j ϕ j c (30) q(x) w(x) d x. Obecný stav napjatosti tělesa: Π e = V XT u d V s pt u d S. (31) 15
16 Potenciální energie systému (1) Potenciální energie vnějších sil (Π e ): Π e = (L e + L e). (32) Při lineárně pružné odezvě materiálu: Π e = 2 L e. (33) tedy Π e 0. (34) 16
17 Potenciální energie systému (2) Π = Π e + Π i. (35) Dosazením za Π e a Π i : tedy Π = Π e + Π i = (L e + L e) + L e = L e, (36) Π 0. (37) 17
18 Potenciální energie systému (3) (Lagrangeův) princip minima celkové potenciální energie: Π = Π e + Π i = min. (38) Ze všech možných deformačních stavů tělesa (které neporušují jeho spojitost a respektují okrajové podmínky) nastane právě ten, při kterém je potenciální energie systému minimální. 18
19 Variační úloha hledáme neznámou funkci (nikoli jen hodnotu), funkce musí splňovat určité okrajové nebo počáteční podmínky, hledaná funkce musí splňovat podmínku extrému nějaké veličiny. 19
20 Variační úlohy v teorii pružnosti Protože platí (38): Π = Π i + Π e = min, (39) tedy hodnota potenciální energie je extrémní (minimální). Z matematiky: pro extrém veličiny Π platí: Π = 0, (40) čehož využívají variační metody (např Ritzova metoda). 20
21 Ritzova metoda (1) 1. Aproximace řešení volíme ve tvaru: w n (x) = n i=1 a i ψ i, (41) kde a i... neznámé konstanty, ψ i... aproximační funkce. 2. Vyjádříme Π pomocí w n (x). 3. Sestavení a vyřešení n rovnic: Π a i = 0. (42) 4. Dosazení vypočtených a i do (47). 21
22 Rizova metoda (2) bázové funkce Bázové (aproximační) funkce ψ musí vyhovovat okrajovým podmínkám úlohy. y Např. při výpočtu průhybu musí platit: x ψ(a) = 0 (protože w(a)=0), a w(x) ψ(x) b ψ(b) = 0 (protože w(b)=0). 22
23 Shrnutí: Protože platí: N M = (E A) du dx, (43) = (E I y ) d2 w dx 2, (44) tedy potenciální energie vnitřních sil (bez vlivu smyku): Π i = 1 2 L 0 E Au 2 dx L 0 E I w 2 dx. (45) 23
24 Příklad 1 (1) Stanovte funkci osové deformace zadaného nosníku (viz schéma). Předpokládejte, že součin E A je po celé délce nosníku konstantní. F L Volba aproximace: u(x) = a 1 ψ 1 = a 1 x, tj. ψ 1 = x. 24
25 Příklad 1 (2) Okrajové podmínky: u(a) = w(x = 0) = 0... ψ 1 (a) = x = 0 u(b) = w(x = L) 0... ψ 1 (b) = x = L L 0 ψ( x) L x 25
26 Příklad 1 (3) Vyjádření Π e : Π e = F u L 0 q u(x)dx. Přitom F působí v bodě x = L: Π e = F u = F a 1 ψ 1 = F a 1 x = F L a 1. 26
27 Příklad 1 (4) Derivace funkce u = a 1 ψ 1 : u = [a 1 x] = a 1. Vyjádření Π i : Π i = 1 2 L 0 E A(u ) 2 dx = 1 2 L 0 E Aa2 E A a12 1dx = 2 L 0 dx Π i = E A a2 1 2 [x] L 0 = E A L 2 a
28 Příklad 1 (4) Vyjádření Π: Π = Π e + Π i = F L a 1 + E A L 2 a 2 1. Sestavení rovnic(e) Π a i = 0 : F L + E A L a 1 = 0 Výpočet a 1 : a 1 = F E A 28
29 Příklad 1 (5) Výsledek (dosazením a i do u(x)): u(x) = a 1 ψ 1 = F E A x. Protažení v x = L: u(l) = F L E A. Výpočet vnitřních sil (normálová síla): N(x) = E A u = E A [ F ] E A x = F 29
30 Příklad 2 (1) Stanovte funkci průhybu prostého nosníku (viz schéma). y Výsledek: a q w(x) L b x q w(x) = 24 E I x(l3 2 L x 2 + x 3 ) w max = 5 q l 4 384E I Volba aproximace (jen 1. člen řady): w(x) = a 1 ψ 1 = a 1 sin( π x L ), tj. ψ 1 = sin( π x L ). 30
31 Příklad 2 (2) Okrajové podmínky: w(a) = w(x = 0) = 0... ψ 1 (a) = sin( π 0 L ) = 0 w(b) = w(x = L) = 0... ψ 1 (b) = sin( π L L ) = 0 Vyjádření Π e : Π e = L 0 q w(x)dx = L 0 q a 1 sin( π x L )dx Π e = q a 1 [ L π cos(π x L ) ]L 0 = 2 q L π a 1 31
