Kristýna Kuncová. Matematika B2
|
|
- Milena Sikorska
- 5 lat temu
- Przeglądów:
Transkrypt
1 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26
2 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající? Kristýna Kuncová (3) Průběh funkce 2 / 26
3 Monotonie (x 2 ) = 2x Přiřad te 1 f (x) > 0 2 f (x) 0 3 f (x) < 0 4 f (x) 0 D, A, C, B A f neklesající B f nerostoucí C f klesající D f rostoucí Kristýna Kuncová (3) Průběh funkce 3 / 26
4 Vztah první derivace a monotonie Věta (vztah derivace a monotonie) Necht I je interval a f je spojitá funkce na I. Necht Int I označuje množinu všech vnitřních bodů intervalu I. Necht existuje f (x) pro každé x Int I. Potom (i) je-li f (x) > 0 pro každé x Int I, pak je f rostoucí na I; (ii) je-li f (x) 0 pro každé x Int I, pak je f neklesající na I; (iii) je-li f (x) < 0 pro každé x Int I, pak je f klesající na I; (iv) je-li f (x) 0 pro každé x Int I, pak je f nerostoucí na I. Kristýna Kuncová (3) Průběh funkce 4 / 26
5 Extrémy (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce s existencí extrému? Kristýna Kuncová (3) Průběh funkce 5 / 26
6 Extrémy: potíže (x 3 ) = 3x 2 Jak souvisí derivace funkce s existencí extrému? Kristýna Kuncová (3) Průběh funkce 6 / 26
7 Extrémy: potíže podruhé Kristýna Kuncová (3) Průběh funkce 7 / 26
8 Extrémy: Další možnosti Kristýna Kuncová (3) Průběh funkce 8 / 26
9 Extrémy: Shrnutí Zdroj : Kristýna Kuncová (3) Průběh funkce 9 / 26
10 Nutná podmínka existence extrémů Věta (Nutná podmínka existence extrému) Necht I je interval, f je reálná funkce a a je vnitřním bodem I. Je-li a bodem lokálního extrému funkce f, pak bud f (a) neexistuje nebo f (a) = 0. Zdroj : Poznámka Bod a, pro nějž platí f (a) = 0, zveme bodem stacionárním. Kristýna Kuncová (3) Průběh funkce 10 / 26
11 Extrémy: příklad Necht funkce f má spojitou derivaci f (x), která se v bodě x = 2 mění ze záporné na kladnou. Která z následujících tvrzení jsou pravdivá? A 2 je stacionárním bodem funkce f (x). B f (2) je lokální maximum C f (2) je lokální minimum D f (2) je lokální maximum E f (2) je lokální minimum Zdroj: A, C Kristýna Kuncová (3) Průběh funkce 11 / 26
12 Extrémy: příklad Věta Jestliže funkce f je spojitá na uzavřeném intervalu [a, b], pak na [a, b] nabývá svého (globálního) maxima i minima. Která tvrzení plynou z předchozí věty? A Jestliže f má na [a, b] globální maximum, pak f musí být na [a, b] spojitá. B Jestliže f není na [a, b] spojitá, pak f nemá na [a, b] globální maximum. C Jestliže f nemá na [a, b] globální maximum, pak f není na [a, b] spojitá. C Kristýna Kuncová (3) Průběh funkce 12 / 26
13 Konvexita a konkavita (x 3 ) = 6x (sin x) = sin x Jak souvisí druhá derivace funkce s konvexitou a konkavitou? Kristýna Kuncová (3) Průběh funkce 13 / 26
14 Konvexita a konkavita (x 3 ) = 6x Přiřad te 1 f (x) > 0 2 f (x) < 0 A f je ryze konvexní na I. B f je ryze konkávní na I. A, B Kristýna Kuncová (3) Průběh funkce 14 / 26
15 Konvexita a konkavita Věta (vztah druhé derivace a konvexity či konkávnosti) Necht f je spojitá funkce na intervalu I R a necht má f na Int I spojitou první derivaci. Je-li f (x) > 0 pro každé x Int I, pak f je ryze konvexní na I. Je-li f (x) < 0 pro každé x Int I, pak f je ryze konkávní na I. Kristýna Kuncová (3) Průběh funkce 15 / 26
16 Konvexita a konkavita: příklad Uhodněte, která křivka znázorňuje funkci, první derivaci a druhou derivaci: derivative first second.html Kristýna Kuncová (3) Průběh funkce 16 / 26
17 Inflexní bod Zdroj : illustration of inflection point.gif Pozn: Aminace Kristýna Kuncová (3) Průběh funkce 17 / 26
18 Inflexní bod Definition Necht f je reálná funkce a a R. Řekneme, že f má v bodě a inflexi, jestliže existuje vlastní f (a) a a existuje δ R, δ > 0 takové, že bud x P (a, δ) : f (x) > f (a) + f (a)(x a) x P + (a, δ) : f (x) < f (a) + f (a)(x a) nebo x P (a, δ) : f (x) < f (a) + f (a)(x a) x P + (a, δ) : f (x) > f (a) + f (a)(x a) a a Kristýna Kuncová (3) Průběh funkce 18 / 26
