Matematika (KMI/PMATE)
|
|
- Robert Grzelak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE)
2 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární funkce pojem limity funkce v bodě vlastní limita funkce jednostranné limity nevlastní limita funkce limita funkce v nevlastním bodě spojitost funkce spojitost funkce v bodě spojitost funkce na otevřeném intervalu spojitost funkce na uzavřeném intervalu početní operace s limitami Matematika (KMI/PMATE) 2 / 30
3 Lineární funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q k... směrnice, q... absolutní člen D(f) = R H(f) = R Příklady lineárních funkcí f(x) = 3x 2 k = 3, q = 2 f(x) = 2x 5 k = 2, q = 5 f(x) = 5x + 1 k = 5, q = 1 f(x) = 3x + 1 k = 3, q = 1 Matematika (KMI/PMATE) 3 / 30
4 Graf lineární funkce Grafem lineární funkce je přímka. Na obrázcích jsou uvedeny grafy funkcí f(x) = 2x 1 a f(x) = x + 4. Graf funkce f(x) = 2x 1 Graf funkce f(x) = x + 4 Matematika (KMI/PMATE) 4 / 30
5 Lineární funkce - shrnutí Mějme lineární funkci f(x) = kx + q. Hodnota q odpovídá funkční hodnotě pro x = 0. Je tedy q = f(0). Graf lineární funkce protíná svislou osu ve výšce q. Hodnota směrnice k je rovna změně funkční hodnoty v případě, že hodnota x se zvětší o jednotku. Hodnota směrnice k ovlivňuje sklon grafu lineární funkce - čím větší hodnota k, tím větší sklon dané přímky. Obecně je k = f(x 2) f(x 1 ) x 2 x 1. Matematika (KMI/PMATE) 5 / 30
6 Lineární funkce - shrnutí Mějme lineární funkci f(x) = kx + q. Hodnota q odpovídá funkční hodnotě pro x = 0. Je tedy q = f(0). Graf lineární funkce protíná svislou osu ve výšce q. Hodnota směrnice k je rovna změně funkční hodnoty v případě, že hodnota x se zvětší o jednotku. Hodnota směrnice k ovlivňuje sklon grafu lineární funkce - čím větší hodnota k, tím větší sklon dané přímky. Obecně je k = f(x 2) f(x 1 ) x 2 x 1. Matematika (KMI/PMATE) 5 / 30
7 Limita funkce Mějme funkci f(x) = x + 4. Jak se chová f(x), jestliže se hodnota proměnné x bĺıží k číslu 5? Přibližování zleva x 4,9 4,99 4,999 4,9999 4, , f(x) = x + 4 8,9 8,99 8,999 8,9999 8, , Matematika (KMI/PMATE) 6 / 30
8 Limita funkce Mějme funkci f(x) = x + 4. Jak se chová f(x), jestliže se hodnota proměnné x bĺıží k číslu 5? Přibližování zleva x 4,9 4,99 4,999 4,9999 4, , f(x) = x + 4 8,9 8,99 8,999 8,9999 8, , Přibližování zprava x 5,1 5,01 5,001 5,0001 5, , f(x) = x + 4 9,1 9,01 9,001 9,0001 9, , Matematika (KMI/PMATE) 6 / 30
9 Limita funkce Mějme funkci f(x) = x + 4. Jak se chová f(x), jestliže se hodnota proměnné x bĺıží k číslu 5? Přibližování zleva x 4,9 4,99 4,999 4,9999 4, , f(x) = x + 4 8,9 8,99 8,999 8,9999 8, , Přibližování zprava x 5,1 5,01 5,001 5,0001 5, , f(x) = x + 4 9,1 9,01 9,001 9,0001 9, , Závěr: Čím bĺıž je x číslu 5, tím bĺıž je f(x) číslu 9. Matematika (KMI/PMATE) 6 / 30
10 Limita funkce Mějme funkci f(x) = x + 4. Jak se chová f(x), jestliže se hodnota proměnné x bĺıží k číslu 5? Přibližování zleva x 4,9 4,99 4,999 4,9999 4, , f(x) = x + 4 8,9 8,99 8,999 8,9999 8, , Přibližování zprava x 5,1 5,01 5,001 5,0001 5, , f(x) = x + 4 9,1 9,01 9,001 9,0001 9, , Závěr: Čím bĺıž je x číslu 5, tím bĺıž je f(x) číslu 9. Matematika (KMI/PMATE) 6 / 30
11 Limita funkce Limita funkce Tento druh závislosti označujeme symbolem a čteme: lim(x + 4) = 9 x 5 limita funkce f(x) = x + 4 pro x jdoucí k pěti je rovna devíti. Otázka: Proč tak složitě? Proč to děláme tak složitě? Proč pouze nedosadíme za x číslo 5 do předpisu funkce f(x) = x + 4? Je přeci zřejmé, že platí f(5) = = 9. Matematika (KMI/PMATE) 7 / 30
