OBSZARY FLATTEROWEJ I DYWERGENCYJNEJ NIESTATECZNOŚCI RAMY TYPU Γ PRZY OBCIĄŻENIU UOGÓLNIONYM BECKA
|
|
- Ludwik Chmielewski
- 5 lat temu
- Przeglądów:
Transkrypt
1 MODELOANIE INŻYNIERSKIE ISSN X 4 s Gwce 0 OBSZARY FLATTERO I DYERGENCYJN NIESTATECZNOŚCI RAMY TYPU Γ PRZY OBCIĄŻENIU UOGÓLNIONYM BECKA LECH TOMSKI JANUSZ SZMIDLA Insyu Mechank Podsaw Konsrukcj Maszyn Poechnka Częsochowska e-ma: szmda@mpkm.pcz.p Sreszczene. pracy prezenuje sę badana eoreyczne oraz obczena numeryczne doyczące drgań swobodnych prosokąnej dwu-pręowej ramy przy obcążenu uogónonym Becka. Na podsawe całkowej energ mechancznej wyznacza sę równana ruchu warunk brzegowe rozparywanego układu. Rozwązane zagadnena brzegowego prowadz do odpowednch zaeżnośc na zakres zman warośc obcążena kryycznego oraz częsośc drgań własnych w funkcj obcążena zewnęrznego. ynk obczeń numerycznych prezenuje sę przy wybranych paramerach fzycznych geomerycznych ramy płaskej.. STĘP eraurze naukowej doyczącej saecznośc smukłych układów sprężysych opsane są obcążena konserwaywne nekonserwaywne. Obcążene Euera słą skerowaną do beguna [] zacza sę do obcążena konserwaywnego. Przypadkam obcążena nekonserwaywnego są: obcążene uogónone Becka [] oraz obcążene Reua [3]. ymenone przypadk obcążeń charakeryzuje okreśony przebeg krzywych na płaszczyźne: obcążene - częsość drgań własnych. Isneją układy ypu dywergencyjnego (obcążene konserwaywne) ypu faerowego (obcążene nekonserwaywne) oraz hybrydowego. Układy ypu hybrydowego [4] łączą cechy układów ypu dywergencyjnego faerowego. Na yp uray saecznośc układów smukłych przy obcążenu uogónonym Becka ma wpływ mędzy nnym współczynnk śedzena obcążena szywność sprężyn ransacyjnych roacyjnych ub warość masy skuponej. Układy ramowe kasyfkuje sę jako oware ub zamknęe [5 6]. Ramy zamknęe [7 8] o ake na końcach kórych wysępują srukury podporowe ub głowce reazujące obcążene. przypadku ram owarych [9] co najmnej jeden z końców układu jes swobodny. Borąc pod uwagę kryera uray saecznośc oraz rodzaje obcążeń ram płaskch przeprowadzono obszerne badana eoreyczne numeryczne odnośne do ch saecznośc. zakrese badań zamknęych ram płaskch wyznaczono warośc obcążena kryycznego [ ] oraz przebeg zman częsośc drgań własnych w funkcj obcążena zewnęrznego [9-4] przy przyjęych rozwązanach konsrukcyjnych układów. wększośc pubkacj naukowych rozważano konsrukcje ram o kszałce kąownka ramy ypu Γ [7 3] ramy rzypręowe ramy ypu T [ 4] ub układy złożone z pewnej czby ram prosych (poraowe) [5].