19 Inflexní bod (x 3 ) = 6x (sin x) = sin x Jak souvisí druhá derivace funkce a inflexní bod? Kristýna Kuncová (3) Průběh funkce 19 / 26
20 Inflexní bod - potíže (x 4 x) = 12x 2 Zdroj : to the 4th minus x.svg Kristýna Kuncová (3) Průběh funkce 20 / 26
21 Inflexní bod Věta (nutná podmínka pro inflexi) Necht f je reálná funkce a a R. Jestliže existuje f (a) a je různá od nuly, pak a není inflexním bodem funkce f. Věta (postačující podmínka pro inflexi) Necht f má spojitou první derivaci na intervalu (a, b) a c (a, b). Předpokládejme, že nebo x (a, c) : f (x) > 0 a x (c, b) : f (x) < 0 x (a, c) : f (x) < 0, a x (c, b) : f (x) > 0. Pak c je inflexním bodem f. Kristýna Kuncová (3) Průběh funkce 21 / 26
22 Průběh: příklady Najděte funkci, která má maxima a minima v nekonečném množství bodů. sin x Najděte funkci, která je konvexní a přitom kladná. e x Je pravda, že je-li f (a) = 0, pak f má v a inflexní bod? Ne Kristýna Kuncová (3) Průběh funkce 22 / 26
23 Asymptoty Kristýna Kuncová (3) Průběh funkce 23 / 26
24 Asymptoty Definition Necht f je reálná funkce definovaná na nějakém okolí bodu. Necht a, b R. Řekneme, že f má v bodě asymptotu ax + b, jestliže ( ) f (x) ax b = 0. (1) lim x Analogicky definujeme asymptotu v bodě. Věta (tvar asymptoty) Funkce f má v bodě asymptotu ax + b právě tehdy, když f (x) lim = a R a lim (f (x) ax) = b R. (2) x x x Analogické tvrzení platí pro asymptotu v bodě. Kristýna Kuncová (3) Průběh funkce 24 / 26
25 Průběh funkce: příklad Načrtněte funkci y = f (x). Je definovaná a spojitá na celém R Zdroj : Calculus, Hughes-Hallet, Gleason, McCallum Načrtněte funkci y = f (x). Je definovaná a spojitá na celém R Kristýna Kuncová (3) Průběh funkce 25 / 26
26 Aplikace extrémů: příklad Bača by rád oplotil obdélníkový výběh pro ovce. K dispozici má 20 metrů pletiva a pozemek u řeky. Jaké mají být rozměry pozemku, aby byl co největší? Zdroj : Zadání inspirováno: Kristýna Kuncová (3) Průběh funkce 26 / 26
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Bardziej szczegółowoNecht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Bardziej szczegółowo(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Bardziej szczegółowo(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Bardziej szczegółowoKristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Bardziej szczegółowoFunkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Bardziej szczegółowoKomplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Bardziej szczegółowoMATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Bardziej szczegółowo1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A
1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}
Bardziej szczegółowoObsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Bardziej szczegółowoNumerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Bardziej szczegółowoVybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Bardziej szczegółowoMatematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Bardziej szczegółowo5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Bardziej szczegółowofakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Bardziej szczegółowoUrčitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Bardziej szczegółowoMATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.
MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:
Bardziej szczegółowo7. Aplikace derivace
7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,
Bardziej szczegółowoPetr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Bardziej szczegółowo(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
Bardziej szczegółowoKomplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Bardziej szczegółowoAproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Bardziej szczegółowoElementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Bardziej szczegółowoÚvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Bardziej szczegółowoTeorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.
