Periodický pohyb obecného oscilátoru ve dvou dimenzích

Wielkość: px
Rozpocząć pokaz od strony:

Download "Periodický pohyb obecného oscilátoru ve dvou dimenzích"

Transkrypt

1 Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta aplikovaných věd, Západočeská univerzita v Plzni Matematické modelování, Šárka Petříčková / 14

2 Program prezentace 1 Motivace 2 Harmonický oscilátor 3 Speciální typ obecného Popis systému Analytické řešení Postup získání periodických řešení Vizualizace 4 Další cíle Šárka Petříčková / 14

3 Definice úlohy Systém dvou nelineárních diferenciálních rovnic druhého řádu s po částech konstantními funkcemi k(x, y) and l(x, y) x + k(x, y)x = 0, y + l(x, y)y = 0, Cílem je pro speciální volbu funkcí k(x, y) a l(x, y) zformulovat podmínky pro existenci periodických řešení. Šárka Petříčková / 14

4 Motivace Motivace Mechanika, elektrotechnika (LC obvody), optika, kvantová fyzika, chemie, biologie Dvourozměrný mechanický oscilátor s tuhostí pružin měnící se v závislosti na znaménku souřadnic x, y okamžité výchylky (tyč kmitající mezi čtyřmi stěnami různých tuhostí) l 1 k 1 k 2 l 2 Šárka Petříčková / 14

5 Harmonický oscilátor oscilátor Popis systému Netlumený oscilátor jednotkové hmotnosti bez přidané budící síly Oscilace okolo stabilní rovnovážné pozice Hookův zákon x + kx = 0 y + ly = 0 x(t) = A sin( kt) y(t) = B sin( lt ϕ) Lissajousovy obrazce J. A. Lissajous (FR, ), N. Bowditch (USA, ) Trajektorie je uzavřená právě tehdy, když platí k l podmínkách. Q, nezávisle na počátečních Šárka Petříčková / 14

6 Speciální typ obecného Systém dvou nelineárních diferenciálních rovnic druhého řádu se speciálními, po částech konstantními, funkcemi k(x) and l(x) x + k(x)x = 0, y + l(x)y = 0, { k1 pro x > 0, k(x) = k 2 pro x 0, { l1 pro x > 0, l(x) = l 2 pro x 0. Šárka Petříčková / 14

7 Speciální typ obecného Systém může být přepsán jako x + k 1 x + k 2 x = 0, (1) y + l 1 χ(x + )y l 2 χ(x )y = 0, (2) x + := max{x, 0}, x := max{ x, 0}, χ(x + ) = { 1 pro x > 0, 0 pro x 0, χ(x ) = { 1 pro x < 0, 0 pro x 0. Vlastnosti (1) - nezávislá na y and pozitivně homogenní (Fučíkova rovnice) (2) - lineární (Meissnerova rovnice [E. MEISSNER, Über Schüttel-schwingungen in Systemen mit Periodisch Veranderlicher Elastizität; Schweizer Bauzeitung, 72, No. 10 (1918), pp ]) (1)+(2) - autonomní Šárka Petříčková / 14

8 Analytické řešení pro x S. Fučík (CR, )[ S. FUČÍK; Solvability of Nonlinear Equations and Boundary Value Problems, D. Reidel Publishing Company, Dordrecht (1980), Chpt , pp ] E. N. Dancer (AUS, )[E. N. DANCER, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76A (1977), pp ] Analytická metoda střelby, lepení půlvln Autonomní a pozitivně homogenní systém = x(0) = 0, x (0) = 1 x(t) = { 1 k1 sin( k 1t) for t (0, T 0) 1 k2 sin( k 2( π k1 t)) for t (T 0, T ) T 0 = π k1 T = nπ k1 + nπ k2 n N Šárka Petříčková / 14

9 Analytické řešení pro x S. Fučík (CR, )[ S. FUČÍK; Solvability of Nonlinear Equations and Boundary Value Problems, D. Reidel Publishing Company, Dordrecht (1980), Chpt , pp ] E. N. Dancer (AUS, )[E. N. DANCER, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76A (1977), pp ] Analytická metoda střelby, lepení půlvln Autonomní a pozitivně homogenní systém = x(0) = 0, x (0) = 1 x(t) = { 1 k1 sin( k 1t) for t (0, T 0) 1 k2 sin( k 2( π k1 t)) for t (T 0, T ) T 0 = π k1 T = nπ k1 + nπ k2 n N Šárka Petříčková / 14

