O pewnych klasach funkcji

Wielkość: px
Rozpocząć pokaz od strony:

Download "O pewnych klasach funkcji"

Transkrypt

1 ROCZNIKI POLSKIEGO TOW ARZYSTW A MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE III (1959) E. T a b e r s k i (Poznań) O pewnych klasach funkcji Celem niniejszej pracy jest podanie pewnych uwag dotyczących klas funkcji okresowych i nieokresowych spełniających warunki Lipschitza wyższych rzędów. Badania tego rodzaju rozpoczął 8. Bernstein i A. Zygmund. W ostatnich latach stały się one przedmiotem wielu prac, zwłaszcza matematyków radzieckich (por. np. spis literatury na końcu pracy). Wymienione niżej wyniki przedstawiłem w maju 1966 r. na seminarium prowadzonym pod kierunkiem Profesora W. Orlicza, któremu składam podziękowanie za życzliwe uwagi i pomoc w przygotowaniu pracy do druku. Artykuł ten stanowi wstępną część pracy poświęconej całkom osobliwym, ogłoszonej w Annales Polonici MathematiciIV, 3 (1958), str Definicje i przykłady. Weźmy pod uwagę klasę C2n funkcji ciągłych 27T-okresowych. Modułem ciągłości Tc-tego rzędu funkcji f(oc)ec2rz nazywamy cok{d) = w*(<5; /) = max { max \Alf(%)\}, gdzie к 4 / W = ( - i ) * " * ( ) / ( * + «>. i=0 Moduł drugiego rzędu pisze się zwykle w postaci symetrycznej Łatwo zauważyć, że Ъ2(д) = max { max \f(x h) 2f(x)Jr f(x-\-h)\}. (1) co*+i(<5) < 2coft(<5). Niech Ж i a oznaczają dwie stałe dodatnie, przy czym a < Tc. Klasę funkcji o module spełniającym nierówności: wfc (ó ;/)< M ó a lub ojk(d, /) < Mdk{\ln<5 + 1 ) dla 0 < ó < n Roczniki PTM - Prace Matematyczne III 8

2 114 R. Taberski oznaczamy odpowiednio przez Lip^a i W^Jc. W pracy ograniczamy się przeważnie do przypadków Ti = 1 i Tc 2. Pokażemy dla przykładu, że funkcja okresowa (2 ) f(x) = sina? a (O < a < 2 ) należy do klasy Lip^a. Jak wiadomo, w przypadku 0 < a ^ 1 i sin <5 dla 0 < <5 < ^7c, ^ = 1 1 dla < <3 < 7c. Korzystając z (1 ) i przyjmując x 0 otrzymamy (3) co2(ó) A więc 12 sin ó dla 0 < <5<, l 2 dla - 7c < <5 ^ те. / (x) e Lipf) a oraz / (a?) e Lipjj2) a. Jeżeli l < a < 2, to w2(ó) ma nadal postać (3). Aby to wykazać, wystarczy udowodnić nierówność (4) /(a > -A )-2 /(*)+ /( + A) < 2/(A) dla i (równość zachodzi, gdy 0 = 0). Rozróżnimy dwa przypadki: P rzy p a d ek 1. f{x Ti) 2f(x)-\-f(x-\-h) ^ 0. Mamy f{x h)-2f(x) + f(x+h) = = sina?cos& cosa?sinfr a 2 sinaa?+ sin x cos Ti + cos x sinh\a. Korzystając z nierówności (5) ( a - 6)a + (a + ó )a < 2 (a e+& ), słusznej dla а ^ Ъ^ 0 (przy 1 < a < 2), dostajemy f{x~ Тъ)~2 /(сс) + /(ж+л) ^ 2 [cosa0 sin A sina0 (l cos /i)] < < 2sinaA =,2/(A). P rzy p a d ek 2. /(a? A) 2/(a?)+/( +A) < 0, a więc 0 < 2 /(a?)~ - [ /( - Л ) + /( + А)]. Kależy udowodnić, że 2f{x) [/( *) + /( + A)] < 2/(A ),

