Dynamika punktu materialnego
|
|
- Grzegorz Stankiewicz
- 6 lat temu
- Przeglądów:
Transkrypt
1 Dynaia punu aerialnego dr inż. Sebaian Pauła Wydział Inżynierii Mechanicznej i Roboyi Kaedra Mechanii i Wibroauyi ail: paula@agh.edu.pl www: hoe.agh.edu.pl/~paula/ dr inż. Sebaian Pauła - Kaedra Mechanii i Wibroauyi AGH Srona 1
2 Zadanie 1. Przy wyrzale z działa poci opuzcza lufę z prędością v=7/. Maa pociu wynoi =6g. Jai je średni naci gazów prochowych, jeżeli poci przebywa wewnąrz działa drogę =. Po jai czaie poci opuści lufę działa, jeżeli ię przyjie, że naci gazów je niezienny. Zadanie. Po jai czaie i na jai odcinu oże zarzyać ię w ue haowania wagon rawajowy jadący po pozioy orze z prędością 36/h, jeżeli opór ruchu powający przy haowaniu wynoi 3G na onę ciężaru wagonu. Zadanie 3. Pun aerialny o aie poruza ię prooliniowo pod działanie iły zieniającej ię według wzoru F=F co(ω), gdzie F i ω ą ałe. W chwili począowej pun a prędość x v. Znaleźć równanie ruchu punu. F 1 co x v Zadanie 4. Ciało o ciężarze G rzucono pionowo do góry z prędością / poonuje opór powierza, óry przy prędości v =1 / wynoi w ilograach-iła,4; g=9,8 /. Obliczyć, po ilu eundach ciało oiągnie najwyżze położenie. (przeliczyć are jednoi [G], [T] na nowe [N] ) Zadanie. Moorniczy rawajowy wyłączając opniowo opory w obwodzie eleryczny ilnia, zwięza jego oc a, że iła pociągowa wzraa od zera proporcjonalnie do czau o 1 G w ciągu ażdej eundy. Znaleźć równanie drogi wagonu dla naępujących danych. Ciężar wagonu 1 T, opór jazdy je ały i wynoi,t, a prędość począowa równa je zeru. (1,7) (M.69) (przeliczyć are jednoi [G], [T] na nowe [N] ) dr inż. Sebaian Pauła - Kaedra Mechanii i Wibroauyi AGH Srona
3 DRGANIA Zadanie 1. Aby zierzyć lepość cieczy Coulob użył naępującej eody. Zawieił na prężynie cieną płyę A i wprawił ją w ruch drgający, najpierw w powierzu, a poe w badanej cieczy i zierzył w obu przypadach ore jednego wahnięcia T 1, T. Siła arcia płyi o ciecz wyrażona je wzore Sbv, gdzie S o pole powierzchni płyi, v - jej prędość, b - wpółczynni lepości. Poijając arcie płyi o powierze, obliczyć wpółczynni lepości ze zierzonych doświadczalnie czaów T 1 i T, jeżeli aa płyi wynoiła. Odp.: b T T1 Podpowiedź: ST T 1 T ore drgań ZADANIE. Cząa o aie =1 g wyonuje drgania haroniczne wzdłuż oi x, woół położenia równowagi x=. Mayalna prędość cząi v ax =c/, zaś ayalne wychylenia A=3 c. Wiedząc, że w chwili 1 = wychylenie wynoiło x 1 = c, obliczyć: a) częoliwość ołową ω, ore T i fazę począową φ; b) prędość i przyśpiezenie cząi w chwili =1 ; c) ayalną iłę działającą na cząę oraz jej energię całowią. (parz przyład 3) ZADANIE 3. Mała ula o aie = g zoała zawiezona na prężynie o ałej =1 N/c. Kulę odciągnięo o x=3 c od położenia równowagi i puzczono nadając jej prędość v p =1 c/ do góry. Obliczyć: a) apliudę, ore drgań ej uli i fazę począową; b) ayalną prędość i przyśpiezenie w jej ruchu; c) energię całowią uli. ZADANIE 4. W ciągu =1 ciało wyonuje n=1 drgań łuionych. W y czaie apliuda drgań aleje =1, razy. W chwili począowej wychylenie było x =1 c, zaś prędość v =-1 c/. Obliczyć: a) apliudę począową A i fazę począową α, dr inż. Sebaian Pauła - Kaedra Mechanii i Wibroauyi AGH Srona 3
