IEL Přechodové jevy, vedení
|
|
- Kacper Błażej Grzybowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Přechodové jevy Vedení IEL/přechodové jevy 1/25 IEL Přechodové jevy, vedení Petr Peringer peringer AT fit.vutbr.cz Vysoké učení technické v Brně, Fakulta informačních technologíı, Božetěchova 2, Brno (Verze: 9. října 219)
2 IEL/přechodové jevy 2/25 C článek a přechodové jevy Přechod z jednoho ustáleného stavu do jiného, například nabíjení parazitní kapacity spojů mezi logickými členy při přechodu logic logic1 (skoková změna napětí na vstupu). C články (integrační, derivační) C C Řešení nezatíženého C článku: změny v čase (Transient Analysis) frekvenční charakteristika (AC Analysis) bude později
3 ovnice a jejich řešení integrační C článek i C ovnice popisující obvod: i(t) = C d(t) () = dt u (t) = i(t) (t) = u (t) + (t) Řešení pro jednotkový skok ( (t) = 1 pro t ): (t) = (1 e t C ) = 1 e t C IEL/přechodové jevy 3/25
4 Průběh napětí pro skok 1 ( = 1Ω, C = 1F ) i C u [V ].4.2 τ = C IEL/přechodové jevy 4/25 t [s]
5 Průběh napětí pro skok 1 u [V ] i C τ = C IEL/přechodové jevy 5/25 t [s]
6 ovnice a jejich řešení derivační C článek C i ovnice: i(t) = C du C (t) u C () = dt (t) = i(t) (t) = u C (t) + (t) Řešení pro jednotkový skok ( (t) = 1 pro t ): (t) = e t C = e t C IEL/přechodové jevy 6/25
7 Průběh napětí pro skok 1 u [V ] C i τ = C IEL/přechodové jevy 7/25 t [s]
8 Průběh napětí pro skok 1 u [V ] C i Pozor: u C () = 1V τ = C IEL/přechodové jevy 8/25 t [s]
9 IEL/přechodové jevy 9/25 C článek shrnutí Časová konstanta: τ = C Napětí na integračním C článku v čase τ: Přechod : 1V : (τ) = 1 e 1 = 1 1 e.63v Napětí na derivačním C článku v čase τ: Přechod : 1V : (τ) = e 1.37V Napětí na derivačním C článku v čase 5τ: Přechod : 1V : (5τ) = e 5.7V Příklady: viz simulace Test znalostí: C článek zatížený odporem z
10 IEL/přechodové jevy 1/25 Příklad1: Zpoždění hradel CMOS V SS V SS in on 1Ω out C p 5pF τ = on C p = = = 5ns
11 IEL/přechodové jevy 11/25 Příklad2: Kompenzovaný dělič napětí (nastavení C x ) 1 2 C x C L 3 u [V ] t [s]
12 IEL/přechodové jevy 12/25 Článek L L článek L L
13 Průběh napětí na L pro skok 1 ( = 1Ω, L = 1H) i L u [V ].4.2 τ = L IEL/přechodové jevy 13/25 t [s]
14 Průběh napětí na L pro skok 1 i L 1 Pozor: i L () = u1.5 u [V ].5 τ = L IEL/přechodové jevy 14/25 t [s]
15 Průběh napětí na L pro skok 1 i L u [V ].4.2 τ = L IEL/přechodové jevy 15/25 t [s]
16 Průběh napětí na L pro skok i L 1 Pozor: i L () = u1 u [V ].4.2 τ = L IEL/přechodové jevy 16/25 t [s]
17 IEL/přechodové jevy 17/25 LC sériový u(t) i(t) L C ovnice: i C (t) = C du C (t) dt u C () = (1) u L (t) = L di L(t) dt i L () = (2) u (t) = i (t) (3) u(t) = u (t) + u L (t) + u C (t) (4) i(t) = i (t) = i L (t) = i C (t) (5)
18 IEL/přechodové jevy 18/25 Sériový LC řešení Jde o systém 2. řádu, existuje více možných tvarů řešení: Bez tlumení ( = ) netlumené kmity Malé tlumení tlumené kmitání, ustáĺı se Kritická mez tlumení nepřekmitne, nejrychleji dosáhne rovnovážného stavu Velké tlumení nekmitá, ustáĺı se pomaleji Příklad: Řešení pro jednotkový skok (u(t) = 1 pro t, malé tlumení): (Tlumení α) i(t) = Be αt sin(ω d t + ϕ)
19 IEL/přechodové jevy 19/25 Sériový LC obvod (underdamped) u[v ].5 Series LC Circuit ( = 1Ω, C = 1µF, L = 1mH) 2 u C 1.5 ul u t[s]
20 IEL/přechodové jevy 2/25 Shrnutí: přechodové děje na C,L,LC Příklady C, L, LC: simulace Použití C článků (blokovací, vazební, časovací). Problém při velkých a rychlých změnách odběru (např. přepínání hradel) na malém parazitním odporu a indukčnosti napájecích vodičů vzniká nezanedbatelné napětí. Nutnost blokovat napájecí napětí bĺızko u integrovaných obvodů viz [Horowitz3/strana758]. Přeslechy (Crosstalk): 2 spoje a parazitní C = derivační C článek, (problém při rychlých změnách signálu ve vedení1 a vysoké impedanci na koncích vedení2). (Řešení: stínění, diferenciální signály.) Poznámka: paralelní LC, ladicí obvody
21 Přechodové jevy Vedení Úvod Modely Poznámky IEL/přechodové jevy 21/25 Vedení (Transmission line) Vodiče pro přenos signálu Symetrické (dvojlinka) nebo asymetrické (koaxiální) Typické parametry vedení: Délka (určuje útlum a zpoždění signálu) Charakteristická impedance Z L m, C m, m, G m na jednotku délky Příklady: Televizní koaxiální kabel: Z = 75Ω, TV dvojlinka: Z = 3Ω, Ethernet kabel (Twisted Pair): Z = 1Ω, Datové linky v HDMI kabelu: Z = 1Ω, Některé spoje na deskách plošných spojů,...
22 Přechodové jevy Vedení Úvod Modely Poznámky IEL/přechodové jevy 22/25 Nejjednodušší model vedení line Parametr: délka vedení l Zpoždění je dané délkou vedení a rychlostí světla c Ideální přenos signálu: (t) = (t l c ) eálná vedení zkreslují a mají větší zpoždění i útlum (attenuation)
23 Přechodové jevy Vedení Úvod Modely Poznámky IEL/přechodové jevy 23/25 Model reálného vedení Aproximace vedení LC segmenty (G m zanedbáme): m L m C m Vedení: N segmentů za sebou (pro N=4): m L m C m m L m C m m L m C m Přesnost aproximace závisí na počtu segmentů m L m C m Řešení závisí na parametrech vedení, impedanci zdroje ( G ) a impedanci zátěže ( L ).
24 Přechodové jevy Vedení Úvod Modely Poznámky IEL/přechodové jevy 24/25 Numerické řešení pro jednotkový skok (+-přizpůsobeno) Transmission line (N*LC), N = 1, L = 1m, Z = G = 19Ω, L = 19Ω u, u N [V].4.2 u u N time [ns]
25 Přechodové jevy Vedení Úvod Modely Poznámky IEL/přechodové jevy 25/25 Vedení poznámky Charakteristická impedance bezeztrátového vedení: Z = Lm C m Vliv impedance zdroje signálu a zátěže: Zdroj signálu: g = Z (impedančně přizpůsobeno) g = Zakončení: z = (naprázdno) z = Z (impedančně přizpůsobeno) z = (nakrátko) Poznámky: impedanční přizpůsobení a činitel stojatých vln, útlum
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 6. Vedení obvod s nesoustředěnými parametry 1 Obecný impulsní signál základní parametry t r t f u vrchol
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 5 1. Obvody druhého řádu frekvenční a časová analýza Širokopásmový obvod Rezonanční obvod 1 RC obvod
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 4. Výpočty v časové oblasti 1 Laplaceova transformace aplikace v analýze elektrických obvodů Obvodové
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Obecná orientace (obvykle. Makroskopická anizotropie ( velmi mnoho kluzných rovin )
Fyzikální zdůvodnění plasticity (1) Změny v krystalické mřížce Schmidtův zákon : τ τ τ max (1) Dosažení napětí τ max vede ke změnám v krystalické mřížce Deformace krystalické mřížky pružná deformace Změny
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu
Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 3. Výpočty ve frekvenční oblasti 1 Pro analýzu ve frekvenční oblasti předpokládáme zdroje se sinusovými
Základní elektrotechnická terminologie,
Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1
POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY
POLIURETAOWE SPRĘŻYY ACISKOWE. POLYURETHAOVÉ TLAČÉ PRUŽIY Oferowane są wymiary wyrobów o różnych twardościach. Konstrukcja tych sprężyn umożliwia zastąpienie sprężyn tradycyjnych tam, gdzie korozja, wibracje,
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Paralelní implementace a optimalizace metody BDDC
Paralelní implementace a optimalizace metody BDDC J. Šístek, M. Čertíková, P. Burda, S. Pták, J. Novotný, A. Damašek, FS ČVUT, ÚT AVČR 22.1.2007 / SNA 2007 Osnova Metoda BDDC (Balancing Domain Decomposition
XXXIII Olimpiada Wiedzy Elektrycznej i Elektronicznej Krosno 2010
XXXIII Olimpiada Wiedzy Elektrycznej i Elektronicznej Krosno 2010 Zestaw pytań finałowych numer : 1 1. Kodowanie liczb całkowitych i ułamków, dodatnich i ujemnych w systemch cyfrowych 2. Wzmacniacz prądu
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 8. Nelineární obvody nesetrvačné dvojpóly 1 Obvodové veličiny nelineárního dvojpólu 3. 0 i 1 i 1 1.5
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Plyny v dynamickém stavu. Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu.
Plyny v dynamickém stavu Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu. Difuze plynu Mechanismus difuze závisí na podmínkách: molekulární λ L viskózně
Zwój Prawoskrętny. Vinutí Pravé
SPRĘŻYNY NACISKOWE TYP TLAČNÉ PRUŽINY Sprężyny naciskowe SPEC są wykonywane precyzyjnie i wydajnie. Stosowanie sprężyn SPEC wpływa na obniżkę kosztów z uwagi na oszczędność czasu wynikającą z braku potrzeby
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 2. Základní výpočty 1 Orientace obvodových veličin Napětí i proud musíme identifikovat nejen hodnotami
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Poˇ c ıtaˇ cov e s ıtˇ e pˇredn aˇsky Jan Outrata ˇr ıjen 2008 Jan Outrata (KI UP) Poˇ c ıtaˇ cov e s ıtˇ e ˇ r ıjen / 35
Počítačové sítě přednášky Jan Outrata říjen 2008 Jan Outrata (KI UP) Počítačové sítě říjen 2008 1 / 35 Technologie fyzické vrstvy Jan Outrata (KI UP) Počítačové sítě říjen 2008 2 / 35 Přenos informací
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Matematický ústav UK Matematicko-fyzikální fakulta. Ukázky aplikací matematiky
Lineární a nelineární problémy v geometrickém modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta Ukázky aplikací matematiky Zbyněk Šír (MÚ UK) - Lineární a nelineární problémy v geometrickém
Zastosowanie przeksztaªcenia Laplace'a. Przykªad 1 Rozwi» jednorodne równanie ró»niczkowe liniowe. ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi
Zastosowanie przeksztaªcenia Laplace'a Przykªad Rozwi» jednorodne równanie ró»niczkowe liniowe ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi y(0 + ) = a, ẏ(0 + ) = b. Rozwi zanie Dokonuj c transformacji
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 7 Elektromagnetické vlny 1 Dlouhé půlvlné vedení v harmonickém ustáleném stavu se sinusovým buzením a
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI. asta
N O V I N K A K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI asta MODULOVÉ SCHODY asta...jsou nejnovějším výrobkem švédsko-polského koncernu, který se již 10 let specializuje na výrobu schodů různého typu. Jednoduchá
1 T. Sygnały. Sygnał okresowy f(t) Wartość średnia sygnału okresowego f(t) Sygnały f(t) Stałe. Zmienne f(t) const. Pulsujące Inne.
Sygnały Sygnały f(t) Stałe Zmienne f(t) const Pulsujące nne Zmieniające znak Zachowujące znak Oksowe Nieoksowe Odkształcone SNSODALNE nne Sygnał oksowy f(t) > t f ( t) f ( t + ) Wartość śdnia sygnału oksowego
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Fakulta elektrotechnická
České vysoké učení technické v Praze Fakulta elektrotechnická DIPLOMOVÁ PRÁCE Ladění regulátorů v pokročilých strategiích řízení Praha, 21 Autor: Bc. Petr Procházka Prohlášení Prohlašuji, že jsem svou
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE
PŘEHLED TYPICKÝCH OTÁZEK K PŘIJÍMACÍ ZKOUŠCE do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE 19. února 2019-12:33 1. Deskový kapacitor má rozměry elektrod a b = 15 15 cm a vzdálenost elektrod je
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
RÓWNANIE RÓśNICZKOWE LINIOWE
Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy
Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ
Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Obwody prądu zmiennego
Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
ź Ź Ź Ź ć Ł Ę Ź ć Ź ć Ń Ź Ź Ź Ź ć ć ć ź ć ź Ę ć Ź Ź Ł Ł Ł ć Ł Ą ć ć Ź Ś ć Ź ć Ę Ź ź ć Ź ć ź ć Ę ć Ą ć ć ć Ł ć ć ć ć Ą ć Ź ć ć Ź Ą Ź Ą ź Ń Ą ć Ą ć ć ć Ź ć ć ć ć ć Ą Ą Ą ć Ł Ń ć ć Ź Ł ć Ź Ź Ę Ź ć ć ć ć
Vyšší odborná škola, Střední škola, Centrum odborné přípravy ABSOLVENTSKÁ PRÁCE Návrh distribučního zesilovače normálové frekvence Sezimovo Ústí, 2019
Vyšší odborná škola, Střední škola, Centrum odborné přípravy ABSOLVENTSKÁ PRÁCE Návrh distribučního zesilovače normálové frekvence Sezimovo Ústí, 209 Autor: Martin Urban i ii Prohlášení Prohlašuji, že
CHEMIE PRO NEJLEPŠÍ. Masarykova Universita, Brno
EMIE PR EJLEPŠÍ Lukáš Žídek Masarykova Universita, Brno Proteiny Globulární Fibrilární Membránové euspořadané Struktura proteinů Struktura proteinů Struktura proteinů Struktura Konfigurace Konformace -
Referenční plochy. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma
JAKOŚĆ ENERGII ELEKTRYCZNEJ - PROCES ŁĄCZENIA BATERII KONDENSATORÓW
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią JAKOŚĆ ENERGII ELEKTRYCZNEJ PROCES ŁĄCZENIA BATERII KONDENSATORÓW
Register and win! www.kaercher.com
Register and win! www.kaercher.com A B A, B A B 2 6 A régi készülékek értékes újrahasznosítható anyagokat tartalmaznak, amelyeket tanácsos újra felhasználni. Szárazelemek, olaj és hasonló anyagok ne kerüljenek
Energetické principy a variační metody ve stavební mechanice
Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná
Projekt zadanie 2. Stany nieustalone w obwodach elektrycznych. Analiza stanów nieustalonych metodą klasyczną
Projekt zadanie 2. Proszę zaprojektować dowolny filtr składający się z nie więcej niż sześciu elementów pasywnych i co najwyżej dwóch elementów aktywnych, który będzie miał częstotliwość graniczną równą:
Systemy liniowe i stacjonarne
Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane
Ł Ź Ą Ż Ż Ź Ł Ż Ć Ć Ż Ż ć Ź Ż Ż Ż Ć Ż Ć ź ć Ż ż ż Ż Ż ć Ż ż Ż Ż Ż ć Ż ż ć Ć ź Ą Ż Ż ż ć Ź Ż ż Ą Ą Ż ć Ź ź Ż ź ć Ą ć ć ż ż ź ź ć ć ż ż ż ź ć ć Ą ż Ą ż ż Ż Ż Ż ć ż Ż ć ż Ł Ż Ą Ż ź ż ć Ż Ż Ż Ć Ź Ź Ż Ą ć
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
Biosignál II. Lékařská fakulta Masarykovy univerzity Brno
Biofyzikální ústav Lékařská fakulta Masarykovy univerzity Brno 2010 Fourierova analýza periodická funkce a posloupnost periodická funkce: f (t) = f (t + nt ), n N periodická posloupnost: a(i) = a(i + it
Design of Experiment (DOE) Petr Misák. Brno 2016
Design of Experiment (DOE) Petr Misák Vysoké učení technické v Brně, Fakulta stavební, Ústav stavebního zkušebnictví Brno 2016 Úvod - Experiment jako nástroj hledání slavné vynálezy - žárovka, antibiotika
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
ELEKTRONIKA. dla Mechaników
ELEKTRONIKA dla Mechaników dr inż. Waldemar Jendernalik Politechnika Gdańska Wydział ETI Katedra Systemów Mikroelektronicznych p. 309, waldi@ue.eti.pg.gda.pl www.ue.eti.pg.gda.pl/~waldi Po co to Wam? Elektronika
Intelligent Hydraulic Cylinders
Intelligent Hydraulic Cylinders Zintegrowany siłownik hydrauliczny, ciśnienie robocze do 4 Bar, seria do ciężkich warunków pracy Integrovaný hydraulický válec 4 barů, řada pro náročné provozní podmínky
III. Termin i miejsce Wjazd kolarski rozegrany zostanie w dniu 15.08.2009 (sobota) w Kowarach na trasie Kowary Ratusz - Przełęcz Okraj Mala Upa.
REGULAMIN KOLARSKI WJAZD KOWARY-OKRAJ 15-08-2009 r. I. Cel imprezy i opis zawodów Celem imprezy jest: popularyzacja kolarstwa jako powszechnej formy aktywności, promocja walorów turystycznych miasta Kowar
Automatyka i robotyka
Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.
OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na
OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver
OPBOX ver.0 USB.0 Mini Ultrasonic Box with Integrated Pulser and Receiver Przedsiębiorstwo BadawczoProdukcyjne OPTEL Sp. z o.o. ul. Morelowskiego 30 PL59 Wrocław phone: +8 7 39 8 53 fax.: +8 7 39 8 5 email:
Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26
Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26 9241 ESKY Dkujeme Vám, že jste se rozhodli pro tento výrobek firmy SOEHNLE PROFESSIONAL. Tento výrobek je vybaven všemi znaky
Zásuvný modul QGISu. QGIS plugin pro práci s katastrálními daty
Zásuvný modul QGISu pro práci s katastrálními daty Anna Kratochvílová, Václav Petráš České vysoké učení technické v Praze Fakulta stavební 19. dubna 2012 Obsah 1 Úvod 2 Nástroje a knihovny 3 Funkcionalita
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Expresivní deskripční logiky
Expresivní deskripční logiky Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Expresivní deskripční logiky 79 / 156 Co nás čeká 1 Inference v deskripčních logikách 2 Inferenční algoritmy Tablový algoritmus