2 404 L. TOMSKI J. SZMIDLA nnejszej pracy rozwązano zagadnene saecznośc drgań własnych dwu-pręowej zamknęej ramy płaskej ypu Γ poddanej obcążenu uogónonemu Becka. Na podsawe zasady Hamona wyznaczono równana ruchu warunk brzegowe nezbędne do rozwązana zagadnena brzegowego. Uwzgędnając przyjęe paramery geomeryczne oraz fzyczne układu w ym współczynnka śedzena obcążena zewnęrznego ramy płaskej przedsawono wynk obczeń eoreycznych numerycznych. Podano zakres warośc obcążena kryycznego oraz przebeg zman częsośc drgań własnych w funkcj obcążena zewnęrznego. Anazowano wpływ współczynnka asymer szywnośc na zgnane słupa ryga ramy oraz współczynnka śedzena na obszary nesaecznośc dywergencyjnej faerowej układu.. MODEL FIZYCZNY ENERGIA MECHANICZNA UKŁADU Na rys. przedsawono sposób obcążena oraz sposób zamocowana rozparywanego układu ypu Γ. Rama składa sę dwóch pręów o szywnoścach na zgnane ( ) ( ) oraz masy przypadającej na jednoskę długośc (ρa ) (ρa ). Ryge ramy o szywnośc na zgnane oraz słup ramy o szywnośc na zgnane ( ) zamocowane są w sposób szywny. Rys.. Mode fzyczny ramy płaskej przy obcążenu uogónonym Becka Pręy układu (słup ryge) połączono w en sposób że kąy ugęca obu członów ramy są sobe równe. Ryge ramy ma dodakowo możwość przemeszczena w kerunku wzdłużnym. przypadku rozważanego obcążena uogónonego Becka słup ramy obcążony jes słą skuponą P kórej kerunek dzałana przechodz przez punk połączena słupa ryga. Kerunek dzałana obcążena zewnęrznego opsano współczynnkem śedzena obcążena η w odnesenu do kąa ugęca końca słupa ramy (η 0 ). Energa kneyczna T rozważanej ramy płaskej jes sumą energ kneycznej poszczegónych jej pręów :
3 OBSZARY FLATTERO I DYERGENCYJN NIESTATECZNOŚCI RAMY TYPU Γ PRZY 405 d A T 0 ρ () zapse energ poencjanej V uwzgędna sę sprężysość zgnana poszczegónych pręów układu oraz kerunek dzałana obcążena zewnęrznego: 0 0 d P d V () Borąc pod uwagę nepoencjaną składową obcążena okreśonego współczynnkem śedzena η (por. rys.) wyznacza sę dodakowo zaeżność opsującą pracę sł nezachowawczych L w rozważanym układze: P L η (3) 3. SFORMUŁOANIE ZAGADNIENIA RÓNANIA RUCHU ARUNKI BRZEGOE Zagadnene brzegowe formułuje sę na podsawe kneycznego kryerum saecznośc. Berze sę od uwagę zasadę Hamona kóra w odnesenu do układów nekonserwaywnch jes wyrażona wzorem: 0 + d L V T δ (4) Geomeryczne warunk brzegowe warunk cągłośc rozparywanej ramy płaskej są nasępujące: (5a d) (5e) Podsawając zwązk () () (3) do zasady Hamona (4) po uprzednm wykorzysanu odpowednch warunków brzegowych (5a e) orzymano: - równana ruchu A A P ρ ρ (6ab) - warunk brzegowe w punkce połączena słupa ryga ramy:
4 406 L. TOMSKI J. SZMIDLA 3 ( ) P( η) + 3 ( ) ( ) 3 ( ) ( ) ( ) + μ 0 m 3 ( ) 0 0 (7a c) przy czym współczynnk asymer szywnośc na zgnane μ pomędzy rygem a słupem ramy płaskej wyrażono zwązkem: ( ) ( ) μ (8) 4. YNIKI OBLICZEŃ NUMERYCZNYCH Borąc pod uwagę przyjęy mode maemayczny wykonano obczena numeryczne doyczące saecznośc drgań swobodnych rozważanego układu. Na podsawe równań ruchu (6ab) oraz warunków brzegowych (5a e) (7a c) rozwązano zagadnene brzegowe uwzgędnając sayczne kneyczne kryerum saecznośc układu [6 7]. yprowadzono równane przesępne na warość obcążena kryycznego przy zmane współczynnka śedzena w zakrese η oraz równane przesępne na częsość drgań własnych ω w pełnym zakrese rozparywanego w pracy współczynnka śedzena η 0. Zagadnene rozwązano przy wykorzysanu agorymów numerycznych dosępnych w środowsku C++. Anazowano wpływ współczynnka śedzena obcążena η w zakrese η 0 współczynnka asymer szywnośc na zgnane μ na yp uray saecznośc ramy płaskej. Rys.. Zmana kryycznego parameru obcążena λ c w funkcj warośc współczynnka asymer szywnośc na zgnane μ. obczenach uwzgędnono sałą szywność na zgnane ( ) słupa ramy oraz sałą równą długość eemenów składowych układu (ϕ / ) Zmanę warośc współczynnka μ uzyskano przyjmując zmenną szywność na zgnane ( ) ryga ramy.