32 Příklad 2 (3) Vyjádření Π i : w = w = a 1 π 2 [ a 1 sin( π x L ) ] = a1 π L cos(π x L ) L 2 sin(π x L ) Π i = 1 2 L 0 E Iw 2 dx = 1 2 L 0 a 1 π 2 L 2 sin(π x L ) 2 dx =... = π4 4 E I L 3 a2 1 32
33 Příklad 2 (4) Vyjádření Π: Π = Π e + Π i = 2 q L π a 1 + π4 4 E I L 3 a2 1 Sestavení rovnic(e) Π a i = 0 : Π a 1 = 2 π q L + π4 4 E I L 3 2 a 1 = 0 Výpočet a 1 : a 1 = 4 q L4 π 5 E I 33
34 Příklad 2 (5) Výsledek (dosazením a i do w(x)): w(x) = a 1 ψ 1 = 4 q L4 π 5 E I sin(π x L ) Výpočet vnitřních sil (moment): M(x) = E I w = E I π a 2 x 1 L 2sin(π L ) = 4 q L2 π 3 sin( π x L ) 34
35 Doplnění: doplňková potenciální energie Castiglianův princip minima doplňkové potenciální energie: Π = Π i = min. (46) Je analogický Lagrangeovu principu, avšak je definován pro doplňkovou potenciální energie (systém ji nabývá z doplňkové práce sil). 35
36 Ritzova metoda pro tenké desky Potenciální energie vnitřních sil: Π i = 1 2 b a d c 2 w x w y 2 2 dxdy Potenciální energie vnějších sil: Π e = b a d c p(x, y) w(x, z)dxdy 36
37 Aplikace Ritzovy metody na desce 1. Aproximace řešení volíme ve tvaru: w n (x, y) = n i=1 m j=1 a i,j ψ i,j (x, z) (47) kde a i,j... neznámé konstanty, ψ i... aproximační funkce. 2. Vyjádříme Π pomocí w n (x, z). 3. Sestavení a vyřešení n rovnic: Π a i = 0. (48) 4. Dosazení vypočtených a i do (47). 37
38 Ritzova metoda příklad 3 (1) Stanovte rovnici průhybové plochy desky po obvodě prostě podepřené a rozměrech a b a tloušt ce t. Deska je zatížena zatížením popsaným funkcí p(x, y) = p. y, j b a x, i 38
39 Ritzova metoda příklad 3 (2) Volba w n (x, y): w n (x, y) = n i=1 m j=1 a 1,1 sin i π x a sin j π y, b Derivace: w x = a π 1,1 a 2 w x 2 2 w y 2 cos πx a sin πy b = a 1,1 ( π a )2 sin πx a = a 1,1 ( π b )2 sin πx a πy sin b πy sin b 39
40 Ritzova metoda příklad 3 (3) Potenciální energie vnitřních a vnějších sil: Π i = 1 2 D a2 1,1 = 1 8 D a2 1,1 π2 π2 a 2 + π2 b 2 a b 0 a 2 + π2 b 2 a b 0 sin2 πx a sin2 πy b dxdy Π e a b = 0 0 p(x, y)w n(x, y)dxdy (49) a b πx πy = a 1,1 p sin sin 0 0 a b dxdy 4 a b = p a 1,1 π 2 40
41 Ritzova metoda příklad 3 (3) Celková potenciální energie: Π = 1 8 D a2 1,1 π2 a 2 + π2 4 a b b 2 a b p a 1,1 π 2 Soustava rovnic Π a 1,1 = 0: 1 4 a 1,1 π2 a 2 + π2 b 2 a b p 4 a b π 2 = 0 Hodnota neznámé konstanty a 1,1 : a 1,1 = 16p π 2 D 1 1 a b 2 41
42 Ritzova metoda příklad 3 (4) Výsledná aproximace průhybu: w n (x, y) = 10 p π 6 D ( 1 a 2+ 1 ) sin πx b 2 a sin πy b Dále je možné stanovit momenty, posouvající síly,... 42
43 Ritzova metoda pro stěny (1) Řešení využívající Airyho funkci F silová varianta. Protože platí: Π = min. (50) variujeme kde volíme: Π (F a ) a i = 0, (51) F a = a i ψ i (52) 43
44 Ritzova metoda pro stěny (2) Poznámka: uvedené řešení platí pro obě varianty rovinného problému: roviná napjatost ( stěny ) i rovinná deformace. 44
45 Ritzova metoda příklad 4 (1) Stanovte rozložení napětí uvnitř stěny na obrázku. y σ x x σ x b b l l σ x = p(1 y2 b 2), p [ MN m 2 ] 45
46 Ritzova metoda příklad 4 (2) Volba aproximace Airyho funkce: F = F o + F 1 Tzv. primární stav (σ x ve všech příčných řezech je rovno napětím v koncových řezech a σ y = τ xy = 0): F o = p 2 y2 (1 y2 6b 2) F o splňuje okrajové podmínky, protože: σ x,o = 2 F o y 2 = p(1 y2 b 2), σ y,o = 2 F o x 2 = 0, τ xy,o = 2 F o x y = 0 46
