WSTĘP TEORETYCZNY Więcej na: dział laboratoria
|
|
- Anatol Kubiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 WSTĘP TEORETYCZNY Więcej na: dział laboratoria Wahadło jest to ciało stałe wykonujace wahania wokuł nieruchomego punktu lub osi pod działaniem przyłozonych sił. W fizyce najogólniejszym wahadłem jest ciało wykonujące drgania pod wpływem siły cięzkości. Najprostsze wahadło składa się z masy m zawieszonej (ciężarka) zawieszonego na nici (albo lekkim pręcie) o długosci l. Gdy ciało jest wystarczająco małe, by mówić o nim że jest nieskończenie małe, nić jest bardzo sztywna i nierozciągliwa i lekka i długa w stosunku do rozmiarów geometrycznych ciała to o takim wahadle możemy mówić że jest to wahadło matematyczne. Wahadło matematyczne: Jeżeli wahadło wychylone z połozenia równowagi zostanie ruszone ciało otrzyma prędkość prostopadlą do prostej l stanowiącej długość. Jezeli pominie sie opór powietrza i tarcie w punkcie zawieszenia to podczas ruchu spełniona jest zasada zachowania energii mechanicznej z której możemy otrzymac wzór: v + z = h g dϕ v = lω = l Jezeli ciało wykonuje wahania o kąt mniejszy niż ~1/11 rad to o takim ruchu możemy mówić harmoniczny. Gdzie działa siła zwana siła quasisprężystą. F = kx = ma [1] d x d x m [] + kx = k + x = m d x kx = m x = m x = A sin( ωt + ϕ ) dx v = x& = = Aωcos( ωt + ϕ) d x Podstawiając przyspieszenie a do wzoru [] otrzymujemy: a = x = = Aω sin( ωt + ϕ ) = ω x
2 k x m k m x = = = x d x + ω x = ω ω Kąt między siłą styczną do toru a silą ciezkości wynosi π/ - φ. Zatem : F = sin ϕ mg kx ; ϕ mg kx x k g ; ϕ = = = ω mg l m l Podstawiając do wzoru na czestość kołową otrzymujemy: [3] π ω = π f = T 4π g ω = = T l l T = 4π g l T = π g W przypadku kątów wiekszych od 1/11 rad=~5* [4] T 4 l 1 ϕ ϕ = π 1 sin + + sin +... g 4 Wahadłem fizycznym nazywamy ciało sztywne wykonujace wahania wokół poziomej osi pod dziąłaniem siły ciężkości nie musza byc spełnione założenia dotyczące punktowości masy i pręta. Takie wahadło wykonuje wahania z okresami obliczonymi ze wzorów takich samych jak dla wahadła matematycznego [3], [4], z tą rożnicą, że wystepuje tutaj tak zwane skrócenie długości wahadła. L za wzoru [3] nalezy zastąpić: l I = md gdzie I moment bezwładności względem osi zawieszenia D odległość środka ciężkości od osi
3 zawieszenia. L nazywa się długością zredukowaną. Wahadła sprzężone są to dwa wahadła lub więcej, które moga na siebie oddziaływać za pomocą elementu sprzęgającego. Elementem sprzegającym może byc masa połozona na nici rozłożonej pomiędzy dwoma wahadłami na prętach wahadeł w jakiejś odległosci od osi tych wahadeł, innym elementem sprzęgającym moze być sprężyna lącząca środki ciężkości wahadeł. Wahadła sprzężone są dwoma ciałami wykonującymi ruch harmoniczny oddziaływującymi na siebie. Moment kierujący każdego wahadła wynosi: D=mgl gdzie m masa wahadła, g przyspieszenie ziemskie, l odległość osi wahadła od srodka ciężkości Dodatkowo prócz tego momentu pojawia się Ds moment sprzęgający zalezy od odległości s punktu zaczepienia siły sprzęgającej oraz rożnicy faz Równanie ruchu każdego z tych wahadeł przyjmuje postać: gdzie: d ϕ1 d ϕ D = D ( s, ϕ ϕ ) S S k( ) = ω ϕ1 ϕ1 ϕ + + k( ) = ω ϕ ϕ ϕ1 D mgl ω = = I I DS k = I Drganiami normalnymi nazywamy taki przypadek, ze oba wahadła wykonują wychylenie o ke same kąty, w przypadku drgań w fazie mówi się o drganiach normalnych I a w przypadku przeciwfazy drganiach normalnych II. Oznaczmy: ψ = ϕ + ϕ 1 1 ψ = ϕ ϕ 1 d ψ1 + ωψ 1 = d ψ + ( ω + k) ψ = Dodając lub odejmując stronami równaniue ruchu otrzymamy:
4 W pierwszym przypadku sa uwzględnione drgania normalne pierwsze, a w drugim drugie. Jak widac w pierwszym przypadku drgania normalne mają ta samą częstość co drgania pojedyńczych wahadeł co zostało potwierdzone doświadczalnie. Poniżej wzory dotyczace II drgań normalnych ω = ω + k ω + mgl ω = + I Ds ID k ω Uwzgledniając wczesniejsze załozenia: d ψ1 d ψ + ω1ψ1 = + ω ψ = Amplitudy wahadeł podczas zajścia dudnienia: ω ω A1 = C t ω ω A = C t 1 cos( ) 1 sin( )
5 OBLICZENIA BŁĘDÓW WARTOSCI PROSTYCH I. Czasy 1 wahnięć: 1. Wahadło prawe srednia arytmetyczna: 1.13s x ε ε σ=.11. Wahadło lewe srednia arytmetyczna: 1.4 x ε ε E E-5 σ=.17 II. Promień wahadeł. Za promień wahadeł przyjmuje połowe średnicy, za błąd w liczeniu promienia uznaje połowe odchylenia standardowego 3 pomiarów średnicy jednego z wahadeł,5cm. R=,99cm III. Drgania w fazie (pierwsze drgania normalne wahadeł) srednia arytmetyczna: 1.53s x ε ε
6 σ=.9 Drgania w przeciwfazie (drgania drugie) srednia arytmetyczna: 11.58s x ε ε σ=.s IV. Za mase wahadeł przyjąłem średnią arytmetyczną masy obu wahadeł 535g=,535kg z błędem 1g (najmniejsza szalka wagi użyta do ważenia) V. Błędy połów okresów dudnień: 1) s=1cm srednia arytmetyczna: 1.96 x ε ε σ= Okres: 44s z błedem 15, s ) s=11 cm srednia arytmetyczna: 1.3
7 x ε ε σ= okres: 4.46s z błędem,13s 3) s=1 cm srednia arytmetyczna: 17.3 x ε ε σ= okres: 34,6s z bledem 3,48s 4) s=13cm srednia arytmetyczna: 15.7 x ε ε σ= Okres: 3,54 z błedem 1,78s 5) s=14 cm srednia arytmetyczna: x ε ε
8 σ= Okres: 31.6 z bledem 1,41s 6) s=15 cm srednia arytmetyczna: 13. x ε ε σ= Okres: 6,4s z błedem 1,4s 7) s=16 cm srednia arytmetyczna: 1.43 x ε ε σ = okres: 4,86s z błędem,35s 8) s=17 cm srednia arytmetyczna: 1.71 x ε ε
9 σ = Okres: 1,4s z bledem 1,4 s 9) s=18 cm srednia arytmetyczna: 1.3 x ε ε σ= Okres:,6s z błędem 1,6 s 1) s=19 cm srednia arytmetyczna: 9. x ε ε σ= Okres: 18s z bledem,56s 11) s=5cm srednia arytmetyczna: x ε ε σ= Okres: 1,49s z blędem,37s
10 VI. Za bląd długosci preta przyjmuje wartość odchylenia standardowego trzech pomiarów,5cm VII. Obliczam błąd masy preta obliczonej z gęstości stali o objetości pręta: g ρ ρπ cm r l m p = m p + = 77g,3 =,5 g r l 3 m p = V = h = 9,75 cm 7,9 = 77g 3 VIII. Obliczam moment kierujący D dla kazdego z wahadeł oraz błąd tego momentu N D = mg( d + r) =,535 kg 9,81 (34,5 +,99) = 196,7 Ncm = 1,97 Nm kg g g g m d r D = m + d + r = D + + =,5 D =,981 Ncm m d r m d r IX. Obliczam moment bezwładności wahadła wraz z prętem: 1 1 I = I ( ) O + I S + I P = mr + m( l + r) + m pl =,5 535, , ,5 3 I 39 gcm + 75 gcm + 36 gcm = 785 gcm m r ( l + r) m m p l I = I O + + I S + + I P + = IO,5 + I S,3 + I P, m r l + r m m p l I = 34 gcm I = I,3 X. Obliczam częstość (częstotliwość kołową drgań każdego wahadła) ω = π = π = 5,19 T 1,1 s s ω T 1 1 ω = T = ω = 5,19*,11 =,57 T T s s Prawe: Lewe: ω = π = π = 5,15 T 1, s s ω T 1 1 ω = T = ω = 5,15*, =,1 T T s s XI. Częstość drgań normalnych pierwszych wyniosła 5,1 rad/s częstotliwość,83hz, częstość drgań normalnych drugich wyniosła 5,43 rad/s częstotliwość,86hz
11 DS ωd = DS = ωd ID ID π 6, 83 6, 83 cm cm DS( s = 1) = ID = 785 gcm * 196, 7Ncm = 785 kgcm * 1967 kg = 113 kg = 1,13 Nm T, s, s s s XII. Obliczam momenty sprzęgające wahadeł: (przykład dla 1-ego pomiaru) ωd 1 I 1 D DS = DS + + = 1,13 Nm (,34 +,15 +,5 ) =,39 Nm ωd I D Wysokość Błąd Okres T Błąd T Częstość Błąd Moment sprzegający Błąd momentu sp. 1, ,,14,5 561,13 196,9 11,5 4,46,13,15 4,5E-4 581,48 4,11 1,5 34,6 3,48,18, 74,89 76,96 13,5 3,54 1,78,1,1 88,44 5,35 14,5 31,6 1,41,,1 789,8 38,78 15,5 6,4 1,4,4,1 935, 53,34 16,5 4,86,35,5 993,15 17,96 17,5 1,4 1,4,9, 115,65 79,95 18,5,6 1,6,31, 1198,53 97,88 19,5 18,56,35,1 1371,65 48,16 5,5 1,49,37,5,1 1976,76 66, by Tremolo Robert Gabor pomyśl zanim skopiujesz