5 OBSZARY FLATTERO I DYERGENCYJN NIESTATECZNOŚCI RAMY TYPU Γ PRZY 407 yznaczone zakresy zman warośc częsośc drgań własnych ω w funkcj obcążena zewnęrznego P warośc obcążena kryycznego P kr wyrażono we współrzędnych bezwymarowych: 4 P kr P ( ρa ) ω λ c λ Ω (9a c) Na rys. zaprezenowano zakres zman obcążena kryycznego ramy płaskej w funkcj zmany warośc współczynnka asymer szywnośc na zgnane μ przy wybranych waroścach współczynnka śedzena obcążena η. zakrese zmany współczynnka śedzena obcążena η 0 0.5) rozparywany układ rac saeczność na skuek wyboczena słupa ramy (D - nesaeczność dywergencyjna) nezaeżne od szywnośc jej ryga ( ). Przy waroścach współczynnka η (0.5 oraz waroścach współczynnka asymer szywnośc na zgnane μ (0 μ gr ) uraa saecznośc ramy płaskej nasępuje w wynku rosnących ampud drgań oscyacyjnych (F- nesaeczność faerowa). Przy μ μ gr ma mejsce przeskok z nesaecznośc faerowej na dywergencyjną (F D) co charakeryzuje układy hybrydowe. pozosałym zakrese współczynnka μ (μ >μ gr ) ma mejsce nesaeczność dywergencyjna. Szywność na zgnane ryga ramy ( ) ne ma wpływu na warość obcążena kryycznego ramy płaskej przy współczynnku śedzena η 0.5. Rys. 3. Zmana kryycznego parameru obcążena λ c w funkcj warośc współczynnka asymer szywnośc na zgnane μ ( Dodakowo wykazano (rys. rys.3) że współczynnk asymer szywnośc na zgnane μ ma wpływ na charaker faerowej uray saecznośc układu. O warośc charakerze zman obcążena kryycznego decyduje przebeg zman częsowośc drgań własnych w funkcj obcążena zewnęrznego co przedsawono na rys. 4a-c 5a-c przypadku nesaecznośc dywergencyjnej (D) przejśce ze sanu saecznego w nesaeczny zachodz gdy krzywa podsawowej częsośc drgań własnych (Ω ) przecna oś rzędnych w punkce Ω 0 odpowadającemu obcążenu wyboczenowemu (rys.4a rys.5c). zakrese nesaecznośc faerowej (F) uraa saecznośc układu wysępuje gdy Ω Ω +. Przy rozparywanym w pracy zakrese zman współczynnka asymer szywnośc na zgnane μ w zakrese μ (0 μ gr ) zjawsko nesaecznośc faerowej (F) zachodz pomędzy drugą (Ω ) rzecą
6 408 L. TOMSKI J. SZMIDLA Rys. 4a-c. Krzywe na płaszczyźne: paramer obcążena λ c - paramer częsośc drgań własnych Ω przy μ 0.6. Rys. 5a-c. Krzywe na płaszczyźne: paramer obcążena λ c - paramer częsośc drgań własnych Ω przy η. (Ω 3 ) częsoścą drgań własnych (F(Ω -Ω 3 )) co przedsawono na rys.4c rys.5a. Przy współczynnku μ (μ gr μ gr ) zjawsko faeru ma mejsce naomas przy warunku Ω Ω
7 OBSZARY FLATTERO I DYERGENCYJN NIESTATECZNOŚCI RAMY TYPU Γ PRZY 409 (F(Ω -Ω )) (rys.4a rys.5b). Charaker zman faerowej sły kryycznej P kr przedsawono na rys. rys.3 ne: (8a a.) (7b b). Na podsawe przeprowadzonych symuacj numerycznych wyznaczono równeż przebeg zman częsośc drgań własnych w funkcj obcążena zewnęrznego kóre charakeryzują układ ypu hybrydowego (rys.4a na (5) rys. 5c- na ()). Przykładowy przebeg zman warośc własnych przy kórym zjawsko nesaecznośc faerowej wysępuje jednocześne przy perwszej drugej (F(Ω -Ω )) oraz drugej rzecej (F(Ω -Ω 3 )) częsośc drgań własnych zaprezenowano na rys. 4b. Rys. 6. Obszar dywergencyjnej faerowej uray saecznośc w funkcj współczynnka śedzena η oraz współczynnka asymer