10 Analytické řešení pro y Výběr první Fučíkovy křivky (n = 1) Řešení pro y (pro l 1 > 0, l 2 > 0) y(t) = { y1(t) = A sin( l 1t) + B cos( l 1t), t (0, T 0) y 2(t) = C sin( l 2(t T )) + D cos( l 2(t T )), t (T 0, T ). Periodické podmínky y(0) = y(t ) y (0) = y (T ) y(t 0 ) = y(t 0+) y (T 0 ) = y (T 0+) Systém čtyř rovnic o neznámých A,B,C,D a l 1,l 2 Eliminace A,B,C,D Implicitní předpis F (l 1, l 2) = 0 křivek 2 sin( l 1T 0) sin( l 2(T 0 T )) ( l1 +l 2 l1 l2 ) 2 cos( l 2(T 0 T )) cos( l 1T 0) = 0 Šárka Petříčková / 14

11 Analytické řešení pro y Výběr první Fučíkovy křivky (n = 1) Řešení pro y (pro l 1 > 0, l 2 > 0) y(t) = { y1(t) = A sin( l 1t) + B cos( l 1t), t (0, T 0) y 2(t) = C sin( l 2(t T )) + D cos( l 2(t T )), t (T 0, T ). Periodické podmínky y(0) = y(t ) y (0) = y (T ) y(t 0 ) = y(t 0+) y (T 0 ) = y (T 0+) Systém čtyř rovnic o neznámých A,B,C,D a l 1,l 2 Eliminace A,B,C,D Implicitní předpis F (l 1, l 2) = 0 křivek 2 sin( l 1T 0) sin( l 2(T 0 T )) ( l1 +l 2 l1 l2 ) 2 cos( l 2(T 0 T )) cos( l 1T 0) = 0 Šárka Petříčková / 14

12 Analytické řešení pro y Výběr první Fučíkovy křivky (n = 1) Řešení pro y (pro l 1 > 0, l 2 > 0) y(t) = { y1(t) = A sin( l 1t) + B cos( l 1t), t (0, T 0) y 2(t) = C sin( l 2(t T )) + D cos( l 2(t T )), t (T 0, T ). Periodické podmínky y(0) = y(t ) y (0) = y (T ) y(t 0 ) = y(t 0+) y (T 0 ) = y (T 0+) Systém čtyř rovnic o neznámých A,B,C,D a l 1,l 2 Eliminace A,B,C,D Implicitní předpis F (l 1, l 2) = 0 křivek 2 sin( l 1T 0) sin( l 2(T 0 T )) ( l1 +l 2 l1 l2 ) 2 cos( l 2(T 0 T )) cos( l 1T 0) = 0 Šárka Petříčková / 14

13 Analytické řešení pro y Výběr první Fučíkovy křivky (n = 1) Řešení pro y (pro l 1 > 0, l 2 > 0) y(t) = { y1(t) = A sin( l 1t) + B cos( l 1t), t (0, T 0) y 2(t) = C sin( l 2(t T )) + D cos( l 2(t T )), t (T 0, T ). Periodické podmínky y(0) = y(t ) y (0) = y (T ) y(t 0 ) = y(t 0+) y (T 0 ) = y (T 0+) Systém čtyř rovnic o neznámých A,B,C,D a l 1,l 2 Eliminace A,B,C,D Implicitní předpis F (l 1, l 2) = 0 křivek 2 sin( l 1T 0) sin( l 2(T 0 T )) ( l1 +l 2 l1 l2 ) 2 cos( l 2(T 0 T )) cos( l 1T 0) = 0 Šárka Petříčková / 14

14 Analytické řešení pro y Výběr první Fučíkovy křivky (n = 1) Řešení pro y (pro l 1 > 0, l 2 > 0) y(t) = { y1(t) = A sin( l 1t) + B cos( l 1t), t (0, T 0) y 2(t) = C sin( l 2(t T )) + D cos( l 2(t T )), t (T 0, T ). Periodické podmínky y(0) = y(t ) y (0) = y (T ) y(t 0 ) = y(t 0+) y (T 0 ) = y (T 0+) Systém čtyř rovnic o neznámých A,B,C,D a l 1,l 2 Eliminace A,B,C,D Implicitní předpis F (l 1, l 2) = 0 křivek 2 sin( l 1T 0) sin( l 2(T 0 T )) ( l1 +l 2 l1 l2 ) 2 cos( l 2(T 0 T )) cos( l 1T 0) = 0 Šárka Petříčková / 14