8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě
Bardziej szczegółowo1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Bardziej szczegółowoPrůvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Bardziej szczegółowo1 Derivace funkce a monotonie
MA 10. cvičení intervaly monotonie a lokální extrémy Lukáš Pospíšil,2012 1 Derivace funkce a monotonie Jelikož derivace funkce v daném bodě je de-facto směrnice tečny (tangens úhlu, který svírá tečna s
Bardziej szczegółowoMatematická analýza 2. Kubr Milan
Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................
Bardziej szczegółowoMatematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Bardziej szczegółowoEdita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Bardziej szczegółowoEuklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Bardziej szczegółowoFunkce více proměnných: limita, spojitost, derivace
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více
Bardziej szczegółowoMatematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Bardziej szczegółowox2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Bardziej szczegółowoMatematická analýza pro učitele (text je v pracovní verzi)
Matematická analýza pro učitele (text je v pracovní verzi) Martina Šimůnková 6. června 208 2 Obsah Úvod 7. Co je to funkce.......................... 7.2 Co budeme na funkcích zkoumat................. 9.2.
Bardziej szczegółowoOperace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Bardziej szczegółowoStatistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
Bardziej szczegółowoLinea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Bardziej szczegółowoFunkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura
Bardziej szczegółowoStochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Bardziej szczegółowoObsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice
Bardziej szczegółowoMendelova univerzita v Brně user.mendelu.cz/marik
INŽNÝRSKÁ MATMATIKA Robert Mařík Mendelova univerzita v Brně marik@mendelu.cz user.mendelu.cz/marik ABSTRAKT. Učební text k mým přednáškám z předmětu Inženýrská matematika. Text je poměrně hutný a není
Bardziej szczegółowoCauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Bardziej szczegółowoDiferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Bardziej szczegółowopodle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Bardziej szczegółowoInverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Bardziej szczegółowoSb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.
Bardziej szczegółowox y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].
II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.
Bardziej szczegółowoZadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
Bardziej szczegółowoKapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Bardziej szczegółowoDFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Bardziej szczegółowoLogika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Bardziej szczegółowoKomplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.
Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít
Bardziej szczegółowoMatematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
Bardziej szczegółowoUniverzita Karlova v Praze Matematicko-fyzikální fakulta. bankovnictví. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Barbora Janečková Aplikace 2-dimenzionálních rozdělení v bankovnictví Katedra pravděpodobnosti a matematické statistiky Vedoucí
Bardziej szczegółowoEnergetické principy a variační metody ve stavební mechanice
Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná
Bardziej szczegółowoKapitola 2. Nelineární rovnice
Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné
Bardziej szczegółowoStavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Bardziej szczegółowoMetody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou
2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,
Bardziej szczegółowoObsah. Aplikovaná matematika I. Vlivem meze Vlivem funkce Bernhard Riemann. Mendelu Brno. 3 Vlastnosti určitého integrálu
Určitý integrál Aplikovná mtemtik I Dn Říhová Mendelu Brno Obsh Zákldní úloh integrálního počtu Definice určitého integrálu 3 Vlstnosti určitého integrálu 4 Výpočet určitého integrálu 5 Geometrické plikce
Bardziej szczegółowoPřijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 28 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 25 bodů Nechť {x n } je posloupnost, f : R R
Bardziej szczegółowoUniverzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita arlova v Praze Matematicko-fyzikální fakulta BAALÁŘSÁ PRÁCE Matěj Novotný Operátory skládání na prostorech funkcí atedra matematické analýzy Vedoucí bakalářské práce: doc. RNDr. Jiří Spurný
Bardziej szczegółowoVŠB-Technická univerzita Ostrava
VŠB-Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky Využití metod nehladké optimalizace v tvarové optimalizaci Ing. Petr Beremlijski Obor: Informatika a
Bardziej szczegółowoNekomutativní Gröbnerovy báze
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní
Bardziej szczegółowoObsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
Bardziej szczegółowoOkrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být
Obyčejné diferenciální rovnice 1 Úvod Obyčejnou diferenciální rovnici N-tého řádu f ( x,y,y,y,...,y (N)) = g(x) převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce y z 1 y z 2...
Bardziej szczegółowoPojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.
1 Kapitola 1 Množiny 1.1 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky. Pro známé množiny
Bardziej szczegółowokontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Bardziej szczegółowoKompaktnost v neklasických logikách
Univerzita Karlova v Praze Filozofická fakulta Katedra logiky Diplomová práce Petra Ivaničová Kompaktnost v neklasických logikách Compactness in non-classical logics Praha, 2010 Vedoucí práce: Prof. RNDr.