szywnośc na zgnane μ. Przeprowadzone badana eoreyczne numeryczne umożwły wyznaczene obszarów dywergencyjnej (D) faerowej (F) nesaecznośc ramy płaskej poddanej obcążenu uogónonemu Becka (rys. 6) przy przyjęym zakrese zman warośc współczynnka śedzena obcążena η oraz asymer szywnośc na zgnane pomędzy rygem a słupem układu. ykazano że przy odpowednm doborze współczynnka asymer szywnośc na zgnane rozparywana rama płaska jes układem ypu dywergencyjnego w całym zakrese przyjęych w obczenach warośc współczynnka śedzena obcążena η 0. Praca wykonana w ramach Badań Sauowych BS -0/30/99/P oraz granu nr N N fnansowanego przez Mnserswo Nauk Szkoncwa yższego. LITERATURA. Lephoz H. H. E.: On conservave easc sysems of he frs and second knd. Ingeneur-Archv p Beck M.: De Kncas des enseg engespannen angena gedrucken Sabes. ZAMP S Nema-Nasser S. Herrmann G.: Adjon Sysems n Nonconservave Probems of Easc Saby AIAA Journa 4() 966 s Sundararajan C.: Infuence of an easc end suppor on he vbraon and saby of Beck s coumn. In. J. Mech. Sc p Hepper G.R. Oguamanam D.C.D. Hansen J.S.: Vbraon of a wo-member open frame. Journa of Sound and Vbraon () p
8 40 L. TOMSKI J. SZMIDLA 6. Oguamanam D.C.D. Hepper G.R. Hansen J.S.: Vbraon of arbrary orened wo member open frames wh p mass. Journa of Sound and Vbraon p Godey M. H. R. Chver A. H.: Easc buckng of overbraced frames. Journa Mechanca Engneerng Scence p Kounads A. N. Gr J. Smses G. J.: Dvergence buckng of a smpe frame subjec o a foower force. Journa App. Mech. Trans. of he ASME p Bang H.: Anayca souon for dynamc anayss of a febe L-shaped srucure. Journa of Gudance Conro and Dynamcs 996 9() p Kounads A. N. Ioannds G. I.: The prmary bendng effec and he buckng boundaryvaue probem n easc framed srucures. Engneerng Srucures p Ras N. S. Kounads A. N.: Nonnear sway buckng of geomercay mperfec recanguar frames. Ing. Arch p Szmda J.: Vbraons and saby of T ype frame oaded by ongudna force n reaon o s bo. Thn aed Srucures p Szmda J.: Saeczność drgana ramy ypu Γ obcążonej słą skerowaną do beguna. : Saby of Srucures. XIIh Symposum Zakopane 009 s Przybysk J. Tomsk L. :Posbuckng behavour of T frame wh renfoced verca bar. In: Saby of See Srucures ed. by M.Ivany Vo.. Akadema Kado Pubshng House of Hungaran Academy of Scence Budapes 995 p Smses G. J.. Hodges D. H.: Fundamenas of srucura saby. Chaper 4: buckng of frames. Buerworh Henemann Esever Inc. 006 p esołowsk Z.: Zagadnena dynamczne nenowej eor sprężysej. arszawa: PN Zeger H.: Prncpes of srucura saby. aham 968. THE REGIONS OF FLUTTER AND DIVERGENCE INSTABILITY OF A Γ TYPE PLANAR FRAME SUBJECTED TO BECK S GENERALISED LOAD Summary. The heoreca research and numerca cacuaons concernng free vbraon of recanguar wo-rod frame a generazed Beck s oad are presened n he paper. On he bass of oa mechanca energy equaons of moon and boundary condons of anayzed sysem are deermned. The souon of boundary vaue probem eads o deermne of approprae reaonshps o range of changes of crca oad vaues and free vbraon frequences n funcon of eerna oad. Resus of numerca cacuaons carred ou a he chosen of physca and geomerca parameers of fa frame.