12 Limita funkce Limita funkce Tento druh závislosti označujeme symbolem a čteme: lim(x + 4) = 9 x 5 limita funkce f(x) = x + 4 pro x jdoucí k pěti je rovna devíti. Otázka: Proč tak složitě? Proč to děláme tak složitě? Proč pouze nedosadíme za x číslo 5 do předpisu funkce f(x) = x + 4? Je přeci zřejmé, že platí f(5) = = 9. Matematika (KMI/PMATE) 7 / 30
13 Limita funkce - Příklad Vypočtěte lim x 2 x 2 4 x 2. Snadno ověříme, že bod x = 2 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(2). Matematika (KMI/PMATE) 8 / 30
14 Limita funkce - Příklad Vypočtěte lim x 2 x 2 4 x 2. Snadno ověříme, že bod x = 2 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(2). x 1,9 1,99 1,999 1, ,0001 2,001 2,01 2,1 f(x) 3,9 3,99 3,999 3,9999? 4,0001 4,001 4,01 4,1 Matematika (KMI/PMATE) 8 / 30
15 Limita funkce - Příklad Vypočtěte lim x 2 x 2 4 x 2. Snadno ověříme, že bod x = 2 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(2). x 1,9 1,99 1,999 1, ,0001 2,001 2,01 2,1 f(x) 3,9 3,99 3,999 3,9999? 4,0001 4,001 4,01 4,1 Proč nás zajímá hodnota v bodě x = 2? Proč je limita rovna právě 4? Matematika (KMI/PMATE) 8 / 30
16 Limita funkce - Příklad Vypočtěte lim x 2 x 2 4 x 2. Snadno ověříme, že bod x = 2 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(2). x 1,9 1,99 1,999 1, ,0001 2,001 2,01 2,1 f(x) 3,9 3,99 3,999 3,9999? 4,0001 4,001 4,01 4,1 Proč nás zajímá hodnota v bodě x = 2? Proč je limita rovna právě 4? Matematika (KMI/PMATE) 8 / 30
17 Limita funkce Odpověd na první otázku Limity nám pomáhají např. najít extrémní (největší a nejmenší) funkční hodnoty. Využíváme přitom pojem tečny grafu funkce. Tečna ke grafu funkce f(x) v bodě a. Připomeňme, že směrnici přímky, která prochází body o souřadnicích [a, f(a)] a [x, f(x)] lze vypočítat dle vzorce k = f(x) f(a). x a Tečna ke grafu funkce a její směrnice Matematika (KMI/PMATE) 9 / 30
18 Limita funkce Odpověd na druhou otázku Je: x 2 4 x 2 (x 2)(x + 2) =. x 2 Pro všechna x 2 je (x 2)(x + 2) x 2 = x + 2. x 1,9 1,99 1, ,001 2,01 2,1 f(x) 3,9 3,99 3,999? 4,001 4,01 4,1 Matematika (KMI/PMATE) 10 / 30
19 Limita funkce Odpověd na druhou otázku Je: x 2 4 x 2 (x 2)(x + 2) =. x 2 Pro všechna x 2 je (x 2)(x + 2) x 2 = x + 2. x 1,9 1,99 1, ,001 2,01 2,1 f(x) 3,9 3,99 3,999? 4,001 4,01 4,1 Matematika (KMI/PMATE) 10 / 30
20 Limita funkce Vysvětlení Pokud uvažujeme hodnoty f(x) pro x bĺıžící se 2 (a tedy x 2), potom lze výraz x2 4 nahradit výrazem x + 2, u kterého je zřejmé, že čím bĺıž x 2 jsme k hodnotě x = 2, tím víc se hodnota f(x) bĺıží ke čtyřem. Je tedy: x 2 4 lim x 2 x 2 = lim (x + 2) = 4. x 2 Matematika (KMI/PMATE) 11 / 30
21 Limita funkce Vysvětlení Pokud uvažujeme hodnoty f(x) pro x bĺıžící se 2 (a tedy x 2), potom lze výraz x2 4 nahradit výrazem x + 2, u kterého je zřejmé, že čím bĺıž x 2 jsme k hodnotě x = 2, tím víc se hodnota f(x) bĺıží ke čtyřem. Je tedy: x 2 4 lim x 2 x 2 = lim (x + 2) = 4. x 2 Nakreslete graf funkce f(x)! Matematika (KMI/PMATE) 11 / 30
22 Limita funkce Vysvětlení Pokud uvažujeme hodnoty f(x) pro x bĺıžící se 2 (a tedy x 2), potom lze výraz x2 4 nahradit výrazem x + 2, u kterého je zřejmé, že čím bĺıž x 2 jsme k hodnotě x = 2, tím víc se hodnota f(x) bĺıží ke čtyřem. Je tedy: x 2 4 lim x 2 x 2 = lim (x + 2) = 4. x 2 Nakreslete graf funkce f(x)! Matematika (KMI/PMATE) 11 / 30