3 O pewnych klasach funkcji 115 czyli lub 2 sin a? [ sin(<r A) + sin(a? + A) ] < 2 sina^, 2 (sinaa? sina7&) ^ sina?cos/i cos<rsma + sinajcos/i + cosa?sin& a. Jeżeli x < h, to ostatnia nierówność jest oczywista. Przypuśćmy, że x > h. Ponieważ (6) 2{aa- b a) < (a-b)a+(a + b)a dla a > b > 0 (1 < a < 2 ), wystarczy udowodnić nierówność (7) 2(sinaa? sina/&) < 2 [sinaa?cosa/i cosa«sina/i], czyli sinaa? sinah (8) < cos a? 1 cosa7& (gdy h = 0, w (7) występuje znak równości). Łatwo sprawdzić, że у sina# /(l cos"#) jest funkcją, malejącą w przedziale (0, 7т), a więc zachodzi (8). Uwaga. Moduł oo2(ó) przy a = 2 można obliczyć bezpośrednio. Rachunki wówczas znacznie się upraszczają. Z przedstawienia f(x-h) 2f(x)-\-f(x-{-h) = h2f"(^), gdzie х widać od razu, że f(x)elip 2)2. W podobny sposób oblicza się moduł ciągłości funkcji Dostajemy A więc f{x)e Lipj^oc. f(x) = 2 sin- c a (0 < a < 2 ). co2(ó) = 2(2sin <5)a dla 0 < <5 ^ тг. Ostatni przykład wykorzystuję w pracy, o której wspomniałem we wstępie. Analogiczne definicje modułów i klas wprowadza się w przypadku funkcji ciągłych nieokresowych, określonych w przedziale właściwym lub niewłaściwym (ograniczamy stosownie zakres zmienności x i h). Można udowodnić, że w dowolnym przedziale < c, c} (właściwym lub nie) funkcja f{x) = \x\a (0 < a < 2 ) ma moduł co2(ó) = 2óa (0 < < ó < c). Rachunki przeprowadza się jak wyżej (2), z tym że nie trzeba odróżniać przypadku 2, ponieważ f(x) jest funkcją wypukłą. Mamy zatem przykład funkcji klasy Lipj^a (0 < a < 2 ) w przedziale ( e,c).

4 116 R. Taberski 2. Relacje między klasami. Zajmiemy się naprzód przypadkiem funkcji okresowych f(x)ec2v:. Z nierówności (1) wynika bezpośrednio, że Lip$a C Lipiec, gdy 0 < a < 1. Znane jest również twierdzenie w pewnym sensie odwrotne: Istnieją stale P P(M, a) i Q = Q(M), przy których oraz Lipg a C Lip^ a, gdy 0 < a < 1, L ip g l C F >1 (patrz [7], str , 63; [3], str ). Klasa L ip ^ l nie zawiera się w żadnej z klas Lip$ 1 (patrz [1], str , funkcja Weierstrassa). Uwaga. W konstruktywnej teorii ([3], str ) wyznacza się P i Q w przypadku 0 < ó < Łatwo jednak dowieść, że można dobrać P i Q dla wszystkich <5 z rozważanego tu przedziału 0 < <5 ^ n. Zachodzi również następujące Twierdzenie 1. Jeżeli 1 < a < 2, to istnieje taka stała В R(M, a), że Lip^a C L ip $l. D ow ód. Mech f(x)elip a ( 1 < a < 2). Oznaczmy przez najlepsze przybliżenie funkcji f{x) wielomianami trygonometrycznymi stopnia co najwyżej n. Mt mocy twierdzenia Stieczkina ([4], str ) (9) ElU) < CM In", gdzie C jest pewną stałą uniwersalną. Zastosujemy teraz metodę Bernsteina ([3], str ). Mech Tn{x) będzie wielomianem (trygonometrycznym) najlepszego przybliżenia; określamy ciąg Oczywiście U0{x) = Тг(х), Un{x) = T2n(x) T2n-i(x)j n = 1,2,.... OO f(x) = ^ Un(x). n= 0 Korzystając z (9) dostajemy!7 И < Ts.( )-/( ) + /( )-2>-i( ) < C M (l + 2 )/2. Na mocy nierówności Bernsteina ([3], str ) ли'пш ^C M (i+2a)i&a- 1)n.

