Univerzita Palackého v Olomouci
|
|
- Stanisław Ignacy Madej
- 5 lat temu
- Przeglądów:
Transkrypt
1 Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
2 Reakce na úkoly Přehnané násobení B = (((val&3) * 64 * 32) for row in arr for val in row) Binární formát Obtížnost? Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
3 Diskrétní Fourierova transformace (DFT) Obraz (signál) je posloupnost stejně vzdálených vzorků: I = I 0,..., I, opakující se s periodou DFT ze vzorků I n je posloupnost komplexních čásel F n F n = I k W nk pro 0 n 1 W = e i2π = cos( 2π ) + isin( 2π ) Příklad: Vypočítejte F n řady 1, 2, 2, 3, 4, 4, 6, 8 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
4 Inverzní Diskrétní Fourierova transformace (IDFT) Inverzní výpočet ze sekvence F 0,..., F I n = 1 F k W nk pro 0 n 1 Až na škálování a znaménka stejný výpočet Příklad: Vypočítejte I n z přechozí F n Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
5 Rekurzivní výpočet DFT/IDFT - motivace Výpočet dosazením do vzorce je časově náročný Vyžaduje 2 komplexních násobení a ( 1) komplexních sčítání Pro praktické použití nevhodné Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
6 Rekurzivní výpočet DFT/IDFT DFT posloupnosti délky = 2 m může být nahrazena součtem dvou DFT délky /2 (součet DFT vzorků s lichým a sudým indexem): F n = I k e i2πnk (4) Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
7 Rekurzivní výpočet DFT/IDFT DFT posloupnosti délky = 2 m může být nahrazena součtem dvou DFT délky /2 (součet DFT vzorků s lichým a sudým indexem): F n = (/2) 1 I k e i2πnk = (/2) 1 I 2k e i2πn2k + I 2k+1 e i2πn(2k+1) (1) (4) Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
8 Rekurzivní výpočet DFT/IDFT DFT posloupnosti délky = 2 m může být nahrazena součtem dvou DFT délky /2 (součet DFT vzorků s lichým a sudým indexem): F n = (/2) 1 I k e i2πnk = = (/2) 1 (/2) 1 I 2k e i2πn2k + i2πnk (/2) 1 I 2k e 2 + I 2k+1 e i2πn(2k+1) (1) i2πnk I 2k+1 e 2 e i2πn (2) (4) Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
9 Rekurzivní výpočet DFT/IDFT DFT posloupnosti délky = 2 m může být nahrazena součtem dvou DFT délky /2 (součet DFT vzorků s lichým a sudým indexem): F n = (/2) 1 I k e i2πnk = = (/2) 1 (/2) 1 I 2k e i2πn2k + i2πnk (/2) 1 I 2k e 2 + I 2k+1 e i2πn(2k+1) (1) i2πnk I 2k+1 e 2 e i2πn (2) = F e n + e i2πn F o n (3) (4) Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
10 Rekurzivní výpočet DFT/IDFT DFT posloupnosti délky = 2 m může být nahrazena součtem dvou DFT délky /2 (součet DFT vzorků s lichým a sudým indexem): F n = (/2) 1 I k e i2πnk = = (/2) 1 (/2) 1 I 2k e i2πn2k + i2πnk (/2) 1 I 2k e 2 + I 2k+1 e i2πn(2k+1) (1) i2πnk I 2k+1 e 2 e i2πn (2) = F e n + e i2πn F o n (3) = F e n + W n F o n (4) Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
11 Rekurzivní výpočet DFT/IDFT DFT posloupnosti délky = 2 m může být nahrazena součtem dvou DFT délky /2 (součet DFT vzorků s lichým a sudým indexem): F n = (/2) 1 I k e i2πnk = = (/2) 1 (/2) 1 I 2k e i2πn2k + i2πnk (/2) 1 I 2k e 2 + I 2k+1 e i2πn(2k+1) (1) i2πnk I 2k+1 e 2 e i2πn (2) = F e n + e i2πn F o n (3) = F e n + W n F o n (4) Kde F e n je (/2) členná posloupnost sudých prvků a F o n je (/2) členná posloupnost lichých prvků. Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
12 Rekurzivní výpočet DFT/IDFT Dle definice DFT: F n+ = F n tedy F n je periodická s periodou Tedy platí: F e n+/2 = F e n (5) F o n+/2 = F o n (6) W n+/2 = W n pro 0 n /2 (7) Tedy můžeme vypočítat jen polovinu posloupnoti a zbytek dopočítat dle: F n = F e n + W n F o n pro 0 n /2 (8) F n+/2 = F e n W n F o n pro 0 n /2 (9) (10) Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
13 Rekurzivní výpočet DFT/IDFT - Příklad Dle Rekurzivního předpisu vypočítejte příklad č. 1 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