23 Limita funkce Příklad ( Vypočtěte lim x + x ). x 0 x Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). x -0,1-0,01-0, ,001 0,01 0,1 f(x) -1,1-1,01-1,001? 1,001 1,01 1,1 Matematika (KMI/PMATE) 12 / 30
24 Limita funkce Příklad ( Vypočtěte lim x + x ). x 0 x Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). x -0,1-0,01-0, ,001 0,01 0,1 f(x) -1,1-1,01-1,001? 1,001 1,01 1,1 ( Je lim x + x ) ( = 1, lim x + x ) = 1 x 0 x x 0 + x Matematika (KMI/PMATE) 12 / 30
25 Limita funkce Příklad ( Vypočtěte lim x + x ). x 0 x Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). x -0,1-0,01-0, ,001 0,01 0,1 f(x) -1,1-1,01-1,001? 1,001 1,01 1,1 ( Je lim x + x ) ( = 1, lim x + x ) = 1 x 0 x x 0 + x Při přibližování zleva dostáváme jiné hodnoty, než při přibližování zprava (nakreslete graf funkce). Matematika (KMI/PMATE) 12 / 30
26 Limita funkce Příklad ( Vypočtěte lim x + x ). x 0 x Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). x -0,1-0,01-0, ,001 0,01 0,1 f(x) -1,1-1,01-1,001? 1,001 1,01 1,1 ( Je lim x + x ) ( = 1, lim x + x ) = 1 x 0 x x 0 + x Při přibližování zleva dostáváme jiné hodnoty, než při přibližování zprava (nakreslete graf funkce). Matematika (KMI/PMATE) 12 / 30
27 Limita funkce Neformální definice Necht platí, že pro x bĺıžící se číslu a (zleva i zprava) se funkční hodnoty funkce f(x) bĺıží jednomu číslu b. Potom říkáme, že f(x) se bĺıží b pro x jdoucí k a, resp. že limita f(x) pro x a je (rovna číslu) b. Píšeme lim f(x) = b. x a Jestliže se hodnoty f(x) nebĺıží k jedné konkrétní hodnotě b pro x jdoucí k číslu a (zprava i zleva), potom říkáme, že funkce f(x) nemá limitu pro x a. Matematika (KMI/PMATE) 13 / 30
28 Limita funkce Neformální definice Necht platí, že pro x bĺıžící se číslu a (zleva i zprava) se funkční hodnoty funkce f(x) bĺıží jednomu číslu b. Potom říkáme, že f(x) se bĺıží b pro x jdoucí k a, resp. že limita f(x) pro x a je (rovna číslu) b. Píšeme lim f(x) = b. x a Jestliže se hodnoty f(x) nebĺıží k jedné konkrétní hodnotě b pro x jdoucí k číslu a (zprava i zleva), potom říkáme, že funkce f(x) nemá limitu pro x a. Matematika (KMI/PMATE) 13 / 30
29 Poznámky k definici Je důležité, aby se funkční hodnoty f(x) bĺıžily k jednomu stejnému číslu, když se hodnota x bĺıží k číslu a z obou stran. Pokud se například f(x) bĺıží hodnotě 1 pro x = 1, 9; 1, 99; 1, 999,..., tj. pro x 2 bĺıží hodnotě 3 pro x = 2, 1; 2, 01; 2, 001,..., tj. pro x 2 + potom limita f(x) pro x 2 neexistuje. Může se stát, že funkční hodnota f(x) se nepřibližuje k žádné konkrétní hodnotě při přibližování x k a z obou stran. Potom říkáme, že limita f(x) pro x a neexistuje. V uvedené neformální definici používáme poněkud nepřesný pojem přibližovat se k.... Je nutné tuto definici upřesnit. Matematika (KMI/PMATE) 14 / 30
30 Korektní definice limity funkce Korektní definice limity funkce Řekneme, že číslo b je limitou funkce f(x) pro x a, tedy: lim f(x) = b, x a jestliže ke každému reálnému číslu ε > 0 existuje reálné číslo δ > 0 takové, že pro všechna x (a δ, a) (a, a + δ) platí f(x) (b ε, b + ε). Matematika (KMI/PMATE) 15 / 30
31 Jednostranná limita funkce Definice (jednostranné) limity funkce zleva Řekneme, že lim f(x) = b, x a jestliže existuje takové číslo b, že ke každému reálnému číslu ε > 0 existuje reálné číslo δ > 0 takové, že když x (a δ, a), potom je f(x) (b ε, b + ε). Definice (jednostranné) limity funkce zprava Řekneme, že lim f(x) = b, x a + jestliže existuje takové číslo b, že ke každému reálnému číslu ε > 0 existuje reálné číslo δ > 0 takové, že když x (a, a + δ), potom je f(x) (b ε, b + ε). Matematika (KMI/PMATE) 16 / 30