5 O pewnych Masach funkcji 117 A więc OO oo \f(x) f{x+h)\ < ^ \TJn{x) Un(x + h) = h \и'п(х+щ\ < stąd Można otrzymać ogólniejsze wyniki. Twierdzenie 2. 1 Lip^a C L ip^^a, gdy 0 < a < istnieją stale P = P{k, M, a), Q Q(k, M) i В = jr(a;, Ж, a), przy których, 2 Lip^+1) a C Lipj^ a, 0 < a < &, 3 Lip +1)&C W^k, OO ОЖ(1 + 2 ) ^ ( l / 2(a" 1)n)U ; /) < CM г - д = Р д, czyli /(a?)elipgl, c. n. o. A Lip^+1)a C Lipj^fe, gdy к < a < fc-fl. Szkic dow odu. Relacja 1 wynika z nierówności (1). Następnych relacji dowodzimy poprzez E'n{f): jeżeli /(a?) elip^+1)a (0 < a < &+ 1 ), to K lf) < C(k)Mjna ([4], str ); modyfikując metodę Bernsteina i Zygmunda ([3], str i ) wykazujemy 2, 3 i 4. Przejdźmy teraz do funkcji ciągłych nieokresowych, określonych w przedziale właściwym: /(ж)e(7<a, &>. Jak wyżej, z nierówności (1 ) wynika zawieranie Lip* a C ŁipiuH1*") gdy 0 < a <; k. Timan ([5], str. 244 i dalsze) pokazał, że jeżeli /(a?)elip 2fl oraz f(a) = f(b) = 0, to Istnieje funkcja, dla której znak < przechodzi w =. Widać stąd, iż klasa L ipj^l jest szersza od L ip ^ l i nie zawiera się w żadnej z klas L ip$l.

6 118 E. Taberski Podamy teraz odpowiednik twierdzenia 1. Weźmy pod uwagę podklasę L ip ;jba funkcji f(x)elip^a (w <a,b» spełniających warunek (1 0 ) \f{o>) f{b)\ < L, gdzie L jest pewną stałą. Twierdzenie 3. Dla dowolnych M, L i a (1 < a < 2) można znaleźć stałą R = B (M, L, a), przy której Lip$; i a C L ip g l w przedziale <a, 6). D ow ód. Niech /(a^elip^.^a (1 < а < 2). Przypuśćmy, że a = 0 i /(u) = 0, przez co nie zmniejszymy ogólności. Utwórzmy funkcję pomocniczą <p{x) = f(x) xf{b)jb. Mamy <p(a) <p{b) = 0 i oczywiście <p(x)e elip^a. Przedłużmy cp(x) w sposób podany w lemacie 2, 3. Na podstawie zacytowanego lematu dostaniemy funkcję okresową Ф(я?)е1 л р ^ а (na całej prostej). Na mocy twierdzenia 1, przy pewnej stałej 8, Ф{х)е elip^l; a więc tym bardziej 9?(a?)eLip^l w przedziale (a, 6). Innymi słowy, \(p{x) cp{x-\- h) < Sh, czyli /(a?) /(гс+й.) < (8-ł-\f{b)jb\)h. Wobec (10), \f(b)lb\ < L/b-, zatem \f(x) f(x-{-h)\^.rh, gdzie < (8-\-Llb), c. n. o. Uwaga. Twierdzenie 3 przestaje być prawdziwe, jeżeli w jego sformułowaniu zastąpimy Lip(^; i «przez Lip ) a. Oto przykład. Zbiór funkcji liniowych fm(x) = mx (m = 1, 2,...) zawarty jest w dowolnej klasie L ip «(0 < a < 2) w przedziale < 0,1>. Zbiór ten nie zawiera się jednak w żadnej z klas L ip ^ l (w <0, 1 )). 3. Najlepsze przybliżenie. W tym paragrafie przedstawione zostaną wyniki uzyskane dla funkcji nieokresowych. Analogiczne twierdzenia w przypadku okresowym są znane. Montel ([2 ], str. 182) udowodnił, że jeżeli f(x) jest funkcją ciągłą i /(aoelipga (1 ^ a ^ 2 ) w przedziale by, to w dowolnym podprzedziale (a-\-e,b e) En(f) ^K(e)lna, przy czym K{e)->oo, gdy e -> 0 + {En(f) oznacza najlepsze przybliżenie funkcji f{x) wielomianami algebraicznymi stopnia co najwyżej n). Pokażemy obecnie, że zachodzi mocniejsze Twierdzenie 4. Jeżeli f(x) jest funkcją ciągłą i /(ж )ек р а ( 1 < а < 2 ) w (a, by, to w całym przedziale <a, 6) gdzie К jest pewną stałą. En{f)^ K \ n a,

