Urz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l.
|
|
- Izabela Kołodziej
- 6 lat temu
- Przeglądów:
Transkrypt
1 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str.. Podstawowe pojęcia z (t) z 2 (t)... u (t) u 2 (t). Obiet u m (t) z l (t) (t) 2 (t). n (t) u(t) z(t) Obiet (t) (a) u Rs. u u = 2..., z = u m z z 2... z l, = na ogół m l n; gd m = l = n =, to uład jednowmiarow gd m lub l lub n uład wielowmiarow 2. Otwart i zamnięt uład sterowania z z 2 (b) 2... n () Urz¹dzenie steruj¹ce u Obiet Rs. 2 Uład otwart z Urz¹dzenie steruj¹ce u Obiet Podstaw automati (z) Rs. 3 Uład zamnięt
2 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str Opis uładu tpu wejście-wjście a n d n (t) dt n + a n d n (t) dt n = b m d m u(t) dt m d(t) + + a + a (t) = (2) dt d m u(t) du(t) + + b dt m + b u(t) dt + b m a n (n) (t) + a n (n ) (t) + + a ẏ(t) + a (t) = (3) = b m u (m) (t) + b m u (m ) (t) + + b u(t) + b u(t) m n; waruni poczatowe: (i) (), i =,,... n u (j) (), j =,,... m u( t) U³ad dnamiczn Rs. 4 ( t) 4. ransmitancja operatorowa U(s) = L[u(t)] = Przpomnijm, że: u(t)e st dt, Y (s) = L[(t)] = (t)e st dt L[f (n) (t)] = s n F(s) n = s n f () ( + ) prz czm f () ( + ) = lim t + df () (t) dt Podstaw automati (z)
3 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str. 3 a n (n) (t) + a n (n ) (t) + + a ẏ(t) + a (t) = = b m u (m) (t) + b m u (m ) (t) + + b u(t) + b u(t) a n s n Y (s) + a n s n Y (s) + + a sy (s) + a Y (s) = (4) = b m s m U(s) + b m s m U(s) + + b su(s) + b U(s) Y (s)(a n s n + a n s n + + a s + a ) = = U(s)(b m s m + b m s m + + b s + b ) Y (s) = m b j s j j= n U(s) a i s i i= G(s) Y (s) U(s) = m b j s j j= n (5) a i s i prz czm (i) (+) =, i =,,... n u (j) (+) =, j =,,... m i= Podstaw automati (z)
4 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str. 4 Przład R L u ( t ) u2 ( t ) R 2 Eliminujem i(t): Rs. 5 u (t) = R i(t) + L di(t) dt u 2 (t) = R 2 i(t) + R 2 i(t) L du 2 (t) + R u 2 (t) + u 2 (t) = u (t) R 2 dt R ( 2 L u 2 (t) + + R ) u 2 (t) = u (t) R 2 R 2 ( s L + + R ) U 2 (s) = U (s) R 2 R 2 G(s) = U 2(s) U (s) = s L R R R 2 = R 2 sl + R + R 2 = R 2 R +R 2 L sr +R 2 + = R 2 R + R 2, = (element inercjn -go rzędu) L R + R 2 G(s) = + s Podstaw automati (z)
5 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str Odpowiedź soowa dla t > ½(t) = dla t = lub uproszcz. ½(t) = 2 dla t < dla t dla t < (6) ( t) ( t),5 lub t Rs. 6 t L[½(t)] = s u(t) G(s) Rs. 7 (t) U(s) = L[u(t)], Y (s) = L[(t)] Y (s) = G(s)U(s) ponieważ G(s) = Y (s) U(s) u(t) = ½(t) H(s) = G(s) s h(t) = L [ G(s) s ] Podstaw automati (z)
6 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str. 6 Przład G(s) = + s [ ] [ ] h(t) = L = L + s s s(s + ) = ) + lim s / s est = ( ) e t ½(t) = ( lim s ) ( e t s + ½(t) e st + h( t) Rs. 8 t 6. Odpowiedź impulsowa dla t δ(t) = dla t = lub inaczej: δ(t) = /ε dla t ( ε/2, ε/2) /(2ε) dla t = ±ε/2 dla t > ε/2 ( t) / /(2 ) δ(t)dt = (7) (8) Podstaw automati (z) t Rs. 9
7 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str. 7 u(t) G(s) Rs. (t) Y (s) = G(s)U(s) = G(s) L[δ(t)] = g(t) = (t) = L [G(s)] Przład G(s) = + s [ ] [ g(t) = L = L + s s + ] = e t ½(t) / g( t) Rs. t 7. Zwiaze międz h(t) i g(t) h(t) = 8. Cała splotowa t g(τ)dτ, g(t) = d h(t) (9) dt Y (s) = G(s)U(s) (t) = t u(τ)g(t τ)dτ = t u(t τ)g(τ)dτ () Podstaw automati (z)