4 b) apliudę i wychylenie w chwili czau 1 =. Przyład 1. Walec o proieniu r, wyoości h i aie wii na prężynie AB, órej oniec B je nieruchoy. Walec zanurzony je w wodzie. W położeniu równowagi walec zanurza ię na głęboość h/. W chwili począowej walec zanurzony był w wodzie na /3 wojej wyoości. Naępnie puzczono go bez prędości począowej. Przyjując, że zywność prężyny a warość oraz że działanie wody prowadza ię do iły wyporu wg prawa Archiedea, wyznaczyć ruch walca względe położenia równowagi. Przyjąć, że ciężar właściwy wody równa ię. A B h r ROZWIĄZANIE: Położenie równowagi: h h g r x g r x Równanie ruchu: h x g x x r x h h x g x g r r r x x x r x x r x x dr inż. Sebaian Pauła - Kaedra Mechanii i Wibroauyi AGH Srona 4
5 x r x x gdzie częość drgań włanych uładu CORJ: (Cała ogólna równania jednorodnego) x Ain B co x A co B in Waruni począowe x h h h, 1 A, B h 6 1 r x h co 6 x Przyład. Odważni o aie M wii na prężynie AB, órej góry oniec wyonuje drgania haroniczne o apliudzie a i częości ołowej ω wzdłuż proej pionowej. Odległość OC 1 ain. Wyznacz równanie ruchu odważnia przy naępujących 1 danych. 1g. Siła 1N rozciąga prężynę o 1c. a c, 7. Załóży, że w oencie uruchoienia urządzenia, uład znajdował ię w położeniu równowagi. C O 1 ain O 1 C x x ROZWIĄZANIE: Obliczanie wpółczynnia prężyości : dr inż. Sebaian Pauła - Kaedra Mechanii i Wibroauyi AGH Srona
6 P 1 N 1 x,1 Równanie różniczowe ruchu: x ( ain x) / : x x a in gdzie (częość drgań włanych uładu) CORJ: (Cała ogólna równania jednorodnego) RJ: x x x Ain Bco j x A co B in j x A in B co j Załadając waruni począowe x()=, v()= A, B CSRN: (Cała zczególna równania niejednorodnego) x Cin Dco, x C co D in, x C in D co Podawiay przewidywane rozwiązania zczególne do RJ. C in D co C in D co ain Przyrównujey wpółczynnii wyępujące przy inω i coω C a D C D a CSRN: x a in CORN=CORJ+CSRN (Cała ogólna równania niejednorodnego) a x in dr inż. Sebaian Pauła - Kaedra Mechanii i Wibroauyi AGH Srona 6
7 x 3,9in 7 c Przyład 3. Cząa o aie =4g wyonuje drgania haroniczne wzdłuż oi x, woół położenia równowagi x=. Wychylenie cząi w chwili 1 = wynoi x 1 = c, zaś w chwili = wychylenie wynoi x = c. Wiedząc, że apliuda drgań A=c, obliczyć: a) częoliwość ołową ω, ore T i fazę począową φ; b) wychylenie i prędość cząi w chwili = 1 ; c) energię ineyczną i poencjalną w chwili =1. ROZWIĄZANIE: A) Ogólne równanie ruchu haronicznego a poać: in (1) x A co () v A w ai wypadu podawy do ego równania dwa rozwiązania: x1 in x in Orzyaliśy uład dwóch równań o dwóch niewiadoych ω i φ. Podziely oba równania przez i poługując ię funcją odwroną do inu j. ain. Obliczyy w en poób warość arguenu funcji inu. x1 a in x a in Odejijy od drugiego równania pierwze, aby wyrugować φ. Orzyujey: x x 1 ain ain 3 ąd: (3) dr inż. Sebaian Pauła - Kaedra Mechanii i Wibroauyi AGH Srona 7