15 Analytické řešení pro y Výběr první Fučíkovy křivky (n = 1) Řešení pro y (pro l 1 > 0, l 2 > 0) y(t) = { y1(t) = A sin( l 1t) + B cos( l 1t), t (0, T 0) y 2(t) = C sin( l 2(t T )) + D cos( l 2(t T )), t (T 0, T ). Periodické podmínky y(0) = y(t ) y (0) = y (T ) y(t 0 ) = y(t 0+) y (T 0 ) = y (T 0+) Systém čtyř rovnic o neznámých A,B,C,D a l 1,l 2 Eliminace A,B,C,D Implicitní předpis F (l 1, l 2) = 0 křivek 2 sin( l 1T 0) sin( l 2(T 0 T )) ( l1 +l 2 l1 l2 ) 2 cos( l 2(T 0 T )) cos( l 1T 0) = 0 Šárka Petříčková / 14

16 Postup získání periodických řešení 1) Volba n-té křivky Fučíkova spektra a jednoho z parametrů k 1, k 2 pro danou periodu 2) Určení druhého parametru použitím předpisu pro Fučíkovo spektrum Šárka Petříčková / 14

17 Postup získání periodických řešení 1) Volba n-té křivky Fučíkova spektra a jednoho z parametrů k 1, k 2 pro danou periodu 2) Určení druhého parametru použitím předpisu pro Fučíkovo spektrum Šárka Petříčková / 14

18 Postup získání periodických řešení 1) Volba n-té křivky Fučíkova spektra a jednoho z parametrů k 1, k 2 pro danou periodu 2) Určení druhého parametru použitím předpisu pro Fučíkovo spektrum Šárka Petříčková / 14

19 Postup získání periodických řešení 1) Volba n-té křivky Fučíkova spektra a jednoho z parametrů k 1, k 2 pro danou periodu 2) Určení druhého parametru použitím předpisu pro Fučíkovo spektrum 3) Výběr bodu na křivce zadané implicitně F (l 1, l 2) = 0 v (l 1, l 2)-rovině Šárka Petříčková / 14

20 Postup získání periodických řešení 1) Volba n-té křivky Fučíkova spektra a jednoho z parametrů k 1, k 2 pro danou periodu 2) Určení druhého parametru použitím předpisu pro Fučíkovo spektrum 3) Výběr bodu na křivce zadané implicitně F (l 1, l 2) = 0 v (l 1, l 2)-rovině Šárka Petříčková / 14

21 Postup získání periodických řešení 4) Určení počátečních podmínek pro proměnnou y 5) Vytvoření grafů Šárka Petříčková / 14

22 Vizualizace Šárka Petříčková / 14

23 Vizualizace Šárka Petříčková / 14

24 Vizualizace Šárka Petříčková / 14

25 Vizualizace Šárka Petříčková / 14

26 Vizualizace Šárka Petříčková / 14

27 Vizualizace Šárka Petříčková / 14

28 Vizualizace Šárka Petříčková / 14

29 Vizualizace Šárka Petříčková / 14

30 Vizualizace Šárka Petříčková / 14

31 Vizualizace Šárka Petříčková / 14

32 Další cíle Další cíle Vytvoření obecného řešiče úlohy pro libovolnou křivku Fučíkova spektra Přidání tlumení a budicí síly Šárka Petříčková / 14

33 Reference Další cíle E. A. Coddington, N. Levinson, Theory od Ordinary Differential Equations, McGraw-Hill Inc., 1955, Chpt. 1., pp E. N. DANCER, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76A (1977), pp S. FUČÍK; Solvability of Nonlinear Equations and Boundary Value Problems, D. Reidel Publishing Company, Dordrecht (1980), Chpt , pp E. MEISSNER, Über Schüttel-schwingungen in Systemen mit Periodisch Veranderlicher Elastizität; Schweizer Bauzeitung, 72, No. 10 (1918), pp P. NEČESAL, Nonlinear boundary value problems with asymmetric nonlinearities - periodic solutions and the Fučík spectrum, Ph.D. thesis, University of West Bohemia, Pilsen, Šárka Petříčková / 14

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

Diferenciální rovnice základní pojmy. Rovnice se

Diferenciální rovnice základní pojmy. Rovnice se Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více 5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

(13) Fourierovy řady

(13) Fourierovy řady (13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text

Bardziej szczegółowo

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

Univerzita Palackého v Olomouci

Univerzita Palackého v Olomouci Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly

Bardziej szczegółowo

Matematika 2, vzorová písemka 1

Matematika 2, vzorová písemka 1 Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět

Bardziej szczegółowo

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

(a). Pak f. (a) pro i j a 2 f

(a). Pak f. (a) pro i j a 2 f Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na

Bardziej szczegółowo

Matematický ústav UK Matematicko-fyzikální fakulta. Ukázky aplikací matematiky

Matematický ústav UK Matematicko-fyzikální fakulta. Ukázky aplikací matematiky Lineární a nelineární problémy v geometrickém modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta Ukázky aplikací matematiky Zbyněk Šír (MÚ UK) - Lineární a nelineární problémy v geometrickém

Bardziej szczegółowo

B. Patzák verze 01. Direct Approach to FEM

B. Patzák verze 01. Direct Approach to FEM B. Patzák (borek.patzak@fsv.cvut.cz), verze 0 Úvodní přednáška Direct Approach to FEM Úvod do Metody Konečných Prvků (MKP) Většina fyzikálních jevů může být popsána systémem parciálních diferenciálních

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a

Bardziej szczegółowo

Analiza matematyczna 3

Analiza matematyczna 3 Analiza matematyczna 3 Pochodna funkcji pierwsza pochodna: x'[t] x [t] Derivative[][x][t] x (t) D[x[t], t] x (t) 7. pochodna: Derivative[7][x][t] x (7) (t) D[x[t], {t, 7}] x (7) (t) pochodne funkcji wielu

Bardziej szczegółowo

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

Rovnice proudění Slapový model

Rovnice proudění Slapový model do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,

Bardziej szczegółowo

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r. Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Bardziej szczegółowo

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové

Bardziej szczegółowo

DFT. verze:

DFT. verze: Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály

Bardziej szczegółowo

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

Tvarová optimalizace pro 3D kontaktní problém

Tvarová optimalizace pro 3D kontaktní problém Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO POČÍTAČOVÁ GEOMETRIE JIŘÍ KOBZA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Bardziej szczegółowo

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D.   pf.jcu.cz Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 5 1. Obvody druhého řádu frekvenční a časová analýza Širokopásmový obvod Rezonanční obvod 1 RC obvod

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z) v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě

Bardziej szczegółowo

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

Pracovní listy. Stereometrie hlavního textu

Pracovní listy. Stereometrie hlavního textu v tomto dodatu jsou sebrána zadání všech úloh řešených v aitolách Planimetrie a tereometrie hlavního textu slouží ta jao racovní listy samostatnému rocvičení uvedených úloh Zracoval Jiří Doležal 1 eznam

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

David Nádhera Kontinuace implicitně zadané křivky

David Nádhera Kontinuace implicitně zadané křivky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE David Nádhera Kontinuace implicitně zadané křivky Katedra numerické matematiky Vedoucí bakalářské práce: Doc. RNDr. Vladimír Janovský

Bardziej szczegółowo

Energetické principy a variační metody ve stavební mechanice

Energetické principy a variační metody ve stavební mechanice Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná

Bardziej szczegółowo

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být Obyčejné diferenciální rovnice 1 Úvod Obyčejnou diferenciální rovnici N-tého řádu f ( x,y,y,y,...,y (N)) = g(x) převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce y z 1 y z 2...

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

Cauchyova úloha pro obyčejnou diferenciální rovnici

Cauchyova úloha pro obyčejnou diferenciální rovnici Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů (Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace (průhyby,

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

Fyzika laserů. Kvantová teorie laseru. 22. dubna Katedra fyzikální elektroniky.

Fyzika laserů. Kvantová teorie laseru. 22. dubna Katedra fyzikální elektroniky. Fyzika laserů Kvantová teorie laseru Kvazidistribuční funkce. Zobecněné uspořádání. Fokkerova-Planckova rovnice. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz

Bardziej szczegółowo

Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.

Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a. Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít

Bardziej szczegółowo

Představení projektu

Představení projektu Moderní zpřístupnění historických pramenů Představení projektu P. Král 1,2 K. Halla 3 R. Široký4 L. Lenc 2 J. Martínek 1 1 Katedra informatiky a výpočetní techniky, FAV ZČU v Plzni 2 Nové technologie pro

Bardziej szczegółowo

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji

Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji Marek A. Kowalski Uniwersytet Kardynała Stefana Wyszyńskiego

Bardziej szczegółowo

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions Matematyka 3 Suma szeregu? Sum i max Sum[f, {i, i max }] evaluates the sum f. Sum[f, {i, i min, i max }] starts with i = i min. Sum[f, {i, i min, i max, di}] uses steps di. Sum[f, {i, {i 1, i 2, }}] uses

Bardziej szczegółowo

Paralelní implementace a optimalizace metody BDDC

Paralelní implementace a optimalizace metody BDDC Paralelní implementace a optimalizace metody BDDC J. Šístek, M. Čertíková, P. Burda, S. Pták, J. Novotný, A. Damašek, FS ČVUT, ÚT AVČR 22.1.2007 / SNA 2007 Osnova Metoda BDDC (Balancing Domain Decomposition

Bardziej szczegółowo

1 Předmluva Značení... 3

1 Předmluva Značení... 3 Sbírka příkladů k předmětu Lineární systémy Jan Krejčí, korektura Martin Goubej 07 Obsah Předmluva. Značení..................................... 3 Lineární obyčejné diferenciální rovnice s konstantními

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura

Bardziej szczegółowo

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2

Bardziej szczegółowo

Referenční plochy. Podpořeno z projektu FRVŠ 584/2011.

Referenční plochy. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma

Bardziej szczegółowo

Úvod do TEXu. Brno, L A TEX dokumenty a matematika.

Úvod do TEXu. Brno, L A TEX dokumenty a matematika. Úvod do TEXu 3 L A TEX dokumenty a matematika. Matematický mód Matematická prostředí v PlainTEXu a L A TEXu Mezery a písma v matematickém módu Matematické značky a symboly Konstrukce v matematickém módu

Bardziej szczegółowo

Numerické metody a statistika

Numerické metody a statistika Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 2016-2017 ( ) Numerické metody a statistika 2016-2017 1 / 17 Číslo předmětu: 714-0781/02 Rozsah: 2+2 Hodnocení: 6 kreditů Přednáší: Radek Kučera

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY

POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY POLIURETAOWE SPRĘŻYY ACISKOWE. POLYURETHAOVÉ TLAČÉ PRUŽIY Oferowane są wymiary wyrobów o różnych twardościach. Konstrukcja tych sprężyn umożliwia zastąpienie sprężyn tradycyjnych tam, gdzie korozja, wibracje,

Bardziej szczegółowo

Uniwersytet Rzeszowski

Uniwersytet Rzeszowski Seminarium z Równań Różniczkowych 21 marca 2017 r., godz. 12:15, sala 270 (B2): mgr Grzegorz Głowa, mgr Jarosław Napora, wykorzystaniem języka R, cz.2 Analizy statystyczne z 7 marca 2017 r., godz. 12:15,

Bardziej szczegółowo

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala

Bardziej szczegółowo

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy! Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

podle přednášky doc. Eduarda Fuchse 16. prosince 2010

podle přednášky doc. Eduarda Fuchse 16. prosince 2010 Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 23. Rozwiązywanie równań różniczkowych cząstkowych Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Paradoxy geometrické pravděpodobnosti

Paradoxy geometrické pravděpodobnosti Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh

Bardziej szczegółowo

O pewnych aspektach teorii równań. Materia ly pomocnicze do wyk ladu dla Studium Doktoranckiego Matematyki

O pewnych aspektach teorii równań. Materia ly pomocnicze do wyk ladu dla Studium Doktoranckiego Matematyki O pewnych aspektach teorii równań różniczkowych Materia ly pomocnicze do wyk ladu dla Studium Doktoranckiego Matematyki Bogdan Przeradzki 18 października 2004 Przedstawimy tutaj dwa nurty badań zwiazanych

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36 (1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,

Bardziej szczegółowo

SPIS TREŚCI 1. Równania II rzędu

SPIS TREŚCI 1. Równania II rzędu SPIS TREŚCI 1 Równania II rzędu Spis treści 1 Równania rzędu drugiego 2 1.1 Klasyfikacja i postać kanoniczna równań rzędu drugiego............... 2 1.2 Warunki początkowe..................................

Bardziej szczegółowo

Uniwersytet Warmińsko-Mazurski w Olsztynie

Uniwersytet Warmińsko-Mazurski w Olsztynie Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x

Bardziej szczegółowo

Zdzisław Kamont ( )

Zdzisław Kamont ( ) Zdzisław Kamont (1942-2012) Zdzisław Kamont urodził się 1 listopada 1942 roku we wsi Leśniki w obecnym województwie podlaskim. Był absolwentem Liceum Pedagogicznego w Białymstoku. W 1961 roku zdał egzamin

Bardziej szczegółowo