8 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str. 8 Przład (element całujac idealn i rzeczwist) G (s) = Y (s) U(s) = s, G 2(s) = Y 2(s) U(s) = s( + s) równania różniczowe U(s) = sy (s) u(t) = ẏ (t) U(s) = sy 2 (s) + s 2 Y 2 (s) u(t) = ÿ 2 (t) + ẏ 2 (t) odpowiedzi soowe [ h (t) = L G (s) ] [ ] s = L s 2 [ h 2 (t) = L G 2 (s) ] [ = L s [ ( = = = lim s d ds = t½(t) ] = [ L s 2 ( + s) e st ) + lim s s + [ te st (s + lim ) est s (s e ( ) [ )2 ] t e t s 2est t ] ½(t) = ] ½(t) = s 2 (s + ) ½(t) = (t + e t )½(t) ] = h( t) h t ( ) h t 2 ( ) = arctg Rs. 2 t Podstaw automati (z)
9 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str. 9 odpowiedzi impulsowe: [ ] g (t) = L [G (s)] = L = ½(t) s [ ] g 2 (t) = L [G 2 (s)] = L s( + s) = ( e t )½(t) g( t) g t 2( ) g t ( ) Rs. 3 t 9. Charatersti statczne i dnamiczne u(t) G(s) Rs. 4 (t) ( t) u³. liniow u³. nieliniow u t (a) ch-i statczne (b) ch-a dnamiczna Rs. 5 Podstaw automati (z)
10 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str.. Wznaczanie transmitancji wpadowch a) połaczenie szeregowe (asadowe) u( t) u2( t) ( t) G( s) G2( s) Rs. 6 G (s) = U 2(s) U (s), b) połaczenie równoległe G 2(s) = Y (s) U 2 (s) G(s) = Y (s) U (s) = Y (s) U 2 (s) U 2 (s) U (s) = G (s)g 2 (s) () u( t) G s ( ) G s 2( ) Rs. 7 t ( ) t 2( ) ( t) Y (s) = Y (s) + Y 2 (s) = G (s)u(s) + G 2 (s)u(s) = = (G (s) + G 2 (s))u(s) G(s) = Y (s) U(s) = G (s) + G 2 (s) (2) Podstaw automati (z)
11 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str. c) sprzężenie zwrotne u( t) e( t) ( t) G( s) Rs. 8 G s 2( ) Y (s) = G (s)e(s) = G (s) [U(s) G 2 (s)y (s)] Y (s) + G (s)g 2 (s)y (s) = G (s)u(s) Y (s) [ + G (s)g 2 (s)] = G (s)u(s) G(s) = Y (s) U(s) = G (s) + G (s)g 2 (s) dla dodatniego sprzężenia zwrotnego: G(s) = G (s) G (s)g 2 (s) gd G 2 (s) = bezpośrednie sprzężenie zwrotne i wted: G(s) = G (s) ±G (s). Przeształcanie schematów bloowch a) przenoszenie węzła sumacjnego z we na w i odwrotnie G (s) [U (s) + G 2 (s)u 2 (s)] = G (s)u (s) + G (s)g 2 (s)u 2 (s) (3) u G s ( ) u G s ( ) G s 2( ) G s ( ) G s 2( ) u 2 u 2 Rs. 9 Podstaw automati (z)
12 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str. 2 G (s)u (s) + G 2 (s)u 2 (s) = G (s) [ U (s) + ] G (s) G 2(s)U 2 (s) u G s ( ) u G s ( ) G2( s) /G( s) u 2 G s 2( ) u 2 Rs. 2 b) przenoszenie węzła informacjnego (rozgałęźnego) z we na w i odwrotnie u G( s) 2 Rs. 2 u G( s) /G( s) 2 u G( s) 2 Rs. 22 u G( s) G( s) 2 c) zamiana miejsc węzłów sasiaduj acch ze soba = (u u 3 ) + u 2 = (u + u 2 ) u 3 u u u 2 u u 3 2 u 3 Podstaw automati (z) Rs. 23
13 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str ransmitancja widmowa G(jω) = G(s) s=jω, ω = 2πf (4) u(t) G(jω) Rs. 24 (t) (t) = p (t) + u (t), u(t) = A sin ωt ½(t) lim p (t) = (5) t (t) = u (t) = A G(jω) sin(ωt + ϕ(ω)) ½(t) (6) Przład 2 G(s) = s 2 + 3s + 2 = 2 (s + )(s + 2) = (s + )(,5s + ) u(t) = 8 sin 2t ½(t) wznaczć przebieg u (t) G(s) s=j2 = = 2 (j2) 2 + 3(j2) + 2 = j6 = =,36e j8,4 ( 2) e jarctg u (t) = 8,36 sin(2t 8,4 ) ½(t) = = 2,528 sin(2t 8,4 ) ½(t) 3. Charatersti częstotliwościowe ω, + ) ch. amplitudowo-fazowa (wres Nquista), ch-i logartmiczne (wres Bodego). Podstaw automati (z)