Stateczność układów ramowych
tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po
Bardziej szczegółowoWPŁYW SIŁY PIEZOELEKTRYCZNEJ NA CZĘSTOŚĆ DRGAŃ KOLUMNY NIELINIOWEJ Z PRĘTEM PIEZOCERAMICZNYM
MODELOWANE NŻYNERSKE SSN 896-77X 8, s. 75-8, Gwce 9 WPŁYW SŁY PEZOELEKTRYCZNEJ NA CZĘSTOŚĆ DRGAŃ KOLUMNY NELNOWEJ Z PRĘTEM PEZOCERAMCZNYM JACEK PRZYBYLSK, KRZYSZTOF SOKÓŁ nstytut Mechank Podstaw Konstrukcj
Bardziej szczegółowoPrzykład 3.2. Rama wolnopodparta
rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ
Bardziej szczegółowoPrzykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Bardziej szczegółowoPrzykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
Bardziej szczegółowoPrzykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania
Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w
Bardziej szczegółowoPROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE
JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano
Bardziej szczegółowoKier. MTR Programowanie w MATLABie Laboratorium
Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu
Bardziej szczegółowoKwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
Bardziej szczegółowoψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Bardziej szczegółowoCzęść 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
Bardziej szczegółowoOptymalizacja belki wspornikowej
Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana
Bardziej szczegółowoWyznaczanie współczynnika sztywności zastępczej układu sprężyn
Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą
Bardziej szczegółowou u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
Bardziej szczegółowoMECHANIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE
Oga Koacz, Adam Łodygows, Wocech Pawłows, chał Płoowa, Krzyszof Tymer Konsuace nauowe: rof. dr hab. JERZY RAKOWSKI Poznań 00/003 ECHAIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE Wyznaczane rzemeszczeń z zasosowanem
Bardziej szczegółowoANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM
Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków
Bardziej szczegółowoXLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Bardziej szczegółowo3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO
3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.
Bardziej szczegółowoMECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE
Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra
Bardziej szczegółowoTensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów,
Welkośc Jednosk UŜywane w Elekryce Welkość Fzyczna o właścwość fzyczna zjawsk lub obeków, Przykłady: W. f.: kórą moŝna zmerzyć. czas, długość, naęŝene pola elekrycznego, przenkalność elekryczna kryszałów.
Bardziej szczegółowotor ruchu ruch prostoliniowy ruch krzywoliniowy
KINEMATYKA Klasyfkacja ruchów Ruch jednosajny prosolnowy Ruch jednosajne zmenny Spadek swobodny Rzu ponowy w dół w órę Rzu pozomy rzu ukośny Ruch jednosajny po okręu Welkośc kąowe Polechnka Opolska Opole
Bardziej szczegółowoWYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI
Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH
Bardziej szczegółowoIII. Przetwornice napięcia stałego
III. Przewornce napęca sałego III.1. Wsęp Przewornce: dosarczane pożądanej warośc napęca sałego koszem energ ze źródła napęca G. Możlwość zmnejszana, zwększana, odwracana polaryzacj lb kszałowane pożądanego
Bardziej szczegółowoFunkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy
etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b
Bardziej szczegółowoVII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
Bardziej szczegółowoRUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Bardziej szczegółowocz.2 dr inż. Zbigniew Szklarski
Wykład 1: Prąd sały cz. dr nż. Zbgnew Szklarsk szkla@agh.edu.pl hp://layer.uc.agh.edu.pl/z.szklarsk/ Pasma energeyczne pasma energeyczne - 198 Felx Bloch zblżane sę aomów do sebe powoduje rozszczepene
Bardziej szczegółowo4.4. Obliczanie elementów grzejnych
4.4. Obiczanie eemenów grzejnych Po wyznaczeniu wymiarów przewodu grzejnego naeży zaprojekować eemen grzejny, a więc okreśić wymiary skręki grzejnej czy eemenu faisego (wężownicy grzejnej, meandra grzejnego).
Bardziej szczegółowoWYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Bardziej szczegółowoWYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL
Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE
Bardziej szczegółowoPrzykład 2.3 Układ belkowo-kratowy.
rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene
Bardziej szczegółowoHipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Bardziej szczegółowoNAUKOWE OSIĄGNIĘCIA MECHANIKI W WALCE 0 POSTĘP W BUDOWNICTWIE
WYDAWNICTWO MINISTERSTWA BUDOWNICTWA Nr 37 NAUKOWE OSIĄGNIĘCIA MECHANIKI W WALCE 0 POSTĘP W BUDOWNICTWIE CZĘŚĆ III, ZESZYT I z materałów nadesłanych na Zjazd Naukowy PZITB w Gdańsku 1 4 grudna 1949 r.