32 Jednostranná limita funkce Příklad Necht je f(x) = x + x x. Potom je lim f(x) = 1 x 0 lim f(x) = +1 x 0 + lim x 0 f(x) neexistuje Matematika (KMI/PMATE) 17 / 30
33 Nevlastní limita funkce Příklad - nevlastní limita ( ) 1 Vypočtěte lim x 0 x 2. Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). Zleva: x -0,1-0,01-0,001-0,000 1 f(x) Zprava: x 0,1 0,01 0,001 0,000 1 f(x) Matematika (KMI/PMATE) 18 / 30
34 Nevlastní limita funkce Z předchozích dvou tabulek bylo vidět, že když se hodnota x dostane dostatečně bĺızko k 0 (zleva i zprava), potom funkční hodnoty f(x) rostou bez omezení - nade všechny meze. Vlastní limita f(x) pro x 0 neexistuje, nebot neexistuje číslo, které by vykazovalo vlastnost limitní hodnoty b. Matematika (KMI/PMATE) 19 / 30
35 Nevlastní limita funkce Z předchozích dvou tabulek bylo vidět, že když se hodnota x dostane dostatečně bĺızko k 0 (zleva i zprava), potom funkční hodnoty f(x) rostou bez omezení - nade všechny meze. Vlastní limita f(x) pro x 0 neexistuje, nebot neexistuje číslo, které by vykazovalo vlastnost limitní hodnoty b. Takovéto typy limit označujeme jako nevlastní limity a říkáme, že divergují k +, resp. k. lim f(x) =, lim x a f(x) =, lim x a x 0 1 x 2 = Matematika (KMI/PMATE) 19 / 30
36 Nevlastní limita funkce Z předchozích dvou tabulek bylo vidět, že když se hodnota x dostane dostatečně bĺızko k 0 (zleva i zprava), potom funkční hodnoty f(x) rostou bez omezení - nade všechny meze. Vlastní limita f(x) pro x 0 neexistuje, nebot neexistuje číslo, které by vykazovalo vlastnost limitní hodnoty b. Takovéto typy limit označujeme jako nevlastní limity a říkáme, že divergují k +, resp. k. lim f(x) =, lim x a f(x) =, lim x a x 0 1 x 2 = Matematika (KMI/PMATE) 19 / 30
37 Definice nevlastní limity funkce Definice nevlastní limity Řekneme, že lim x a f(x) =, jestliže ke každému reálnému číslu K > 0 existuje reálné číslo δ > 0 takové, že pro všechna x (a δ, a) (a, a + δ) platí nerovnost f(x) > K. Definice nevlastní limity Řekneme, že lim x a f(x) =, jestliže ke každému reálnému číslu K < 0 existuje reálné číslo δ > 0 takové, že pro všechna x (a δ, a) (a, a + δ) platí nerovnost f(x) < K. Matematika (KMI/PMATE) 20 / 30
38 Limita v nevlastním bodě 2x Určete hodnotu lim x x x f(x) f(x) 3,5 2,0297 2,0003 2,0000 Matematika (KMI/PMATE) 21 / 30
39 Limita v nevlastním bodě 2x Určete hodnotu lim x x x f(x) f(x) 3,5 2,0297 2,0003 2,0000 Definice limity v nevlastním bodě Řekneme, že lim x f(x) = b, jestliže pro všechna reálná čísla ε > 0 existuje reálné číslo x 0 takové, že pro všechna x (x 0, ) platí f(x) (b ε, b + ε). Matematika (KMI/PMATE) 21 / 30
40 Limita v nevlastním bodě 2x Určete hodnotu lim x x x f(x) f(x) 3,5 2,0297 2,0003 2,0000 Definice limity v nevlastním bodě Řekneme, že lim x f(x) = b, jestliže pro všechna reálná čísla ε > 0 existuje reálné číslo x 0 takové, že pro všechna x (x 0, ) platí f(x) (b ε, b + ε). Matematika (KMI/PMATE) 21 / 30
41 Spojitost funkce Obecný náhled: Jestliže se hodnoty funkce mění plynule, tj. bez náhlých skoků, říkáme, že daná funkce je spojitá. Spojitost v bodě I Spojitost v bodě II Spojitost v bodě III Funkce f(x) je nespojitá v bodě a. Funkce f(x) je nespojitá v bodě a. Funkce f(x) je spojitá v bodě a. Matematika (KMI/PMATE) 22 / 30