14 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str Charatersta amplitudowo-fazowa G(s)= b ms m + b m s m + + b s + b a n s n + a n s n + + a s + a, m n (7) G(jω) = G(s) s=jω = (8) = b m(jω) m + b m (jω) m + + b (jω) + b a n (jω) n + a n (jω) n + + a (jω) + a G(jω) = P(ω) + jq(ω) = G(jω) e jϕ(ω) (9) P(ω) = Re[G(jω)], Q(ω) = Im[G(jω)], Im[ G( j)] G(jω) = P 2 (ω) + Q 2 (ω), ϕ(ω) = arctg Q(ω) P(ω). ( ) P( ) Re[ G( j)] G( j ) Q( ) Rs. 25 ( ω < ) u(t) = A sin ω t (t) = A G(jω ) sin(ω t + ϕ(ω )) Przład (element inercjn -go rzędu) ( jω) G(jω) = = = + jω + ω 2 2 = + ω 2 j ω = P(ω) + jq(ω) 2 + ω 2 2 ω > P >, Q IV ćw. Podstaw automati (z)
15 Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str. 5 P = + ω 2 2 = + ω 2 2 P ω2 2 = P P P Q 2 = 2 ω ( + ω 2 2 ) = P = P( P) 2 2 /P 2 Q 2 + P 2 P = ( P 2 + Q 2) 2 = ( 2 P 2 P Q2 = 2 4 ) 2, Q Im[ G( j)] /2 Re[ G( j)] /2 / Rs. 26 Q( ) 3 2 P( ) Q( ) P( ) (a) = var, 3 < 2 < Rs. 27 /, /, / (b) = var 2 3 Podstaw automati (z)
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Inżynieria Systemów Dynamicznych (3)
Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
Sterowanie Serwonapędów Maszyn i Robotów
Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan
Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 7,8, str. 1
Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład 7,8, str. 28. Uchb ustalon w układach z niejednostkowm (elastcznm) sprzężeniem zwrotnm [rad] k u 0 [V] [V] u[v] G (s) G 2 (s) [rad]
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 3,4, str. 1
Poliechnia Poznańsa, Kaedra Serowania i Inżynierii Sysemów Wyłady 3,4, sr. 5. Charaerysyi logarymiczne (wyresy Bodego) Lm(ω) = 20 lg G(jω) [db = decybel] (20) (Lm(ω) = [db] 20 lg G(jω) = G(jω) = 0 /20,22
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 5,6, str. 1
Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr. 1 18. Klasyfikacja UR ze wzgl. na posać sygn. wejściowego a) regulacja sałowarościowa y () = cons b) regulacja programowa c)
Podstawowe czªony dynamiczne. Odpowied¹ impulsowa. odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach pocz tkowych, { dla t = 0
CHARAKTERYSTYKI W DZIEDZINIE CZASU I CZ STOTLIWO CI Podstawowe czªony dynamiczne Opis w dziedzinie czasu: Odpowied¹ impulsowa g(t) = L 1 [G(s)] odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach
Przeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Automatyka i robotyka
Automatyka i robotyka Wykład 2 - Modelowanie w dziedzinie częstotliwości Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 64 Plan wykładu Transformata Laplace
Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan
Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami
AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki
Kierunek: Transport AUTOMATYKA dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki godz. przyjęć: wtorki 9 5 Instytut Automatyki, ul. Stefanowskiego 8/22 środy 8 5 2 Zakład Techniki Sterowania, al.