Bardziej szczegółowodrgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
Bardziej szczegółowoZMIANA WARUNKÓW EKSPLOATACYJNYCH ŁOŻYSK ŚLIZGO- WYCH ROZRUSZNIKA PO PRZEPROWADZENIU NAPRAWY
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, maja 999 r. Jan Burcan Krzysztof Sczek Poltechnka Łódzka ZMIANA WARUNKÓW EKSPLOATACYJNYCH ŁOŻYSK ŚLIZGO- WYCH ROZRUSZNIKA PO PRZEPROWADZENIU NAPRAWY
Bardziej szczegółowoAnalityczny opis łączeniowych strat energii w wysokonapięciowych tranzystorach MOSFET pracujących w mostku
Pior GRZEJSZCZK, Roman BRLIK Wydział Elekryczny, Poliechnika Warszawska doi:1.15199/48.215.9.12 naliyczny opis łączeniowych sra energii w wysokonapięciowych ranzysorach MOSFET pracujących w mosku Sreszczenie.
Bardziej szczegółowoSTATECZNOŚĆ NIEPRYZMATYCZNEJ KOLUMNY SMUKŁEJ PODDANEJ OBCIĄŻENIU SIŁĄ ŚLEDZĄCĄ SKIEROWANĄ DO BIEGUNA DODATNIEGO
MODELOWANIE INŻYNIERSKIE 016 nr 60, ISSN 1896-771X STATECZNOŚĆ NIEPRYZMATYCZNEJ KOLUMNY SMUKŁEJ PODDANEJ OBCIĄŻENIU SIŁĄ ŚLEDZĄCĄ SKIEROWANĄ DO BIEGUNA DODATNIEGO Janusz Szmdla 1a, Anna Jurczyńska 1b 1
Bardziej szczegółowoWykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Bardziej szczegółowoWskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania
CEPOWSKI omasz 1 Wskazówki projekowe do obliczania nośności i maksymalnego zanurzenia saku rybackiego na wsępnym eapie projekowania WSĘP Celem podjęych badań było opracowanie wskazówek projekowych do wyznaczania
Bardziej szczegółowoXXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
Bardziej szczegółowoElementy i Obwody Elektryczne
Elemeny Obwody Elekryczne Elemen ( elemen obwodowy ) jedno z podsawowych pojęć eor obwodów. Elemen jes modelem pewnego zjawska lb cechy fzycznej zwązanej z obwodem. Elemeny ( jako modele ) mogą meć róŝny
Bardziej szczegółowoSprawozdanie powinno zawierać:
Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,
Bardziej szczegółowoWYKŁAD 14. Rozdział 7: Drgania parametryczne
WYKŁD 4 Rozdział 7: Drgania parameryczne 7.. Isoa drgań paramerycznych Na wsępie przywołajmy klasyfikację drgań ze względu na źródło energii podaną w Wykładzie. W klasyfikacji ej wyodrębnione zosały czery
Bardziej szczegółowoWYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 64 Transpor 28 Tomasz AMBROZIAK, Konrad LEWCZUK Wydzał Transporu Polechnk Warszawske Zakład Logsyk Sysemów Transporowych ul. Koszykowa 75, -662 Warszawa am@.pw.edu.pl;
Bardziej szczegółowoZastosowanie technik sztucznej inteligencji w analizie odwrotnej
Zastosowane technk sztucznej ntelgencj w analze odwrotnej Ł. Sztangret, D. Szelga, J. Kusak, M. Petrzyk Katedra Informatyk Stosowanej Modelowana Akadema Górnczo-Hutncza, Kraków Motywacja Dokładność symulacj
Bardziej szczegółowoPodstawowe algorytmy indeksów giełdowych
Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 25-11-13 Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 2013-11-25 Sps reśc I. Algorymy oblczana warośc ndeksów gełdowych...3 1. Warość beżąca
Bardziej szczegółowoProjekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Bardziej szczegółowoEwa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoĆw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego
5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.