42 Spojitost funkce Definice spojitosti funkce v bodě Necht f(x) je funkce a číslo a je prvkem definičního oboru funkce f(x). Řekneme, že funkce f(x) je spojitá v bodě a, jestliže existuje vlastní limita lim x a f(x) platí rovnost lim x a f(x) = f(a) Řekneme, že funkce je spojitá na otevřeném intervalu I, jestliže je spojitá v každém bodě intervalu I. Matematika (KMI/PMATE) 23 / 30
43 Spojitost funkce - alternativní definice Definice jednostranné spojitosti funkce v bodě Necht f(x) je funkce a číslo a je prvkem definičního oboru funkce f(x). Řekneme, že funkce f(x) je spojitá zleva v bodě a, jestliže existuje limita zleva lim f(x) x a platí rovnost lim f(x) = f(a) x a Řekneme, že funkce f(x) je spojitá zprava v bodě a, jestliže existuje limita zprava lim f(x) x a + platí rovnost lim f(x) = f(a) x a + Řekneme, že funkce je spojitá v uzavřeném intervalu a, b, jestliže je spojitá v každém bodě otevřeného intervalu (a, b) a dále je spojitá zprava v bodě a a současně je spojitá zleva v bodě b. Matematika (KMI/PMATE) 24 / 30
44 Spojitost funkce Která z uvedených funkcí je spojitá na svém definičním oboru? { x + 1 pro x 2, f(x) = 5 x pro x > 2 g(x) = { x + 1 pro x < 2, 6 x pro x > 2 h(x) = 1 { x 1/x pro x 0, k(x) = 0 pro x = 0 Matematika (KMI/PMATE) 25 / 30
45 Spojitost a limita funkce Z definice spojitosti funkce v bodě plyne, že pokud víme, že v bodě a je funkce f(x) spojitá, potom lze limitu lim x a f(x) vypočítat ze vztahu lim f(x) = f(a). x a Každá funkce, která vznikne z mocninné funkce, a dále pak z goniometrických, cyklometrických, exponenciálních a logaritmických funkcí pomocí konečného počtu početních operací sčítání, odčítání, násobení, dělení a skládání, je spojitá na svém definičním oboru. Matematika (KMI/PMATE) 26 / 30
46 Operace s limitami Pravidla pro počítání s limitami V následujících vzorcích předpokládáme, že existují limity Potom platí následující vzorce: lim f(x), a lim g(x). x a x a lim[f(x) + g(x)] = lim f(x) + lim g(x) x a x a x a [f(x) g(x)] = lim f(x) lim lim x a lim x a g(x) x a x a [f(x) g(x)] = lim f(x) lim g(x) x a x a f(x) lim x a g(x) = lim x a f(x) lim x a g(x) ( 0) Matematika (KMI/PMATE) 27 / 30
47 Významné vzorce sin x lim x 0 x = 1 e x 1 lim = 1 x 0 x a x 1 lim = ln a x 0 x ln(1 + x) lim = 1 x 0 x lim x 0 m (1 + x) n 1 x = n m Matematika (KMI/PMATE) 28 / 30
48 Významné vzorce sin x lim x 0 x = 1 e x 1 lim = 1 x 0 x a x 1 lim = ln a x 0 x ln(1 + x) lim = 1 x 0 x lim x 0 m (1 + x) n 1 x = n m Matematika (KMI/PMATE) 29 / 30
49 Sendvičová věta Předpokládejme, že existuje reálné číslo δ > 0 takové, že pro všechna x (a δ, a) (a, a + δ) jsou splněny nerovnosti f(x) g(x) h(x). Dále předpokládejme, že jsou splněny rovnosti lim f(x) = lim h(x) = b. x a x a Potom existuje i limita lim x a g(x) a platí lim g(x) = b. x a Matematika (KMI/PMATE) 30 / 30