47 Ritzova metoda příklad 4 (3) Zvolíme: F 1 = a 1 ψ(x, y) = a 1 (l 2 x 2 ) 2 (b 2 y 2 ) 2 F 1 neovlivňuje okrajové podmínky: F 1 (x = 0) = 0 F 1 (x = l) = 0 47
48 Ritzova metoda příklad 4 (4) Napětí: σ x σ y τ xy = 2 F o y 2 = 4 a 1l 2 b 4 (1 x2 l 2 )2 ( y2 b 2) = 2 F o x 2 = 4 a 1b 2 l 4 ( x2 y2 )(1 l2 = 2 F o x y = 16 a 1l 3 b 3x l l 2 )2 x2 y2 (1 )(1 l2 l 2 ) 48
49 Ritzova metoda příklad 4 (5) Doplňková potenciání energie: Π = Π i = h 2E l l b b (σ2 x + 2τ 2 xy + σ 2 y)dydx Dosadíme napětí σ x, σ y, τ xy a výsledek variujeme podle a 1 : Π a 1 = 0 49
50 Ritzova metoda příklad 4 (6) Po úpravě rovnice Π a 1 = 0: a b 2 49 l b2 l 2 = p l 4 b 2 a 1 = p l 4 b 2 ( b2 l b2 l 2 ) F = F o +F 1 p 2 y2 (1 y2 6b 2)+ p l 4 b 2 ( b2 l b2 l 2 ) (l 2 x 2 ) 2 (b 2 y 2 ) 2 50
51 Ritzova metoda příklad 4 (7) Průběh napětí v x = 0 pro poměr l b = 1, 0: l l x y b l/b = 1,0 0.83p 0,34p σx b 51
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu
Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Obecná orientace (obvykle. Makroskopická anizotropie ( velmi mnoho kluzných rovin )
Fyzikální zdůvodnění plasticity (1) Změny v krystalické mřížce Schmidtův zákon : τ τ τ max (1) Dosažení napětí τ max vede ke změnám v krystalické mřížce Deformace krystalické mřížky pružná deformace Změny
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů (Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace (průhyby,
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.
Obsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Úvod, opakování, soustavy sil Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.broovsky@vsb.c WWW:
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou
2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,
Stabilitní analýza pružnoplastického prutu
I České vysoké učení technické v raze Fakulta stavební Katedra mechaniky Stabilitní analýza pružnoplastického prutu Michal Šmejkal Vedoucí práce: Konzultant: prof. Ing. Milan Jirásek, DrSc. Ing. Martin
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Kapitola 2. Nelineární rovnice
Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné
Teorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.
8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě
Numerické metody a statistika
Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 2016-2017 ( ) Numerické metody a statistika 2016-2017 1 / 17 Číslo předmětu: 714-0781/02 Rozsah: 2+2 Hodnocení: 6 kreditů Přednáší: Radek Kučera
Matematické modelování elmg. polí 2. kap.: Magnetostatika
Matematické modelování elmg. polí 2. kap.: Magnetostatika Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/ Text byl
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Matematická analýza 2. Kubr Milan
Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Základní elektrotechnická terminologie,
Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1
Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda
Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania
(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Fyzika laserů. Kvantová teorie laseru. 22. dubna Katedra fyzikální elektroniky.