Zastosowanie przeksztaªcenia Laplace'a. Przykªad 1 Rozwi» jednorodne równanie ró»niczkowe liniowe. ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi
Zastosowanie przeksztaªcenia Laplace'a Przykªad Rozwi» jednorodne równanie ró»niczkowe liniowe ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi y(0 + ) = a, ẏ(0 + ) = b. Rozwi zanie Dokonuj c transformacji
Inżynieria Systemów Dynamicznych (4)
Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami
Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem:
PoniŜej przedstawiono standardowy tok otrzymywania charakterystyk częstotliwościowych: 1. Wyznaczenie transmitancji operatorowej. Wykonanie podstawienia s ωj. Wyznaczenie Re(G(jω )) oraz Im(G(jω ))-najczęściej
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH Zadanie 1. (Charaterytyi czętotliwościowe) Problem: Wyznaczyć charaterytyi czętotliwościowe (amplitudową i fazową) członu całującego rzeczywitego
Tematyka egzaminu z Podstaw sterowania
Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Automatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Automatyka i robotyka
Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony
Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ
Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Sterowanie przekształtników elektronicznych zima 2011/12
Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych
Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele
AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej
Dr inż. Michał Chłędowski AUTOMATYKA Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Zakres tematyczny: Podstawowe człony automatyki, opis własności statycznych i dynamicznych,
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka
Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Opis układów złożonych za pomocą schematów strukturalnych. dr hab. inż. Krzysztof Patan
Opis kładów złożonych za pomocą schematów strktralnych dr hab. inż. Krzysztof Patan Schematy strktralne W przypadk opis złożonych kładów dynamicznych, należy zwrócić wagę na interpretację fizyczną zjawisk
Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4
Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4 dr inż. Marcin Ciołek Katedra Systemów Automatyki Wydział ETI, Politechnika Gdańska Języki Modelowania i Symulacji dr inż. Marcin Ciołek
Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
Inżynieria Systemów Dynamicznych (5)
Inżynieria Systemów Dynamicznych (5) Dokładność Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 DOKŁAD 2 Uchyb Podstawowy strukturalny
Ćwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C
Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie
UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM
UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy
UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE
UKŁADY JEDNOWYMIAROWE Część III UKŁADY NIELINIOWE 1 15. Wprowadzenie do części III Układ nieliniowe wkazją czter właściwości znacznie różniące je od kładów liniowch: 1) nie spełniają zasad sperpozcji,
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Automatyka i robotyka
Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający
00 O O PO y N O N N N N. c O, O p O,' W. W pn. Nao Wr 3o y y 6x C 0 : > M1. 0 " C " 1 CD. 4. r' m < xmi. k b z a C 4. Inv z0. 1 wxo. XNC7 nv22.