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Bardziej szczegółowoKristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Bardziej szczegółowoMATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Bardziej szczegółowo(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Bardziej szczegółowoNecht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Bardziej szczegółowoKomplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Bardziej szczegółowoKristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Bardziej szczegółowoFunkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Bardziej szczegółowo(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Bardziej szczegółowoObsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Bardziej szczegółowox2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Bardziej szczegółowoNumerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Bardziej szczegółowoÚvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Bardziej szczegółowo1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A
1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}
Bardziej szczegółowoEdita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Bardziej szczegółowoFunkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura
Bardziej szczegółowoVybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Bardziej szczegółowoEuklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Bardziej szczegółowoAproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Bardziej szczegółowoKomplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Bardziej szczegółowo1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Bardziej szczegółowoPrůvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Bardziej szczegółowoFunkce více proměnných: limita, spojitost, derivace
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více
Bardziej szczegółowo5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Bardziej szczegółowoKapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Bardziej szczegółowoLinea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Bardziej szczegółowoPetr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Bardziej szczegółowoUrčitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Bardziej szczegółowoMatematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Bardziej szczegółowoElementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Bardziej szczegółowoMatematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
Bardziej szczegółowoMatematická analýza pro učitele (text je v pracovní verzi)
Matematická analýza pro učitele (text je v pracovní verzi) Martina Šimůnková 6. června 208 2 Obsah Úvod 7. Co je to funkce.......................... 7.2 Co budeme na funkcích zkoumat................. 9.2.
Bardziej szczegółowofakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Bardziej szczegółowoDiferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Bardziej szczegółowoMatematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Bardziej szczegółowoObsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice
Bardziej szczegółowoMATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.
MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:
Bardziej szczegółowo7. Aplikace derivace
7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,
Bardziej szczegółowoStochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Bardziej szczegółowoOperace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Bardziej szczegółowopodle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Bardziej szczegółowoStatistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
Bardziej szczegółowoInverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Bardziej szczegółowoCauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Bardziej szczegółowoMatematická analýza 2. Kubr Milan
Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................