Bardziej szczegółowover b drgania harmoniczne
ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0
Bardziej szczegółowoRozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Bardziej szczegółowoKONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla
Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk
Bardziej szczegółowoStudia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
60-965 Poznań ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, Studa stacjonarne, II stopeń, sem.1 Laboratorum Technk Śwetlnej wersja z dn. 08.05.017 Ćwczene nr 6 Temat: Porównane parametrów
Bardziej szczegółowoWPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU POCIĄGU 1
A R C H I W U M I N S T Y T U T U I N Ż Y N I E R I I L Ą D O W E J Nr 5 ARCHIVES OF INSTITUTE OF CIVIL ENGINEERING 017 WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU
Bardziej szczegółowoSYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ
Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz
Bardziej szczegółowoIV. WPROWADZENIE DO MES
Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowoDYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Bardziej szczegółowoMETODY KOMPUTEROWE 10
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE
Bardziej szczegółowo1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ
Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz
Bardziej szczegółowoZasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
Bardziej szczegółowoWPŁYW SZTYWNOŚCI SPRĘŻYNY ROTACYJNEJ NA CZĘSTOŚĆ DRGAŃ WŁASNYCH KOLUMNY GEOMETRYCZNIE NIELINIOWEJ OBCIĄŻONEJ SIŁĄ PODŚLEDZĄCĄ
MODLO ŻYRK 896-77X s. 77-8 Gwce PŁY ZTYOŚC PRĘŻYY ROTCY CZĘTOŚĆ DRGŃ ŁYCH KOLMY GOMTRYCZ LO OBCĄŻO ŁĄ PODŚLDZĄCĄ KRZYZTOF OKÓŁ syu Mechak Podsaw Kosrukcj Maszy Poechka Częsochowska e-ma: soko@mpkm.pcz.czes.p
Bardziej szczegółowogdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera
San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola
Bardziej szczegółowoGrupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych
Bardziej szczegółowoBadanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Bardziej szczegółowo1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn..03.013 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Porównane parametrów fotometrycznych
Bardziej szczegółowo7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH
WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju
Bardziej szczegółowo9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH
Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu
Bardziej szczegółowoWstępne przyjęcie wymiarów i głębokości posadowienia
MARCIN BRAS POSADOWIENIE SŁUPA 1 Dane do projektu: INSTYTUT GEOTECHNIKI Poltechnka Krakowska m. T. Koścuszk w Krakowe Wydzał Inżyner Środowska MECHANIKA GRUNTÓW I FUNDAMENTOWANIE P :=.0MN H := 10kN M :=
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Bardziej szczegółowoPrzykład 4.4. Belka ze skratowaniem
rzykład.. eka ze skratowane oecene: korzystając z etody sł sporządzć wykresy sł przekrojowych w ponŝszej konstrukcj staowej. yznaczyć ugęce w punkce (w połowe rozpętośc bek). orównać wyznaczone ugęce ze
Bardziej szczegółowoPROJEKTOWANIE I BUDOWA
ObcąŜena kadłuba PROJEKTOWANIE I BUDOWA OBIEKTÓW LATAJĄCYCH I ObcąŜena kadłuba W. BłaŜewcz Budowa samolotów, obcąŝena W. Stafej Oblczena stosowane przy projektowanu szybowców St. Danleck Konstruowane samolotów,
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt
Bardziej szczegółowoWykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Bardziej szczegółowoEkonometryczne modele nieliniowe
Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.
Bardziej szczegółowoOchrona przeciwpożarowa
17 Wykonanie w wersji ogniochronnej łączników Schöck Isokorb dla połączeń żelbe/żelbe Każdy elemen Schöck Isokorb do łączenia żelbe/żelbe jes dosępny również w wersji ogniochronnej (oznaczenie np. Schöck
Bardziej szczegółowomgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH
Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr
Bardziej szczegółowo5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
Bardziej szczegółowo5. Rezonans napięć i prądów
ezonans napęć prądów W-9 el ćwczena: 5 ezonans napęć prądów Dr hab nŝ Dorota Nowak-Woźny Wyznaczene krzywej rezonansowej dla szeregowego równoległego obwodu Zagadnena: Fzyczne podstawy zjawska rezonansu
Bardziej szczegółowoZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Bardziej szczegółowoDIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH
RYNEK CIEŁA 03 DIANOSYKA YMIENNIKÓ CIEŁA Z UIARYODNIENIEM YNIKÓ OMIARÓ EKLOAACYJNYCH Autorzy: rof. dr hab. nż. Henryk Rusnowsk Dr nż. Adam Mlejsk Mgr nż. Marcn ls Nałęczów, 6-8 paźdzernka 03 SĘ Elementam
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Bardziej szczegółowoĆWICZENIE 2. BADANIE WAHADEŁ SPRZĘŻONYCH.