7 O pewnych klasach funkcji 119 Uwaga 1. Dla a = 1 sformułowane twierdzenie udowodnili Timan i Dziadyk [6]. Uwaga 2. Można przyjąć f(a) = f(b) 0. W przeciwnym razie tak dobralibyśmy A i B, by funkcja cp(x) f(x)-\-ax-\-b miała tę własność. Oczywiście, <p(x)elipjjja oraz Fn(f) = Fn(<p). Lemat 1. Jeżeli f(x) jest funkcją ciągłą w przedziale <a, b>, f(a) = = f(b) = 0 oraz f(x)elip^a (1 < a < 2 ) w (a, b}, to тах /(ж) ^ \M{b a)a. Lemat 2. O funkcji f(x) zakładamy to samo co w lemacie 1. Niech F(x) - - f(2a x) dla 2a b ^.x < a, f(x) dla a ^ x ^ b, przedłużenie okresowe dla pozostałych x. Wówczas F(x) jest funkcją ciągłą o okresie 2 (b a) oraz _F( )«LipSU (1 ^ a ^ 2 ) na całej prostej. Dowód lematu 1 przeprowadza się w zasadzie tak jak w pracy [5] (str , 2). Metodą podaną w [6] (lemat na str. 500) udowodnimy teraz drugą część lematu 2. Me ograniczając ogólności można przyjąć a = 0. Wtedy /(0) = f(b) = 0 oraz F{x) = f( x) dla b ^.x < 0, f(x) dla 0 < x ^ b, przedłużenie okresowe dla pozostałych x. Wystarczy rozważyć dwa przypadki: P rzypadek 1. x h < 0 < x < x+ h < b. Wynika stąd 0 < ж < < h < b. Obierzmy liczbę naturalną p i 0 < < 2 tak, by (1 1 ) li = (2p 1 + #). Przypuśćmy naprzód, że p = 1. Korzystając z tożsamości F (x-h )-2F (x) + F(x+h) = {f(0)-2f(x)+f{2x)} + + {/( 0) - 2 /[ ( l + ł#) ] + /[ ( 2 + # )a? ]}-{/(ftp )-2 /[ ( l + i# ) ]+ /( 2 )) dostajemy (12) \F{x h) 2F{x) + F{x+h)\ < < Щ1 + (1 + #) + (! - W ] < 6Mha.

8 120 R. Taberski Jeżeli p > 2, to Stąd F(x h) 2 F (x) Ą-F (x + h) = p 2 = {/[2(p г)ж] 2/[2(р-г 1)я] + /([2(р-г-2)ж]} + г= 0 + {/(0)-2/( ) + /(2 )) + {/[(2p-2)*]-2/[(2p-l+i#)a>] + + /[(2p + #) ]} (/[(2p 2 + #) ] 2 /[ ( 2p l + ł#) ] + /( 2p»)}. ^(ж А ) - 2 ^(я?) + ^(ж+л.) < Ж [ 2а( р - 1 ) ( 1 + ^)а+ ( 1 - ^ ) а]^ < < i f [2ap + 2 ] a? < 2М{2р-\-±)ха. N a mocy (11) jest x Д/(2р 1-f-#), czyli x ^hj(2p 1). A więc (13) \F(x-h)-2F(x) + F{x+h)\ < 2M ^ + ^ - ha < Mha. P r z y p a d e k 2. ж /г,< 0 < ж < b < я+й. T y m s a m y m b < 2Ть N a podstawie lematu 1, max.f(a?) ^ \ Mba. Zatem czyli X \F(x-h)-2F(x) + F(x + h)\ < у Mba < }Ж (2й)а = } 2 а+2т а, (14) ^(ж-л)-2^(ж)+^( +Л) < -^-ЖГ. Z (12), (13) i (14) wynika, że coz(d)f) < 6Mda dla 0 < ó < b a, c. n. o. A b y otrzymać twierdzenie 4, wystarczy skorzystać z lematu 2 i twierdzenia Montela. Opierając się na lemacie ([3], str ) i twierdzeniu 4 łatwo można udowodnić T w i e r d z e n i e 5. Jeżeli f(x) ma ciągłą p-tą pochodną i f v\x) elip^a ( 1 ^ a < 2 ) w (a, b}, to w tym przedziale zachodzi nierówność gdzie L jest pewną stalą. E M ) «Prace cytowane [1] N. J. A c hi ez er, Teoria aproksymacji, Warszawa [2] P. M o n te l, Sur les polynomes d approximation, Bull. Soc. Math. France 46 (1918), str