14 Úkol (1/1) aprogramovat DFT/IDFT pro jednorozměrnou posloupnost pomocí přímého výpočtu ze vzorce Bonusový úkol (*žolík) aprogramovat Rekurzivní DFT Experimentálně porovnat časovou náročnost Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
15 Doporučené video o FT Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení / 10
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
Paradigmata programování 2
Paradigmata programování 2 1. cvičení Radek Janoštík Univerzita Palackého v Olomouci 11.2.2019 Radek Janoštík (Univerzita Palackého v Olomouci) Paradigmata programování 2 11.2.2019 1 / 19 Úvod Předmět
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Speciální funkce, Fourierovy řady a Fourierova transformace
1 Speciální funkce, Fourierovy řady a Fourierova transformace Při studiu mnoha přírodních jevů se setkáváme s veličinami, které jsou všude nulové s výjimkou malého časového intervalu I, ale jejich celková
Obsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se
Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých
Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková
Biosignál II. Lékařská fakulta Masarykovy univerzity Brno
Biofyzikální ústav Lékařská fakulta Masarykovy univerzity Brno 2010 Fourierova analýza periodická funkce a posloupnost periodická funkce: f (t) = f (t + nt ), n N periodická posloupnost: a(i) = a(i + it
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Fourierova transformace periodických struktur. Katedra matematické analýzy
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Tomáš Zajíc Fourierova transformace periodických struktur Katedra matematické analýzy Vedoucí diplomové práce: Studijní program:
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Úvod, opakování, soustavy sil Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.broovsky@vsb.c WWW:
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy
1 Úvodem Prezentace předmětu VMP je vytvořena pro nový předmět, který si klade za cíl seznámit studenty se základy lineární algebry a se základy numerické matematiky. Zejména v prvním tématu budeme pracovat
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
cepstrum Jan Černocký FIT VUT Brno
Předzpracování řeči, tvorba řeči, cepstrum Jan Černocký cernocky@fit.vutbr.cz FIT VUT Brno Předzpracování řeči, tvorba řeči, cepstrum Jan Černocký, ÚPGM FIT VUT Brno 1/45 Plán Parametrisace řeči Předzpracování
Energetické principy a variační metody ve stavební mechanice
Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Výzvy, které před matematiku staví
1 / 21 Výzvy, které před matematiku staví výpočetní technika Edita Pelantová Katedra matematiky, FJFI, České vysoké učení technické v Praze 25. pledna 2018 Praha Zápisy čísel v minulosti 2 / 21 Římský
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
Kombinatorika a komplexní aritmetika
a komplexní aritmetika katedra matematiky, FEL ČVUT v Praze, http://math.feld.cvut.cz/ Jan Hamhalter Datum Komplexní čísla, kombinatorika 1/56 Historie: Zavedení komplexních čísel bylo motivováno snahou
FOURIEROVA ANALýZA JAN MALÝ
FOUIEOVA ANALýZA JAN MALÝ Obsah 1. Fourierovy ady klasika 2 2. Fourierovy ady v Hilbertov prostoru 3 3. S ítání Fourierových ad 5 4. Fourierova transformace v L 1 7 5. Distribuce 8 6. Fourierova transformace
Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
Univerzita Palackého v Olomouci Radek Janoštík (Univerzita Palackého v Olomouci) Základy programování 4 - C# 13.2.
Základy programování 4 - C# Radek Janoštík Univerzita Palackého v Olomouci 13.2.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Základy programování 4 - C# 13.2.2018 1 / 18 Úvod Předmět navazuje
Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky
Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.
Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít
MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.
MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:
7. Aplikace derivace
7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,
Algoritmy a datové struktury 2. Sylabus: Vyhledávání vzorků v textu: alg. Aho-Corasicková
Algoritmy a datové struktury 2. Sylabus: Vyhledávání vzorků v textu: alg. Aho-Corasicková Toky v sítích Hradlové sítě: aritmetické, třídící Geometrické algoritmy Rychlá (diskrétní) Fourierova transformace
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Ę ś ó ó ź ć ó ó ą ś ą ą ż ą ą ś ś ą ż ą ó Ą Ę Ę Ą Ó ą ż ą ą ź ąż ą ś ą ą Ł ŁÓ Ę Ł Ę Ą Ą ą Ł ą ą ą ą ą ć ą Ę Ę Ą Ł ą ś ą ź ż ź ą ż ć ąż ą ś ą ó Ż ż ż ą ą ż ś ż ź ó ą Ą Ę Ę ż ż ś ó ó ś ż ó ą ą ą ż ś ś ą
Ł Ł Ą Ą Ą ż ń ż ń ż ń Ż Ż Ś ń Ż ń ć Ł Ą ń Ż Ś ń ć ń ć ń Ż ć ć ń ń ń ż ć ń ŁĄ ż ć ć ć ć ń Ż Ź ć ć ć ń ż ŁĄ Ł ż Ł Ąż ń ć ż ŚĆ ż Ł ń Ć Ś Ę ń ń ż ź Ż ń ć Ę ń ć ż ć ć ń ń Ć ć ż Ż ć ć ć ćż Ż ć Ż Ę Ż Ż Ść Ż ż
Ą ś Ż ś ó Ę ó Ą ść ść Ó ść ą ś ąż ć ą ąż ą ć ż śćś ź ś ć ź ą ó ś ą ą ą ó ą ą ą ó ą ą ż ć ż ż ż ąż ź ś ó ą ó ż ą ą ó ą ą ś ą ź ą ą ą ąż ą ą ć ń ń ć ą ć ó ń ć ż ąż ó ó ć ż ć ąż Ś ą ą ć ó ś ą ą ą ó ó ą ą
Ś Ś Ł ć Ś ć Ś ć Ż Ż Ż Ę ć Ż Ś Ś Ś Ś Ś ć Ę Ł Ń ć ć Ź ć Ś Ż Ż Ą Ż Ż Ę Ś ć Ł Ż Ż Ż Ę Ś Ś Ś Ś Ż Ż Ę Ż Ż Ś Ż ŚĘ Ż ć Ż ć Ł Ę Ż Ń Ń ć ć Ż Ż Ż Ń Ę Ę Ź Ż Ż Ż ź Ż Ż Ę ź Ż Ń Ę Ż Ł Ż Ż Ł Ż ź Ś Ś ź Ę ź Ś Ę ź Ż ć Ż
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
(A B) ij = k. (A) ik (B) jk.
Příklady z lineární algebry Michael Krbek 1 Opakování 1.1 Matice, determinanty 1. Je dána matice 1 2 0 M = 3 0 1. 1 0 1 Určete M 2, MM T, M T M a vyjádřete M jako součet symetrické a antisymetrické matice!
Ústav teorie informace a automatizace. Tato prezentace je k dispozici na:
Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obsah přednášky Podmíněná pravděpodobnost,
Ą ż ś ć ż ń ś ą Ę ś ą ż ś ą ą ż ą ś Ę Ń ś ą ń ć ż ą ź ś ź ż ń ń ść ńźóń ń Ć Ć Ż Ś ńó ż ć ą ś ą ś ś ńą Ą Ś ą ż ś ś ż ż Ą ż ą ś ć ż ń ś ń ś Ę ą ą Ę ż ą ś ż ś ą ą ż ą ś Ę Ń ś ą ą ń ć ż ą ź ś ź ż ń ń Ó ń Ż
Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:
Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,
Bładzenie przypadkowe i lokalizacja
Bładzenie przypadkowe i lokalizacja Zdzisław Burda Jarosław Duda, Jean-Marc Luck, Bartłomiej Wacław Seminarium Wydziałowe WFiIS AGH, 07/11/2014 Plan referatu Wprowadzenie Zwykłe bładzenie przypadkowe (GRW)
Poznámky z matematiky
Poznámky z matematiky Verze: 6. října 04 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30
Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert
Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou
2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,
ę żą ć Ś Ś Ż Ś Ś ą Ś Ż Ś Ą Ś Ś Ó Ą Ż Ą Ę Ż ą Ż Ą ż Ą Ą ż ą ą ą ż Ń ŚĆ ą ęć ę ż ą ą ż ź ą Ą Ż Ą Ą Ę ą Ą Ą Ę Ą ż Ą ż Ą ą Ę ę Ę Ż Ę Ę ę ą ęć ż ę ż ą ą Ę Ż Ś Ą Ó ż Ż ęć ą ż ą ą ą Ę ż Ć ę ż ą ą Ę Ś ą ą Ń ź