Fyzika laserů Kvantová teorie laseru Kvazidistribuční funkce. Zobecněné uspořádání. Fokkerova-Planckova rovnice. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz
Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být
Obyčejné diferenciální rovnice 1 Úvod Obyčejnou diferenciální rovnici N-tého řádu f ( x,y,y,y,...,y (N)) = g(x) převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce y z 1 y z 2...
studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava
Matematické modelování studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava 2. února 2018 Obsah 1 Principy matematického modelování 3 1.1 Motivační úlohy.....................................
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 28 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 25 bodů Nechť {x n } je posloupnost, f : R R
B. Patzák verze 01. Direct Approach to FEM
B. Patzák (borek.patzak@fsv.cvut.cz), verze 0 Úvodní přednáška Direct Approach to FEM Úvod do Metody Konečných Prvků (MKP) Většina fyzikálních jevů může být popsána systémem parciálních diferenciálních
FAKULTA STAVEBNÍ JOSEF DALÍK NUMERICKÉ METODY II
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JOSEF DALÍK NUMERICKÉ METODY II STUDIJNÍ MATERIÁL Tento studijní materiál byl zpracován s podporou projektu OPVK ESF Rozvoj a modernizace doktorského studijního
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
FAKULTA STAVEBNÍ NUMERICKÉ METODY II
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JOSEF DALÍK, JIŘÍ VALA, OTO PŘIBYL NUMERICKÉ METODY II STUDIJNÍ MATERIÁL Tento studijní materiál byl zpracován s podporou projektu OPVK ESF Rozvoj a modernizace
x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].
II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.
MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.
MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Katedra stavebních hmot a hornického stavitelství VŠB - Technická univerzita Ostrava Pavel Mec
1 Katedra stavebních hmot a hornického stavitelství VŠB - Technická univerzita Ostrava 15. 2. 2012 Vlivem okolního prostředí a různých druhý zatížení dochází v materiálech k fyzikálním změnám Díky těmto
1 Předmluva Značení... 3
Sbírka příkladů k předmětu Lineární systémy Jan Krejčí, korektura Martin Goubej 07 Obsah Předmluva. Značení..................................... 3 Lineární obyčejné diferenciální rovnice s konstantními
Stabilita proudění. Matematický ústav, Univerzita Karlova. 7. května 2015
Stabilita proudění Vít Průša prusv@karlin.mff.cuni.cz Matematický ústav, Univerzita Karlova 7. května 2015 Vít Průša (Univerzita Karlova) Stabilita proudění 7. května 2015 1 / 30 Obsah 1 Úvod Stabilita
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava
Matematické modelování studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava 15. září 216 Obsah 1 Principy matematického modelování 3 1.1 Motivační úlohy.....................................
Paralelní implementace a optimalizace metody BDDC
Paralelní implementace a optimalizace metody BDDC J. Šístek, M. Čertíková, P. Burda, S. Pták, J. Novotný, A. Damašek, FS ČVUT, ÚT AVČR 22.1.2007 / SNA 2007 Osnova Metoda BDDC (Balancing Domain Decomposition
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Matematyczne Metody Fizyki II
Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład / 6 Ortonormalne
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30
Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert
Petr Beremlijski, Marie Sadowská
Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
Mendelova univerzita v Brně user.mendelu.cz/marik
INŽNÝRSKÁ MATMATIKA Robert Mařík Mendelova univerzita v Brně marik@mendelu.cz user.mendelu.cz/marik ABSTRAKT. Učební text k mým přednáškám z předmětu Inženýrská matematika. Text je poměrně hutný a není
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
7. Aplikace derivace
7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,
IEL Přechodové jevy, vedení
Přechodové jevy Vedení IEL/přechodové jevy 1/25 IEL Přechodové jevy, vedení Petr Peringer peringer AT fit.vutbr.cz Vysoké učení technické v Brně, Fakulta informačních technologíı, Božetěchova 2, 61266
Fakulta elektrotechnická. Algoritmy pro
České vysoké učení technické v Praze Fakulta elektrotechnická Katedra řídicí techniky DIPLOMOVÁ PRÁCE Algoritmy pro nelineární prediktivní řízení Praha, 2006 Miroslav Čermák Prohlášení Prohlašuji, že jsem
3. Znaleźć długość krzywej l = {y = x, 0 x 1}. 4. Obliczyć objętość bryły powstałej w wyniku obrotu dookoła osi OX krzywej
eria. Obliczyć całki (A) 2 x 2 dx (z definicji); 2 xe x dx; e 2xe x2 dx. 2. Obliczyć pole obszaru (A) {(x, y) : < x < 3, < y < x 2 +}; {(x, y) : 6x x 2 < y < x 2 6x+}. 3. Znaleźć długość krzywej l = {y
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010