ĆWICZENIE BADANIE WAHADEŁ SPRZĘŻONYCH Wahadło sprzężone Weźmy pod uwagę układ złożony z dwóch wahadeł o długościach połączonych sprężyną o współczynniku kierującym k Rys Na wahadło działa siła będąca składową
Bardziej szczegółowoZROBY POEKSPLOATACYJNE JAKO ŹRÓDŁO ZAGROŻENIA GAZOWO-TERMICZNEGO W KOPALNIACH PODZIEMNYCH
Nr 3 Prace Naukowe Insyuu Górncwa Polechnk Wrocławskej Nr 3 Suda Maerały Nr 3 2005 Andrzej STRUMIŃSKI, Barbara MADEJA-STRUMIŃSKA zagrożena aerologczne, szczelność am, zmany cśnena baromerycznego w zrobach
Bardziej szczegółowoEnergia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Bardziej szczegółowoBADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH
INSTYTUT KLIMATYZACJI I OGRZEWNICTWA ĆWICZENIA LABORATORYJNE Z WENTYLACJI I KLIMATYZACJI: BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH 1. WSTĘP Stanowsko laboratoryjne pośwęcone badanu
Bardziej szczegółowoPrzykład: Parametryczna krzywa poŝaru dla strefy poŝarowej
Dokumen Ref: SX04a-EN-EU Srona 1 z 5 Przykład: Parameryczna krzywa poŝaru dla srefy Przykład pokazuje wyznaczenie paramerycznej krzywej poŝaru dla srefy w budynku biurowym, według Załącznika normy PN-EN
Bardziej szczegółowoPobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Bardziej szczegółowoP O L I T E C H N I K A C ZĘSTOCHOWSKA AUTOREFERAT
P O L I T E C H N I K A C ZĘSTOCHOWSKA WYDZIAŁ INŻYNIERII MECHANICZNEJ I INFORMATYKI AUTOREFERAT Autor: dr inż. Sebastian Uzny Instytut Mechaniki i Podstaw Konstrukcji Maszyn Wydział Inżynierii Mechanicznej
Bardziej szczegółowoROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
Bardziej szczegółowoPARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH
ARAMETRY ELEKTRYZNE YFROWYH ELEMENTÓW ÓŁRZEWODNIKOWYH SZYBKOŚĆ DZIAŁANIA wyrażona maksymalną częsolwoścą racy max MO OBIERANA WSÓŁZYNNIK DOBROI D OBIĄŻALNOŚĆ ELEMENTÓW N MAKSYMALNA LIZBA WEJŚĆ M ODORNOŚĆ
Bardziej szczegółowoPraca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju
Praca podkładu kolejowego jako konstrukcj o zmennym przekroju poprzecznym zagadnene ekwwalentnego przekroju Work of a ralway sleeper as a structure wth varable cross-secton - the ssue of an equvalent cross-secton
Bardziej szczegółowoMECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Bardziej szczegółowoĆwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.
Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w
Bardziej szczegółowoPrognozowanie cen detalicznych żywności w Polsce
Prognozowane cen dealcznych żywnośc w Polsce Marusz Hamulczuk IERGŻ - PIB Kaarzyna Herel NBP Co dlaczego prognozujemy Krókookresowe prognozy cen dealcznych Ceny dealczne (ndywdualne produky, agregay) Isone
Bardziej szczegółowoLaboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
Bardziej szczegółowoDRGANIA SWOBODNE KOLUMN O OPTYMALNYM KSZTAŁCIE ZE WZGLĘDU NA WARTOŚĆ OBCIĄŻENIA KRYTYCZNEGO PODDANYCH OBCIĄŻENIU EULEROWSKIEMU
MODELOANIE INŻYNIERSKIE ISSN 896-77X 8 s. 5- Gwce 9 DRGANIA SOBODNE KOLUMN O OPTYMALNYM KSZTAŁIE ZE ZGLĘDU NA ARTOŚĆ OBIĄŻENIA KRYTYZNEGO PODDANYH OBIĄŻENIU EULEROSKIEMU JANUSZ SZMIDLA ANNA ASZZAK Isyu
Bardziej szczegółowoFINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Bardziej szczegółowo