12 Wykres zależności Ds(s): wykres zalezności w zależności od wysokości zawieszenia nici Wykres zależności Ds(T) w funkcji okresu Wykres zalezności Ds(ω)
13 Wnioski: Jak widac na załączonych wykresach zależność momentu sprzęgającego od odległosci s jest liniowa, liniową zaleznością jest też zalezność tego momenu w funkcji częstości, częstotliwości, zależność momentu Ds od okresu natomiast jest zależnością odwrotnie proporcjonalną wykres po aproksymacji byłby hiperbolą. Im linka sprzęgająca niżej tym czas "przejścia" drgania jest mniejszy. Okresy dudnień maleją hiperbolicznie. Pierwszy wynik obliczania okresu obarczone były bardzo dużym blędem sięgajacym 33% - mógł on być spowodowany niedokładnością związaną z tarciem między statywem a osią jednego z wahadeł, po za tym ustawienie wahadeł aby ich okresy były równe jest dosyc kłopotliwe, bowiem różnica ich mas wynosiła g, po za tym podczas pierwszych wahań jedno z wahadeł doznawało dodatkowych obciążeń, których skutkiem było wykręcanie się lewego wahadła. Następne błedy są już mniejsze, wahadła dawały stabilniejsze wyniki. Więcej na: dział laboratoria Literatura: Henryk Szydłowski Pracownia fizyczna PWN Warszawa 1979 B. Jaworski, A. Dietlaf, Miłkowska - Kurs fizyki tom 1 i 3 PWN Warszawa 1971 Robert Reshnick, David Halliday Fizyka 1 - wyd. 11 PWN Warszawa 1999 Szczepan Szczeniowski - Fizyka doświadczalna cz.1 mechanika i akustyka PWN Warszawa 198 Tadeusz Dryński Ćwiczenia laboratoryjne z fizyki PWN Warszawa Encyklopedia Fizyki tom II i III s. 645 PWN Warszawa 1974
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna
Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 5 Wyznaczanie przyspieszenia grawitacyjnego g za pomocą wahadła balistycznego Kalisz, luty 2005 r. Opracował: Ryszard
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 3 Wyznaczanie modułu sztywności metodą dynamiczną Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski Doświadczenie
PRACOWNIA FIZYCZNA DLA UCZNIÓW WAHADŁA SPRZĘŻONE
PRACOWNA FZYCZNA DLA UCZNÓW WAHADŁA SPRZĘŻONE W ćwiczeniu badać będziemy drgania dwóch wahadeł sprzężonych za pomocą sprężyny. Wahadła są jednakowe (mają ten sam moment bezwładności, tę samą masę m i tę
D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta).
D3. Wahadła fizyczne sprzężone (przybliżenie małego kąta). Cel: Zbadanie przebiegu drgań dwóch wahadeł sprzężonych: zbadanie zależności częstości drgań wahadła prostego od jego momentu bezwładności, wyznaczenie
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Wyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
PF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
1. Wahadło fizyczne o regulowanej płaszczyźnie. drgań. kilkukrotnie sprawdzając z jaką niepewnością statystyczną możemy mieć do czynienia. pomiarze.
. Wahadło fizyczne o regulowanej płaszczyźnie drgań.. Cel ćwiczenia Cel ćwiczenia: Analiza drgań harmonicznych na przykładzie wahadła fizycznego. Sprawdzenie relacji między okresem drgań obliczonym a okresem
WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE
ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
Człowiek najlepsza inwestycja FENIKS
Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych
Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego
POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH
ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH WYKAZ PRZYRZĄDÓW:. Wahadło sprzężone. Linia metrowa 3. Szalka wagi 4. Statyw 5. Odważniki 6. Ostrze pryzmatyczne do wyznaczania środka ciężkości WYKONANIE ZADANIA:.
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Wykład 6 Drgania. Siła harmoniczna
Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
2. OPIS ZAGADNIENIA Na podstawie literatury podręczniki akademickie, poz. [2] zapoznać się z zagadnieniem i wyprowadzeniami wzorów.
Zad. M 04 Temat: PRACOWA FZYCZA nstytut Fizyki US Wyznaczanie momentu bezwładności brył metodą wahadła fizycznego. Doświadczalne potwierdzenie twierdzenia Steinera. Cel: zapoznanie się z ruchem drgającym
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.
Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
ĆWICZENIE 5. Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego. Kraków,
Maria Nowotny-Różańska Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 5 Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego Kraków, 03.015 Spis treści:
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3
Wyznaczanie. Ćwiczenie nr 3 Metoda teoretyczna Znając średnicę D, średnicę drutu d, moduł sprężystości poprzecznej materiału G oraz liczbę czynnych zwojów N, współczynnik można obliczyć ze wzoru: Wzór
Zadanie domowe z drgań harmonicznych - rozwiązanie trzech wybranych zadań
- rozwiązanie trzech wybranych zadań Ireneusz Mańkowski I LO im. Stefana Żeromskiego w Lęborku ul. Dygasińskiego 14 28 kwietnia 2016 Wybrane zadania domowe 1 Zadanie 5.4.4 Rozwiązanie zadania 5.4.4 2 Zadanie
Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014
Program Wykładu Fizyka Wydział Zarządzania i Ekonomii Rok akademicki 2013/2014 Mechanika Kinematyka i dynamika punktu materialnego Zasady zachowania energii, pędu i momentu pędu Podstawowe własności pola
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Ć W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
Rys. 1Stanowisko pomiarowe
ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza
Wyznaczanie współczynnika tarcia tocznego za pomocą wahadła nachylnego
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS0137; KN0137; LS0137; LN0137 Ćwiczenie Nr 4 Wyznaczanie współczynnika tarcia
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: fizyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Ruch harmoniczny i fale mechaniczne
Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej
Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego
Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:
Zadanie 2. Oceń prawdziwość poniższych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.
Zadanie 1. W pewnej odległości od siebie umieszczono dwie identyczne kulki o metalizowanych powierzchniach. Ładunek elektryczny zgromadzony na pierwszej kulce wynosił +6q, a na drugiej -4q (gdzie q oznacza
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia
LABORATORIUM Z FIZYKI
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.
Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku
INSTRUKCJA DO ĆWICZENIA NR 21
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Analiza płaskiego dowolnego układu sił Dr hab. inż. Krzysztof
WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH
WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Siła sprężystości - przypomnienie
Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Czy okres i częstotliwość drgań wahadła matematycznego zależą od jego amplitudy?
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWE WYDZAŁ LABORAORUM FZYCZNE Ćwiczenie Nr 1 emat: WYZNACZNE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Warszawa 9 WYZNACZANE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na
Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)
Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany
BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO
Ćwiczenie 3 BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO 3.. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie położeń równowagi i określenie stanu równowagi prostego układu mechanicznego
10 K A T E D R A FIZYKI STOSOWANEJ
10 K A T E D R A FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 10. Wyznaczanie momentu bezwładności brył nieregularnych Wprowadzenie Obserwowane w przyrodzie ruchy ciał można opisać * stosując podział
Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m
Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca
Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady.
Zadanie bloczek Przez zamocowany bloczek o masie m przerzucono nierozciągliwą nitkę na której zawieszono dwa obciąŝniki o masach odpowiednio m i m. Oblicz przyspieszenie z jakim będą poruszać się obciąŝniki.
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
T =2 I Mgd, Md 2, I = I o
Kazimierz Pater, Nr indeksu: 999999 Wydział: Podstawowych Problemów Fizyki Kierunek: Fizyka Data: 99.99.9999 Temat: Wyznaczanie momentu bezwładności bryły sztywnej i sprawdzenie tw. Steinera Nr kat. ćwicz:
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego
2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 10 Wyznaczanie współczynnika załamania światła metodą najmniejszego odchylenia w pryzmacie Kalisz, luty 2005 r. Opracował:
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Ćwiczenie: "Ruch po okręgu"
Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka
XL OLIMPIADA FIZYCZNA ETAP II Zadania doświadczalne
XL OLIMPIADA FIZYCZNA ETAP II Zadania doświadczalne ZADANIE D Przy skręcaniu drutu o mały kąt α moment skręcający sił sprężystości wyraża się wzorem: M 4 = πgr α /(L) gdzie G oznacza moduł szywności materiału