9 O pewnych iklasach funkcji 121 [3] И. П. Натансон, Конструктивная теория функций, Москва-Ленинград [4] С. Б. Стечкин, О порядке наилучших приближений непрерывных функций, Известия Ак. Наук СССР, серия мат., 15 (1951), str [5] А. Ф. Тиман, О квази-гладких функциях, Известия Ак. Наук СССР, серия мат., 15 (1951), str [6] А. Ф. Тиман и В. К. Дзя дык, О наилучшем приближении квази- -гладких функций обыкновенными полиномами, Доклады Ак. Наук СССР 75 (1950), str [7] A. Z y g m u n d, Smooth functions, Duke Math. Journ. 12 (1945), str P. Т аберский (Познань) О Н ЕК О ТО РЫ Х КЛАССАХ Ф УН КЦ И Й РЕЗЮМЕ В работе установлены соотношения между классами непрерывных функций, удовлетворяющих условиям Липшица высших порядков; доказана теорема о наилучшем приближении непериодических функций алгебраическими полиномами. R. T a b e r s k i (Poznań) ON SOME CLASSES OF FUNCTIONS SUMMARY In this paper we state the relations between classes of continuous functions, satisfying Lipschitz conditions of higher orders; moreover, we prove a theorem concerning the best approximation of non-periodic functions by algebraic polynomials.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

ECHANIKA METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH NAUKOWE POLITECHNIKI ŚLĄSKIEJ

ECHANIKA METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH NAUKOWE POLITECHNIKI ŚLĄSKIEJ Z E S Z Y T Y NAUKOWE POLITECHNIKI ŚLĄSKIEJ TADEUSZ BURCZYŃSKI METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH ECHANIKA Z. 97 GLIWICE 1989 POLITECHNIKA

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

O pewnym zagadnieniu F. Leji dotyczącym sumowania kierunkowego macierzy

O pewnym zagadnieniu F. Leji dotyczącym sumowania kierunkowego macierzy ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE VI (1961) F. Barański (Kraków) O pewnym zagadnieniu F. Leji dotyczącym sumowania kierunkowego macierzy 1. F. Leja w pracy zamieszczonej

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Analiza numeryczna kolokwium2a-15grudnia2005

Analiza numeryczna kolokwium2a-15grudnia2005 kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

Rozkład figury symetrycznej na dwie przystające

Rozkład figury symetrycznej na dwie przystające Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule

Bardziej szczegółowo

Podstawy analizy matematycznej II

Podstawy analizy matematycznej II Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań

Bardziej szczegółowo

IN ŻYNIE R IA S R O D O W IS K A

IN ŻYNIE R IA S R O D O W IS K A ZESZYTY NAUKOWE POLITECHNIKI ŚLISKIEJ JANUARY BIEŃ KONWENCJONALNE I NIEKONWENCJONALNE PRZYGOTOWANIE OSADÓW ŚCIEKOWYCH DO ODWADNIANIA IN ŻYNIE R IA S R O D O W IS K A Z. 27 A GLIWICE 1986 POLITECHNIKA ŚLĄSKA

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Teoria. a, jeśli a < 0.

Teoria. a, jeśli a < 0. Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby

Bardziej szczegółowo

Fonetyka kaszubska na tle fonetyki słowiańskiej

Fonetyka kaszubska na tle fonetyki słowiańskiej Fonetyka kaszubska na tle fonetyki słowiańskiej (szkic i podpowiedzi dla nauczycieli) prof. UG dr hab. Dušan-Vladislav Paždjerski Instytut Slawistyki Uniwersytetu Gdańskiego Gdańsk, 21 marca 2016 r. Fonetyka

Bardziej szczegółowo

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013 Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)

Bardziej szczegółowo

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. 12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.