U V V, VD,, P M I V IV,,',. 6. t - " < : > M. " " D.. < ' < ' MI k I E k b " ` '< " l = V > < t `'"' l Lf ) 7 ` `-]! II. b t9 F
A-4. Filtry aktywne rzędu II i IV
A-4. Filtry atywne rzędu II i IV Filtry atywne to ułady liniowe i stacjonarne realizowane za pomocą elementu atywnego, na tóry założono sprzężenie zwrotne zbudowane z elementów biernych i. Elementem atywnym
AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki PŁ
Kierunek: Transport AUTOMATYKA dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki PŁ godz. przyjęć: wtorki 9 5, biuro Instytutu Automatyki, bud. A, ul. Stefanowskiego 8/22 - I piętro, pok. 3 środy
MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i
MATEMATYKA EiT (studia drugiego stopnia, drugi semestr) ) Wyznaczyć Re z; Im z; jzj ; z dla z = ( + i)(3 i), ( + i)( i) + (3 5i), (+i) 3 i, i44 i 45 i 46 +3i, 47 (cos 33 + i sin 33 ), ( + p 3 i)7, (i )
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 21 lutego 2011 Eksperyment fizyczny, Czwórniki,
Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji
Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania
Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Automatyka i pomiar wielkości fizykochemicznych ĆWICZENIE NR 3 Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Przyjmuje się umowę, że:
MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy
Obwody prądu zmiennego
Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
TEORIA STEROWANIA I, w 5. dr inż. Adam Woźniak ZTMiR MEiL PW
TEORIA STEROWANIA I, w 5 dr inż. Adam Woźniak ZTMiR MEiL PW Układy LTI- SISO Stacjonarne, przyczynowe liniowe układy z jednym wyjściem i jednym wejściem najczęściej modeluje się przy pomocy właściwej transmitancji
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
= oraz = ; Przykładowe zadania EGZAMINACYJNE z przedmiotu PODSTAWY AUTOMATYKI. Transmitancja operatorowa
Przkładowe zadania EGZAMINACYJNE z przedmiotu PODSTAWY AUTOMATYKI Tranmitancja operatorowa. Dla przedtawionego układu a) Podać równanie różniczkujące opiujące układ Y ( b) Wznacz tranmitancję operatorową
LABORATORIUM PODSTAW AUTOMATYKI
LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA DO ĆWICZENIA 4.Wstęp - DOBÓR NASTAW REGULATORÓW opr. dr inż Krzsztof Kula Dobór nastaw regulatorów uwzględnia dnamikę obiektu jak i wmagania stawiane zamkniętemu
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Układy z regulatorami P, PI oraz PID
Układy z regulatorami P, PI oraz PID Sterowanie Procesami Ciągłymi 2016 Układ automatycznej regulacji y0( t) + _ ε () t ut () K R (s) yt () KO () s yt () y 0 (t) = 1(t) Postulaty, kryteria oceny jakości
EGZAMIN Z ANALIZY II R
EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić
Wstęp do ćwiczeń na pracowni elektronicznej
Wstęp do ćwiczeń na pracowni elektronicznej Katarzyna Grzelak listopad 2011 K.Grzelak (IFD UW) listopad 2011 1 / 25 Zajęcia na pracowni elektronicznej Na kolejnych zajęciach spotykamy się na pracowni elektronicznej
A-4. Filtry aktywne RC
A-4. A-4. wersja 4 4. Wstęp Filtry aktywne II rzędu RC to układy liniowe, stacjonarne realizowane za pomocą elementu aktywnego jakim jest wzmacniacz, na który załoŝono sprzęŝenie zwrotne zbudowane z elementów
Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)
Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij
PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe
Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Mazyn Roboczych tudia inżynierkie prowadzący: mgr inż. Sebatian Korczak Poniżze materiały tylko dla tudentów uczęzczających na zajęcia. Zakaz
Rys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Ćwiczenie - 7. Filtry
LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy
Systemy wbudowane. Kurs Systemy wbudowane SW (Embedded Systems)
Kurs Systemy wbudowane SW (Embedded Systems) Prof. PP,dr hab. inż. Andrzej URBANIAK Dr inż. Zygmunt KUBIAK Dr inż. Przemysław ZAKRZEWSKI Mgr inż. Mariusz NOWAK (1) Kurs przedmiotu pod tytułem Systemy wbudowane
Element całkujący Element całkujący jest opisany równaniem różniczkowym o postaci: y = ku, (4.37) S(s) = ^. (4.38)
- 87-4.1.6. Element całkujący Element całkujący jest opisany równaniem różniczkowym o postaci: z którego wynika transmitancja operatorowa y = ku, (4.37) S(s) = ^. (4.38) Równanie charakterystyki statycznej
TRANSMITANCJA WIDMOWA, CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE I WYZNACZANIE ODPOWIEDZI USTALONYCH NA WYMUSZENIE HARMONICZNE
- 62-3.3. TRANSMITANCJA WIDMOWA, CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE I WYZNACZANIE ODPOWIEDZI USTALONYCH NA WYMUSZENIE HARMONICZNE W przypadku wymuszenia okresowego interesujący jest zwykle nie cały przebieg
Podstawy środowiska Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Automatyki i Robotyki Podstawy środowiska Matlab Poniżej przedstawione jest użycie podstawowych poleceń w środowisku
Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ
ealizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych W6-7/ Podstawowe układy pracy wzmacniacza operacyjnego Prezentowane schematy podstawowych układów ze wzmacniaczem operacyjnym zostały