Bardziej szczegółowoObsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30
Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert
Bardziej szczegółowoKapitola 2. Nelineární rovnice
Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné
Bardziej szczegółowoMatematika I (KMI/PMATE) Co se naučíme? x = a a x = b. rozumět pojmu střední hodnota funkce na daném intervalu. Obrázek 1.
Mtemtik I (KMI/PMATE). Integrální počet funkcí jedné proměnné.. Co se nučíme? Po sérii přednášek věnovných integrálům byste měli být schopni: rozumět definici pojmu neurčitý integrál používt metodu přímé
Bardziej szczegółowoKatedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Bardziej szczegółowoLogika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Bardziej szczegółowoMendelova univerzita v Brně user.mendelu.cz/marik
INŽNÝRSKÁ MATMATIKA Robert Mařík Mendelova univerzita v Brně marik@mendelu.cz user.mendelu.cz/marik ABSTRAKT. Učební text k mým přednáškám z předmětu Inženýrská matematika. Text je poměrně hutný a není
Bardziej szczegółowoPetr Beremlijski, Marie Sadowská
Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování
Bardziej szczegółowoTeorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.
8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě
Bardziej szczegółowoDFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Bardziej szczegółowoSb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.
Bardziej szczegółowoObsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
Bardziej szczegółowoMatematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Bardziej szczegółowoAlgebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se
Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých
Bardziej szczegółowo(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
Bardziej szczegółowoLaplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Bardziej szczegółowoMetody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou
2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,
Bardziej szczegółowoObsah. Aplikovaná matematika I. Vlivem meze Vlivem funkce Bernhard Riemann. Mendelu Brno. 3 Vlastnosti určitého integrálu
Určitý integrál Aplikovná mtemtik I Dn Říhová Mendelu Brno Obsh Zákldní úloh integrálního počtu Definice určitého integrálu 3 Vlstnosti určitého integrálu 4 Výpočet určitého integrálu 5 Geometrické plikce
Bardziej szczegółowoNumerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Bardziej szczegółowoGEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Bardziej szczegółowo3.1 Derivace funkce Definice derivace Vlastnosti derivace Derivace elementárních funkcí... 49
Obsh Číselné množiny reálné funkce 5. Množin reálných čísel...................................... 5. Množin kompleních čísel.....................................3 Reálné funkce jedné reálné proměnné..............................
Bardziej szczegółowoGeometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Bardziej szczegółowoTGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
Bardziej szczegółowo1 Derivace funkce a monotonie
MA 10. cvičení intervaly monotonie a lokální extrémy Lukáš Pospíšil,2012 1 Derivace funkce a monotonie Jelikož derivace funkce v daném bodě je de-facto směrnice tečny (tangens úhlu, který svírá tečna s
Bardziej szczegółowoTGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
Bardziej szczegółowoMatematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7
Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí
Bardziej szczegółowoŠkola matematického modelování 2017
Počítačová cvičení Škola matematického modelování 2017 Petr Beremlijski, Rajko Ćosić, Marie Sadowská Počítačová cvičení Škola matematického modelování Petr Beremlijski, Rajko Ćosić, Marie Sadowská Katedra
Bardziej szczegółowoMATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Bardziej szczegółowoPojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.