Bardziej szczegółowo

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Skończone rozszerzenia ciał

Skończone rozszerzenia ciał Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Lista zagadnień omawianych na wykładzie w dn r. :

Lista zagadnień omawianych na wykładzie w dn r. : Lista zagadnień omawianych na wykładzie w dn. 29.0.208r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu

Bardziej szczegółowo

WŁASNOŚCI FUNKCJI MONOTONICZNYCH

WŁASNOŚCI FUNKCJI MONOTONICZNYCH Dorota Sasiuk WŁASNOŚCI FUNKCJI MONOTONICZNYCH WSTĘP... WIADOMOŚCI WSTĘPNE... 3. DEFINICJA FUNKCJI:... 3. DZIAŁANIA ARYTMETYCZNE NA FUNKCJACH:... 3.3 ZŁOŻENIE FUNKCJI:... 3.4 FUNKCJA ODWROTNA:... 4.5 FUNKCJA

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Egzamin podstawowy (wersja przykładowa), 2014

Egzamin podstawowy (wersja przykładowa), 2014 Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz

Bardziej szczegółowo

1 Nierówność Minkowskiego i Hoeldera

1 Nierówność Minkowskiego i Hoeldera 1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Dwa równania kwadratowe z częścią całkowitą

Dwa równania kwadratowe z częścią całkowitą Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

1 Funkcje uniwersalne

1 Funkcje uniwersalne 1 1 Funkcje uniwersalne 1.1 Konstrukcja funkcji uniweralnej Niech P będzie najmniejszym zbiorem liczb spełniającym warunki 1) 0, 2, 0, 0, 2, 1, 0, 2, 2 P, 2) 0, n, 3, k P dla wszystkich n > 0 oraz k takich,

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

polska ludowa tom Vll PAŃSTWOWE WYDAWNICTWO NAUKOWE

polska ludowa tom Vll   PAŃSTWOWE WYDAWNICTWO NAUKOWE polska ludowa PAŃSTWOWE WYDAWNICTWO NAUKOWE tom Vll INSTYTUT HISTORII POLSKIEJ AKADEMII NAUK POLSKA LUDOWA MATERIAŁY I STU D IA TOM VII PA Ń STW O W E W YDAW NICTW O NAUKOW E W ARSZAW A 1968 1 K O M IT

Bardziej szczegółowo

па ре по па па Ьо е Те

па ре по па па Ьо е Те ц с р г р су Ё Д чсу ю г ц ц р ус ф р с у г с рр й Ы Р с р с ц ус М т ч с Ф Сру ф Ьу с Ы Ьу р у рь м Д ц с ю ю г Ы г ч с рр р Н р у С с р ч Ф р м р уш с К ц г В з зз с у Г с у с у Д Ы ус О Ьу р ус А Ь

Bardziej szczegółowo

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10 System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Oszacowanie współczynników' funkcji należących do dwóch klas A-symetrycznych funkcji jednokrotnych

Oszacowanie współczynników' funkcji należących do dwóch klas A-symetrycznych funkcji jednokrotnych ROCZN IKI POLSKIEGO T O W A R ZYSTW A MATEMATYCZNEGO SE R IA I: PRACE M ATEM ATYCZNE V (1961) J. Z a m o r s k i (Wrocław) Oszacowanie współczynników' funkcji należących do dwóch klas A-symetrycznych funkcji

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

Łatwy dowód poniższej własności pozostawiamy czytelnikowi. Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Ciągłość funkcji i podstawowe własności funkcji ciągłych.

Ciągłość funkcji i podstawowe własności funkcji ciągłych. Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

Znaki alfabetu białoruskiego Znaki alfabetu polskiego

Znaki alfabetu białoruskiego Znaki alfabetu polskiego ROZPORZĄDZENIE MINISTRA SPRAW WEWNĘTRZNYCH I ADMINISTRACJI z dnia 30 maja 2005 r. w sprawie sposobu transliteracji imion i nazwisk osób należących do mniejszości narodowych i etnicznych zapisanych w alfabecie

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Geometria. Rozwiązania niektórych zadań z listy 2

Geometria. Rozwiązania niektórych zadań z listy 2 Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

6. Granica funkcji. Funkcje ciągłe.

6. Granica funkcji. Funkcje ciągłe. 6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy

Bardziej szczegółowo

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji

Bardziej szczegółowo

Wyświetlacze tekstowe jednokolorowe

Wyświetlacze tekstowe jednokolorowe Wyświetlacze tekstowe jednokolorowe Wyświetlacz tekstowy służy do wyświetlania tekstu informacyjno-reklamowego w trybie jednokolorowym (monochromatycznym) z wykorzystaniem różnorodnych efektów graficznych.

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo