z geoinformatických dat
|
|
- Kazimierz Chrzanowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 z geoinformatických dat 30. listopadu 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/
2 Dvě DN na úseku Příklad Najděte mezní situaci pro dvě DN na úseku délky L metrů tak, aby se ještě nejednalo o shluk. ( Epanechnikova funkce: K d (x)= 3 4d 1 ( ) ) x 2 d I ( d;d) (x) Jádrový odhad hustoty: f n (x)= 1 n n i=1 K d(x X i ) HV 3 4dn
3 Dvě DN na úseku ( f 2 (x 0 ) = 1 ( ) 3 x0 X 2 ( ) ) 1 x0 X = 2 4d d d ( ( ) 3 V 2 ( ) ) V 2 = = 4d 2 d d ( ( ) ) 3 V 2 = 1 4d d Chceme, aby f 2 (x 0 ) HV, což bude platit, pokud ( ( ) ) 3 V 2 1 4d d V 3 4d d
4 Dvě DN na úseku 4 x Hustota Vzdálenost (m)
5 O čem se bude mluvit? TÉMA KONTEXT APLIKACE Jádrový odhad hustoty Empirická DF K - funkce Shluková analýza Shlukování dopravních nehod Generalizace linií Klasifikaèní stromy Geografická generalizace Diskriminaèní analýza Identifikace zatáèek Ètyøpolní tabulky Biostatistika Pøírodní hazardy
6 O čem se bude mluvit? TÉMA KONTEXT APLIKACE Jádrový odhad hustoty Empirická DF K - funkce Shluková analýza Shlukování dopravních nehod Generalizace linií Klasifikaèní stromy Geografická generalizace Diskriminaèní analýza Identifikace zatáèek Ètyøpolní tabulky Biostatistika Pøírodní hazardy
7 Osnova prezentace logistická regrese rozhodovací stromy 4. Použití dosažených výsledků
8 Motivace Proč je důležité identifikovat zatáčky? bezpečnostní riziko zklidňující prvek management správy komunikací popisná statistika
9 Dopravní komunikace přímá část přechodnice oblouk x(t) = y(t) = t ( at 2 cos 0 2 t ( at 2 sin 0 2 ) dx, ) dx.
10 Klotoida
11 Zadání úlohy Úkoly identifikovat oblouky a přímé úseky určit poloměry oblouků x x 10 5
12 Trénovací množina II/446 Štěpánov (8,7km) II/444 Těšíkov (5,6km) x x x x 10 5
13 Trénovací množina II/446 Štěpánov (8,7km) II/444 Těšíkov (5,6km) x x x x 10 5
14 Charakteristiky bodů velikost úhlu kumulativní úhel tří bodů kumulativní úhel pěti bodů vzdálenost bodů poloměr kružnice opsané poloměr oskulační kružnice
15 Charakteristiky bodů velikost úhlu kumulativní úhel tří bodů kumulativní úhel pěti bodů vzdálenost bodů poloměr kružnice opsané poloměr oskulační kružnice
16 Charakteristiky bodů velikost úhlu kumulativní úhel tří bodů kumulativní úhel pěti bodů vzdálenost bodů poloměr kružnice opsané poloměr oskulační kružnice
17 Charakteristiky bodů velikost úhlu kumulativní úhel tří bodů kumulativní úhel pěti bodů vzdálenost bodů poloměr kružnice opsané poloměr oskulační kružnice
18 Charakteristiky bodů velikost úhlu kumulativní úhel tří bodů kumulativní úhel pěti bodů vzdálenost bodů poloměr kružnice opsané poloměr oskulační kružnice
19 Charakteristiky bodů velikost úhlu kumulativní úhel tří bodů kumulativní úhel pěti bodů vzdálenost bodů poloměr kružnice opsané poloměr oskulační kružnice
20 Poloměr oskulační kružnice Křivka c:i R R 2. Poloměr oskulační kružnice R(t 0 )= 1 κ(t 0 ) = ċ(t 0) Ṫ(t 0) T(X i) = X i+1 X i 1 X i+1 X i 1, Ṫ(X i) = T(X i+1) T(X i 1 ) t 1 + t 2, X2 T(X2) (X3) X3 X4 T(X4) ċ(x i) = X i+1 X i 1 t 1 + t 2, κ(x i) = T(X i+1) T(X i 1 ) X i+1 X i 1 X1 X5
21 Úhel Body mimo oblouk Body v oblouku 0.3 Hustota Úhel
22 Kumulativní úhly Tří bodů Pěti bodů Body mimo oblouk Body v oblouku 0.03 Body mimo oblouk Body v oblouku 0.05 Hustota Hustota Kumulativni uhel tri bodu Kumulativni uhel peti bodu
23 Vzdálenost dvou bodů 0.05 Body mimo oblouk Body v oblouku Hustota Vzdalenost bodu
24 Poloměry kružnic Kružnice opsaná Oskulační kružnice 3 x 10 3 Body mimo oblouk Body v oblouku 3 x 10 3 Body mimo oblouk Body v oblouku 2 2 Hustota Hustota Polomer kruznice opsane Polomer oskulacni kruznice
25 Generalizace linie
26 Důvody použití Metody redukce objemu dat odstranění šumu odstranění hustých míst v datech vypuštění/ponechání každého k-tého bodu linie délkový test úhlový test Douglas-Peuckerův algoritmus
27 Douglas-Peuckerův algoritmus (1972)
28 Douglas-Peuckerův algoritmus (1972)
29 Douglas-Peuckerův algoritmus (1972)
30 Douglas-Peuckerův algoritmus (1972)
31 Douglas-Peuckerův algoritmus (1972)
32 Douglas-Peuckerův algoritmus (1972)
33 Použití D-P algoritmu Původně ε=0,1m ε=0,5m ε=1m II/ II/ x x x x 10 5
34 Prahová hodnota II/446 II/446 Hraniční hodnota Kružnice Oskulační Kružnice Oskulační poloměru (m) opsaná kružnice opsaná kružnice % 65% 54% 56% % 72% 74% 76% % 73% 80% 80% % 78% 80% 81% % 74% 78% 80% % 75% 77% 78%
35 Klasifikační stromy Diskriminační analýza
36 Klasifikační stromy Metody diskriminační analýzy lineární diskriminační analýza kvadratická diskriminační analýza logistická regrese jádrový odhad hustoty metoda k-tého nejbližšího souseda neuronové sítě algoritmus podpůrných vektorů (SVM) případové usuzování rozhodovací stromy
37 Klasifikační stromy Metody diskriminační analýzy lineární diskriminační analýza kvadratická diskriminační analýza logistická regrese jádrový odhad hustoty metoda k-tého nejbližšího souseda neuronové sítě algoritmus podpůrných vektorů (SVM) případové usuzování rozhodovací stromy
38 Klasifikační stromy 1 Logistická regrese
39 Klasifikační stromy θ=(α, β 1, β 2,..., β n) T x=(1, X 1, X 2,..., X n) T P(Y X=1)= eθt x =: p(x) 1+e θt x Metoda maximální věrohodnosti L(θ) = l(θ) = = s p(x i) yi (1 p(x i)) (1 yi), i=1 s y i ln p(x i)+(1 y i) ln(1 p(x i))= i=1 s y i(θ T x i) ln(1+e θt x i ) max i=1
40 Významné parametry Klasifikační stromy velikost úhlu kumulativní úhel tří bodů kumulativní úhel pěti bodů vzdálenost bodů poloměr kružnice opsané poloměr oskulační kružnice
41 Nápad Klasifikační stromy Data R < 10km R >= 10km Model 1 Model 2
42 Nápad Klasifikační stromy Data R < 10km R >= 10km Pøímá Logistická èást regrese úseku Model 1 Model 2
43 Klasifikační stromy Rozhodovací stromy klasifikační regresní
44 Huntův algoritmus Klasifikační stromy Rekurzivně: Pokud všechny objekty v uzlu patří do stejné skupiny uzel je listem. V opačném případě uzel rozdělíme. Otázky Jak určit optimální rozdělení uzlu? Kdy růst stromu zastavit?
45 Rozdělení uzlu Klasifikační stromy p(i t) relativní četnost zastoupení i-té skupiny v uzlu t
46 Míra nečistoty Klasifikační stromy Entropie Entropy(t) = Gini index K p(i t) log 2 p(i t) i=1 Gini(t)=1 Klasifikační chyba K [p(i t)] 2 i=1 Classification error(t) = 1 max[p(i t)] i
47 Míra nečistoty Klasifikační stromy A 0 B 8 A 2 B 6 A 4 B 4 Entropy Gini Error ,811 0,375 0,25 1 0,5 0, Entropy Gini Classification error p =I(rodič) c j=1 N(v j ) N I(v j) max
48 Zastavovací kritérium Klasifikační stromy Typická kritéria všechny objekty v uzlu náleží do stejné skupiny objekty v uzlu se shodují ve všech atributech Další kritéria počet objektů v uzlu je menší než stanovená hranice rozdělení uzlu nevylepší míru nečistoty
49 Underfitting a Overfitting Klasifikační stromy 40 Testovaci mnozina Overfitting 30 Error (%) Trenovaci mnozina Pocet uzlu
50 Klasifikační stromy Charakteristické vlastnosti stromů neparametrická metoda snadná interpretace, grafické znázornění výpočetně nenáročný algoritmus robustní metoda nadbytečné atributy neovlivňují výsledky fragmentace dat (nedovolit dělení při nízkém počtu objektů v uzlu)
51 Stromy a lineární regrese Klasifikační stromy Co lze a co nelze snadno oddělit?
52 R Klasifikační stromy library(rpart) rpart() vytvoření stromu plot() vykreslení stromu text() popisky post() postscript plotcp() vykreslení chyby prune() ořezání stromu podle chyby
53 Klasifikační stromy Výsledný klasifikační strom
54 Klasifikační stromy Použití dosažených výsledků Podil DN v zatackach Pocet DN celkem Podil zatacek > 10
55 Exaktní binomický test p 0 podíl zatáček na silničním úseku n počet DN v zatáčkách N počet všech DN na úseku Klasifikační stromy Náhodný jev DN se stala v zatáčce má alternativní rozdělení s neznámým parametrem p. H 0 : p=p 0, proti H A : p > p 0 P(chyba I. druhu) ( n ) P N p 0 > K α α p-value = N k=n ( ) N p k 0 k (1 p 0) (N k)
56 Exaktní binomický test Klasifikační stromy Podil DN v zatackach Pocet DN celkem Podil zatacek > 10
57 Nebezpečný úsek Klasifikační stromy 9.45 x oblouk prima cast delka (m) pocet DN x 10 4
58 Diskuze a dotazy Klasifikační stromy andrasik.richard@gmail.com
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Bardziej szczegółowo5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Bardziej szczegółowoNumerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Bardziej szczegółowoKybernetika a umělá inteligence. Gerstnerova laboratoř katedra kybernetiky. Daniel Novák
Kybernetika a umělá inteligence 2. Strojové učení laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky České vysoké učení technické v Praze Daniel Novák Poděkování: Filip Železný Shrnutí minulé
Bardziej szczegółowoÚvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Bardziej szczegółowoMatematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Bardziej szczegółowoKomplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Bardziej szczegółowoJednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Bardziej szczegółowox2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Bardziej szczegółowoKristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Bardziej szczegółowoJednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Bardziej szczegółowoParadoxy geometrické pravděpodobnosti
Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh
Bardziej szczegółowoMATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Bardziej szczegółowoElementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Bardziej szczegółowo2 Sférická trigonometrie. Obsah. 1 Základní pojmy. Kosinová věta pro stranu. Podpořeno z projektu FRVŠ 584/2011.
Obsah 1 2 Kosinová věta pro úhel Pravoúhlý sférický trojúhelník Podpořeno z projektu FRVŠ 584/2011. Referenční plochy, souřadnicové soustavy Důležité křivky - loxodroma, ortodroma Kartografická zobrazení,
Bardziej szczegółowoKatedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 27
Bardziej szczegółowoKapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Bardziej szczegółowoNecht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Bardziej szczegółowoTGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
Bardziej szczegółowoROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha
ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční
Bardziej szczegółowoAnna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Bardziej szczegółowoTGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
Bardziej szczegółowoKatedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu Filip Železný (ČVUT) Vytěžování dat 3. listopadu / 1
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu 2014 Filip Železný (ČVUT) Vytěžování dat 3. listopadu 2014 1 / 1 Metafora pro tuto přednášku Filip
Bardziej szczegółowoAproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Bardziej szczegółowoGeometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Bardziej szczegółowoKristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Bardziej szczegółowoLineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
Bardziej szczegółowoReferenční plochy. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma
Bardziej szczegółowoMatematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Bardziej szczegółowoKomplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Bardziej szczegółowoStavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Bardziej szczegółowoRovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Bardziej szczegółowoČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 10 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Volba kartografického zobrazení olivněna několika faktory: účel mapy uživatel mapy kartografické vlastnosti
Bardziej szczegółowoNumerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Bardziej szczegółowonejsou citlivé na monotónní transformace vstupů, dost dobře se vyrovnají s nerelevantními vstupy.
Přednosti rozhodovacích stromů Přirozeně pracují s kategoriálními i spojitými veličinami, přirozeně pracují s chybějícími hodnotami, jsou robustní vzhledem k outliers vybočujícím pozorováním, nejsou citlivé
Bardziej szczegółowoKlasifikační metody (nejen) pro molekulárně genetická data
Klasifikační metody (nejen) pro molekulárně genetická data Jan Kalina Ústav informatiky AV ČR Kardiovaskulární genetická studie Centrum biomedicínské informatiky (Praha, 2006 2011) Diagnostika kardiovaskulárních
Bardziej szczegółowoFAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Úvod, opakování, soustavy sil Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.broovsky@vsb.c WWW:
Bardziej szczegółowoFunkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Bardziej szczegółowoKatedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat: klasifikace Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování
Bardziej szczegółowopodle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Bardziej szczegółowoPROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28.
ANALÝZA VÍCEROZMĚRNÝCH DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH JOSEF TVRDÍK ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:
Bardziej szczegółowoLaplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Bardziej szczegółowoMatematika sexu a manželství. Masarykova univerzita, Přírodovědecká fakulta Ústav matematiky a statistiky
Matematika sexu a manželství Zdeněk Pospíšil Masarykova univerzita, Přírodovědecká fakulta Ústav matematiky a statistiky DEN VĚDY Speciální den otevřených dveří Pátek 13. září 2013 Úvod Matematika Sex
Bardziej szczegółowo(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Bardziej szczegółowoMATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Bardziej szczegółowoPracovní listy. Stereometrie hlavního textu
v tomto dodatu jsou sebrána zadání všech úloh řešených v aitolách Planimetrie a tereometrie hlavního textu slouží ta jao racovní listy samostatnému rocvičení uvedených úloh Zracoval Jiří Doležal 1 eznam
Bardziej szczegółowoUrčitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Bardziej szczegółowoRobotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D.
Robotika Kinematika 13. dubna 2017 Ing. František Burian Ph.D., Řízení stacionárních robotů P P z q = f 1 (P) q z Pøímá úloha q U ROBOT q P R q = h(u) P = f (q) DH: Denavit-Hartenberg (4DOF/kloub) A i
Bardziej szczegółowoKombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Bardziej szczegółowoWykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Bardziej szczegółowoZákladní elektrotechnická terminologie,
Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1
Bardziej szczegółowoLinea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Bardziej szczegółowoheteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha
Pořadové testy v regresi při rušivé heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha Robust 2014, Jetřichovice 22.1.2014 Radim Navrátil,
Bardziej szczegółowoNÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky
CANON INC. 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan Europe, Africa & Middle East CANON EUROPA N.V. PO Box 2262, 1180 EG Amstelveen, The Netherlands For your local Canon office, please refer
Bardziej szczegółowoprof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,
Bardziej szczegółowov = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)
v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d
Bardziej szczegółowoPA152,Implementace databázových systémů 2 / 25
PA152 Implementace databázových systémů Pavel Rychlý pary@fi.muni.cz Laboratoř zpracování přirozeného jazyka http://www.fi.muni.cz/nlp/ 19. září 2008 PA152,Implementace databázových systémů 1 / 25 Technické
Bardziej szczegółowoEdita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Bardziej szczegółowoPeriodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
Bardziej szczegółowoMatematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Bardziej szczegółowoMartin Branda. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky
Tvorba optimálních sazeb v neživotním pojištění Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Seminář z aktuárských věd 2013 M.Branda
Bardziej szczegółowoMartin Dlask (KSI FJFI) 3. března 2016
Využití zlomkových stochastických procesů pro analýzu signálu a časových řad Seminář strojového učení a modelování Martin Dlask (KSI FJFI) http://people.fjfi.cvut.cz/dlaskma1/ 3. března 2016 Martin Dlask
Bardziej szczegółowoMatematický ústav UK Matematicko-fyzikální fakulta. Ukázky aplikací matematiky
Lineární a nelineární problémy v geometrickém modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta Ukázky aplikací matematiky Zbyněk Šír (MÚ UK) - Lineární a nelineární problémy v geometrickém
Bardziej szczegółowoEuklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Bardziej szczegółowoPolština ve sféře podnikání (bakalářské studium, kombinovaná forma)
Polština ve sféře podnikání (bakalářské studium, kombinovaná forma) Część A 1. Do plemion zamieszkujących dawne ziemie polskie nie należeli [2 pkt]: a. Mazowszanie b. Scytowie c. Ślężanie d. Wiślanie 2.
Bardziej szczegółowoFormálne jazyky Automaty. Formálne jazyky. 1 Automaty. IB110 Podzim
Formálne jazyky 1 Automaty 2 Generatívne výpočtové modely IB110 Podzim 2010 1 Jednosmerné TS alebo konečné automaty TS sú robustné voči modifikáciam existuje modifikácia, ktorá zmení (zmenší) výpočtovú
Bardziej szczegółowoCo nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Bardziej szczegółowoPowyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Bardziej szczegółowoPopisná statistika. David Hampel. Přednáška Statistika 1 (BKMSTA1) 13. říjen 2012, Brno.
12235@mail.muni.cz Přednáška Statistika 1 (BKMSTA1) 13. říjen 2012, Brno Motivace slouží zejména k prezentaci dat a výsledků. Číselné charakteristiky informují o úrovni, variabilitě a těsnosti závislosti
Bardziej szczegółowoPrůvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Bardziej szczegółowoObsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
Bardziej szczegółowoLogika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Bardziej szczegółowoKatedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Bardziej szczegółowoMetoda hlavních komponent a faktorová analýza
Metoda hlavních komponent a faktorová analýza David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5.
Bardziej szczegółowoNDMI002 Diskrétní matematika
NDMI002 Diskrétní matematika prof. RNDr. Martin Loebl, CSc. ZS 2016/17 Obsah 1 Množiny 2 1.1 Relace....................................... 2 1.2 Ekvivalence.................................... 3 1.3 Částečné
Bardziej szczegółowoPolský jazyk a literatura (navazující magisterské studium, prezenční forma)
Polský jazyk a literatura (navazující magisterské studium, prezenční forma) Część A (50 punktów) 1. Proszę zdefiniować pojęcie fonetyka i opisać, co jest przedmiotem jej badań [4 pkt]: Fonetyka dział językoznawstwa
Bardziej szczegółowoŻ ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Bardziej szczegółowoŚ Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Bardziej szczegółowoŁ Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Bardziej szczegółowoŁ Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Bardziej szczegółowoCauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Bardziej szczegółowoCesko - polský matematický slovník
Cesko - polský matematický slovník A absolutní hodnota algebraický výraz aritmetický průměr asociativní zákon B bod C celek cifra, číslice čára - čárkovaná - čerchovaná - lomená četnost činitel číselná
Bardziej szczegółowoAnaliza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
Bardziej szczegółowoInverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Bardziej szczegółowoObsah: Rozhodovací stromy. Úvod do umělé inteligence 11/12 2 / 41. akce
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Hodnocení úspěšnosti učícího algoritmu Úvod do umělé inteligence /2 / 4 Učení Učení
Bardziej szczegółowoStatistika (KMI/PSTAT)
Cvičení sedmé (a asi i osmé a doufám, že ne deváté) aneb Náhodná veličina, rozdělení pravděpodobnosti náhodné veličiny Náhodná veličina Náhodná veličina Studenti skládají písemku sestávající ze tří úloh.
Bardziej szczegółowovystavit agenta realitě místo přepisování reality do pevných pravidel
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Hodnocení úspěšnosti učícího algoritmu PA026 Projekt z umělé inteligence Učení Úvod
Bardziej szczegółowoÚvod do pravděpodobnosti a statistiky
KMA/MAT1 Přednáška č. 3, Úvod do pravděpodobnosti a statistiky 3. října 2016 1 Pravděpodobnost [Otipka, Šmajstrla] 1.1 Náhodný pokus, náhodný jev Teorie pravděpodobnosti vychází ze studia náhodných pokusů.
Bardziej szczegółowoCAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016
WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego
Bardziej szczegółowoTGH08 - Optimální kostry
TGH08 - Optimální kostry Jan Březina Technical University of Liberec 11. dubna 2017 Problém profesora Borůvky elektrifikace Moravy Jak propojit N obcí vedením s minimální celkovou délkou? Zjednodušující
Bardziej szczegółowoFAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky
Bardziej szczegółowoz myšlenek vnuknutých Aštarem F. Hroch 14. květen 2010
Rýžování zlata na virtuální obloze z myšlenek vnuknutých Aštarem F. Hroch ÚTFA MU, Brno 14. květen 2010 Intro Data mining Virtua lnı observator Fina le Epitaf Ry z ova nı zlata Gold panning zlato odde
Bardziej szczegółowoZadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
Bardziej szczegółowo1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Bardziej szczegółowoStochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Bardziej szczegółowoAnaliza Matematyczna część 5
[wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe
Bardziej szczegółowoAnotace. Martin Pergel,
Anotace Třídění, medián lineárně. Třídění Ukazovali jsme si: bubblesort, shakesort, zatřid ování (insert-sort), přímý výběr (select-sort) důležité je znát algoritmy, není nutné pamatovat si přesné přiřazení
Bardziej szczegółowoAutomatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
Bardziej szczegółowo