1 Kapitola 1 Množiny 1.1 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky. Pro známé množiny
Bardziej szczegółowoChyby, podmíněnost a stabilita
Chyby, podmíněnost a stabilita Numerické metody 4. března 2018 FJFI ČVUT v Praze 1 Úvod Čísla v počítači Chyby Citlivost Stabilita 1 Čísla v počítači Čísla v počítači - Celá čísla jméno bity rozsah typy
Bardziej szczegółowoSpeciální funkce, Fourierovy řady a Fourierova transformace
1 Speciální funkce, Fourierovy řady a Fourierova transformace Při studiu mnoha přírodních jevů se setkáváme s veličinami, které jsou všude nulové s výjimkou malého časového intervalu I, ale jejich celková
Bardziej szczegółowoKatedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Bardziej szczegółowoUniverzita Karlova v Praze Matematicko-fyzikální fakulta. bankovnictví. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Barbora Janečková Aplikace 2-dimenzionálních rozdělení v bankovnictví Katedra pravděpodobnosti a matematické statistiky Vedoucí
Bardziej szczegółowoalgebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy
1 Úvodem Prezentace předmětu VMP je vytvořena pro nový předmět, který si klade za cíl seznámit studenty se základy lineární algebry a se základy numerické matematiky. Zejména v prvním tématu budeme pracovat
Bardziej szczegółowoOdpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární
Bardziej szczegółowoZápadočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala
Bardziej szczegółowo6 Dedekindovy řezy (30 bodů)
Pokročilá lineární algebra 3. série 6 Dedekindovy řezy (3 bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval Dedekind
Bardziej szczegółowoStavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Bardziej szczegółowoNekomutativní Gröbnerovy báze
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní
Bardziej szczegółowoStatistika (KMI/PSTAT)
Cvičení sedmé (a asi i osmé a doufám, že ne deváté) aneb Náhodná veličina, rozdělení pravděpodobnosti náhodné veličiny Náhodná veličina Náhodná veličina Studenti skládají písemku sestávající ze tří úloh.
Bardziej szczegółowoHana Marková Pseudospektrum matice
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Hana Marková Pseudospektrum matice Katedra numerické matematiky Vedoucí diplomové práce: Doc. RNDr. Vladimír Janovský, DrSc. Studijní
Bardziej szczegółowoVŠB-Technická univerzita Ostrava
VŠB-Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky Využití metod nehladké optimalizace v tvarové optimalizaci Ing. Petr Beremlijski Obor: Informatika a
Bardziej szczegółowoKombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Bardziej szczegółowoÚstav teorie informace a automatizace. Tato prezentace je k dispozici na:
Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obsah přednášky Podmíněná pravděpodobnost,
Bardziej szczegółowoUniverzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Lukáš Perůtka Hledání optimálních strategií číselného síta Katedra algebry Vedoucí diplomové práce: Prof. RNDr. Aleš Drápal, CSc.,
Bardziej szczegółowoDefinice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
Bardziej szczegółowoUniverzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita arlova v Praze Matematicko-fyzikální fakulta BAALÁŘSÁ PRÁCE Matěj Novotný Operátory skládání na prostorech funkcí atedra matematické analýzy Vedoucí bakalářské práce: doc. RNDr. Jiří Spurný
Bardziej szczegółowoReprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková
Bardziej szczegółowoMatematika pro ekonomiku
Statistika, regresní analýza, náhodné procesy 7.10.2011 1 I. STATISTIKA Úlohy statistiky 2 1 Sestavit model 2 Odhadnout parametr(y) 1 Bodově 2 Intervalově 3 Testovat hypotézy Častá rozdělení ve statistice:
Bardziej szczegółowoÚVOD DO ARITMETIKY Michal Botur
ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou
Bardziej szczegółowokontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Bardziej szczegółowoÚvod do TEXu. Brno, L A TEX dokumenty a matematika.
Úvod do TEXu 3 L A TEX dokumenty a matematika. Matematický mód Matematická prostředí v PlainTEXu a L A TEXu Mezery a písma v matematickém módu Matematické značky a symboly Konstrukce v matematickém módu
Bardziej szczegółowoMATEMATICKÁ ANALÝZA II. Martin Klazar
MATEMATICKÁ ANALÝZA II (učebnice předběžná verze, červen 2019) Mrtin Klzr Obsh Předmluv Obsh přednášek zkoušk iv v Úvod 1 1 Primitivní funkce 3 1.1 Zákldní vlstnosti primitivních funkcí...............
Bardziej szczegółowoOdpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 1/20
Lineární kódy, část 1 Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 7.1.2016: Lineární kódy, část 1 1/20 Dnešní přednáška 1 Základní myšlenky
Bardziej szczegółowoKomplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.
Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít
Bardziej szczegółowoFormálne jazyky Automaty. Formálne jazyky. 1 Automaty. IB110 Podzim
Formálne jazyky 1 Automaty 2 Generatívne výpočtové modely IB110 Podzim 2010 1 Jednosmerné TS alebo konečné automaty TS sú robustné voči modifikáciam existuje modifikácia, ktorá zmení (zmenší) výpočtovú
Bardziej szczegółowo