Bardziej szczegółowoAlgebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se
Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých
Bardziej szczegółowoÚVOD DO ARITMETIKY Michal Botur
ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou
Bardziej szczegółowoNumerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Bardziej szczegółowoFAKULTA STAVEBNÍ JOSEF DALÍK NUMERICKÉ METODY II
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JOSEF DALÍK NUMERICKÉ METODY II STUDIJNÍ MATERIÁL Tento studijní materiál byl zpracován s podporou projektu OPVK ESF Rozvoj a modernizace doktorského studijního
Bardziej szczegółowoKvalitativní analýza nelineárních rovnic typu reakce-difuze
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Diplomová práce Kvalitativní analýza nelineárních rovnic typu reakce-difuze Plzeň, 2018 Bc. Martin Kaisler cistylist listzadani1
Bardziej szczegółowoGEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Bardziej szczegółowoŠkola matematického modelování 2017
Počítačová cvičení Škola matematického modelování 2017 Petr Beremlijski, Rajko Ćosić, Marie Sadowská Počítačová cvičení Škola matematického modelování Petr Beremlijski, Rajko Ćosić, Marie Sadowská Katedra
Bardziej szczegółowoDefinice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
Bardziej szczegółowoFAKULTA STAVEBNÍ NUMERICKÉ METODY II
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JOSEF DALÍK, JIŘÍ VALA, OTO PŘIBYL NUMERICKÉ METODY II STUDIJNÍ MATERIÁL Tento studijní materiál byl zpracován s podporou projektu OPVK ESF Rozvoj a modernizace
Bardziej szczegółowoMatematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7
Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí
Bardziej szczegółowoMatematika I (KMI/PMATE) Co se naučíme? x = a a x = b. rozumět pojmu střední hodnota funkce na daném intervalu. Obrázek 1.
Mtemtik I (KMI/PMATE). Integrální počet funkcí jedné proměnné.. Co se nučíme? Po sérii přednášek věnovných integrálům byste měli být schopni: rozumět definici pojmu neurčitý integrál používt metodu přímé
Bardziej szczegółowoPříručka k rychlé instalaci: NWD2105. Základní informace. 1. Instalace softwaru
Příručka k rychlé instalaci: NWD2105 Základní informace NWD2105 je bezdrátový USB adaptér určený pro použití s počítačem. NWD2105 je kompatibilní s technologií WPS (Wi-Fi Protected Setup). A: LED kontrolka
Bardziej szczegółowoOdpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární
Bardziej szczegółowoObsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30
Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert
Bardziej szczegółowoMatematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Bardziej szczegółowoPetr Beremlijski, Marie Sadowská
Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování
Bardziej szczegółowoReferenční plochy. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma
Bardziej szczegółowoSpeciální funkce, Fourierovy řady a Fourierova transformace
1 Speciální funkce, Fourierovy řady a Fourierova transformace Při studiu mnoha přírodních jevů se setkáváme s veličinami, které jsou všude nulové s výjimkou malého časového intervalu I, ale jejich celková
Bardziej szczegółowoZobecněné metriky Různé poznámky 12. METRIZACE. Miroslav Hušek, Pavel Pyrih KMA MFF UK. 12. Poznámky
12. METRIZACE Poznámky Miroslav Hušek, Pavel Pyrih KMA MFF UK 2009 Jak bylo zmíněno v úvodních kapitolách tohoto textu, axiómy metrik (nebo pseudometrik) se často oslabují, aby bylo možné popsat další
Bardziej szczegółowoKatedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Bardziej szczegółowoDalibor Slovák Wienerův proces
Uiverzita Karlova v Praze Matematicko-fyzikálí fakulta BAKALÁŘSKÁ PRÁCE Dalibor Slovák Wieerův proces Katedra pravděpodobosti a matematické statistiky Vedoucí bakalářské práce: Mgr. Jakub Staěk Studijí
Bardziej szczegółowoMartin Pergel. 26. února Martin Pergel
26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a
Bardziej szczegółowoŻ ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Bardziej szczegółowoŚ Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Bardziej szczegółowoŁ Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Bardziej szczegółowoŁ Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Bardziej szczegółowoWykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!
Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku
Bardziej szczegółowoČVUT FEL, K October 1, Radek Mařík Ověřování modelů II October 1, / 39
Ověřování modelů II Radek Mařík ČVUT FEL, K13132 October 1, 2014 Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, 2014 1 / 39 Obsah 1 Temporální logiky LTL logika 2 Jazyk modelů Vlastnosti
Bardziej szczegółowo