8 , 379 3, 4994 in x in x a a a in a in, rad 3 3 Aby obliczyć ą fazowy φ, wyorzyay jedno z równań z uładu (3). x a 1 in 1, 47 rad Ore drgań policzyy na podawie znanej częości ołowej ω wg. wzoru: B) T 66,6 (4) Mając już znane równanie ruchu (1) oraz prędości () wyznaczyy wychylenie i prędość w 1 eundzie ruchu. x 1 in, , c c v 1, co, , C) Energia ineyczna i poencjalna wyrażone ą odpowiednio wzorai: v 1, 4 g, E 4,396 1 J 43,96 nj x U 1 gdzie wpółczynni o ała prężyości. Można ją obliczyć znając częość drgań włanych ω: Energia poencjalna będzie wyrażona wzore: rad.4g , x U 1, 6nJ Sprawdźy jezcze jednoi: dr inż. Sebaian Pauła - Kaedra Mechanii i Wibroauyi AGH Srona 8
9 E g / g N J U rad g g N J Policzy jezcze energię całowią: E E U 43,96 nj 1, 6nJ 4, 16nJ C ZADANIE! OBLICZ ENERGIE CAŁKOWITĄ W 1 SEKUNDZIE RUCHU I PORÓWNAJ Z CAŁKOWITĄ ENERGIĄ W 1 SEKUNDZIE RUCHU! dr inż. Sebaian Pauła - Kaedra Mechanii i Wibroauyi AGH Srona 9
1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s.
Iię i nazwiko Daa Klaa Werja A Sprawdzian 1 opi ruchu poępowego 1. Saochód jadący z zybkością 1 / na prooliniowy odcinku ray zwolnił i oiągnął zybkość 5 /. 1 a. Przyro prędkości a warość 5 / i zwro zgodny
= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4
Imię i nazwiso Daa Klasa Grupa A Sprawdzian 3 PracA, moc, energia mechaniczna 1. Ze sojącego działa o masie 1 wysrzelono pocis o masie 1 g. nergia ineyczna odrzuu działa w chwili, gdy pocis opuszcza lufę
8.Dynamika ruchu drgającego i fale w ośrodkach sprężystych.
8Dynaia ruchu rgającego i fale w ośroach prężyych Wybór i opracowanie zaań 8 835 - Ryzar warowi Wybór i opracowanie zaań 836-845 - Boguław Kuz 8 W ułazie przeawiony na ryunu 8 aę g w chwili ochylono o
CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH
CHARAKERYSYKI CZASOWE UKŁADÓW DYNAMICZNYCH Zadani Chararyyi czaow uładów. Odpowidź oową wyznacza ię z wzoru: { } Problm: h L G X Wyznaczyć odpowidz oową i impulową całującgo z inrcją G h L G gdzi: Y X
SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74
Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu
Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izya 1- Mechania Wyład 6 1.XI.16 Zygun Szeflińi Środowiowe Laboraoriu Ciężich Jonów zef@fuw.edu.l h://www.fuw.edu.l/~zef/ Praca i energia Najrozy rzyade: Sała iła działa na ciało P owodując jego rzeunięcie
- obliczyć względne procentowe odchylenie otrzymanej wartości od wartości tablicowej:
Kila uwa: - Doświadczenia przeprowadzay w rupach - osobowych (nie więszych), jedna w raach rupy ażdy suden wyonuje swoje osobne poiary i obliczenia. - Na zajęcia przychodziy z wydruowanyi wybranyi ćwiczeniai
2. Załadowany pistolet spręŝynowy ustawiono pionowo w górę i oddano strzał. SpręŜyna
Energia potencjalna pręŝytości 1. W kontrukcji pitoletu pręŝynowego uŝyto pręŝyny o wpółczynniku pręŝytości 100. Jaką aę a pocik pitoletu, jeśli odkztałcona o 6 c pręŝyna nadaje pocikowi w trakcie trzału
Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA.
Ćwiczenie 39 KLOCEK WALEC A ÓW POCHYŁEJ - SAYKA. 39... Wiadoości ogólne Zjawiko tarcia jet jedny z najbardziej rozpowzechnionych w nazej codziennej rzeczywitości. W świecie w jaki żyjey tarcie jet dołownie
INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.
INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:
motocykl poruszał się ruchem
Tet powtórzeniowy nr 1 W zadaniach 1 19 wtaw krzyżyk w kwadracik obok wybranej odpowiedzi Inforacja do zadań 1 5 Wykre przedtawia zależność prędkości otocykla od czau Grupa B 1 Dokończ zdanie, określając,
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
ROZWIĄZANIE PRZYKŁADOWYCH ZADAŃ Z FIZYKI Dział Kinematyka Realizowany w klasie pierwszej Gimnazjum nr 2 w Ełku. 2. Prędkość
ROZWIĄZANIE PRZYKŁADOWYCH ZADAŃ Z FIZYKI Dział Kineayka Realizowany w klaie pierwzej Ginazju nr w Ełku Przyponienie podawowyc danyc: Wielkość fizyczna Nazwa Jednoka Jednoka łownie Droga er Prędkość er
MGR 2. 2. Ruch drgający.
MGR. Ruch drgający. Ruch uładów drgających (sprężyny, guy, brzeszczou, ip.). Badanie ruchu ciała zawieszonego na sprężynie. Wahadło aeayczne. Wahadło fizyczne. Rezonans echaniczny. Ćw. 1. Wyznaczanie oresu
6 = λ Częstotliwość odbierana przez nieruchomą głowicę, gdy źródło o prędkości v s emituje falę o częstotliwości f k : + = g g
Projet Fizya wobec wyzwań XXI w. wpółinanowany przez Unię Europeją ze środów Europejieo Funduzu Społeczneo w raach Prorau Operacyjneo Kapitał Ludzi Zadania z olowiu 16.11.2009 (Fizya Medyczna i Neuroinoratya)
Zadania do rozdziału 2.
Zadania do rozdziału. Zad..1. Saochód na auoradzie poruza ię ruche jednoajny prooliniowy z prędkością υ100 k/odz. W jaki czaie przebędzie on droę 50 k? Rozwiązanie: Zad... υ 50 k / odz 0.5 odz. υ 100 k
Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie
:36 G:\WYKLAD IIIBC 2001\FIN2001\Drgwym2001.doc Drgania i fale II rok Fizyk BC. Oscylator pod działaniem zmiennej w czasie siły:
Dgania wyuzone. Rezonan Ocylao pod działanie ziennej w czaie iły: (a) iła pzyłożona bezpośednio do ay, (b) uch punku zaczepienia pężyny (np. aywny obiek połączony pężyście z eleene dgający). Niech () co
Blok 2: Zależność funkcyjna wielkości fizycznych
Blok : Zależność funkcyjna wielkości fizycznych ZESTAW ZADAŃ NA ZAJĘCIA 1. Na podtawie wykreu oblicz średnią zybkość ciała w opianym ruchu.. Na ryunku przedtawiono wykre v(t) pewnego pojazdu jadącego po
Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny
Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,
Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.
Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.
WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY
MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2010/2011 Cza trwania: 90 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych,
Układy inercjalne i nieinercjalne w zadaniach
FOTON 98 Jeień 007 53 Układy inercjalne i nieinercjalne w zadaniach Jadwia Salach Zadanie 1 Urzędnik pracujący w biurowcu wiadł do windy która ruzył dół i przez 1 ekundę jechała z przypiezenie o wartości
Plan wynikowy z fizyki. dla klas drugich gimnazjum. wraz z określeniem wymagań edukacyjnych
Plan wynikowy z fizyki dla kla drugich gimnazjum wraz z określeniem wymagań edukacyjnych 4. Jak opiujemy ruch? Lp. Tema lekcji Wymagania konieczne i podawowe 1 Układ odnieienia. Tor ruchu, droga opiuje
Zadania do rozdziału 5
Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi
Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych).
Zadanie Podaj model matematyczny uładu ja na ryunu: a w potaci tranmitancji, b w potaci równań tanu równań różniczowych. a ranmitancja operatorowa LC C b ównania tanu uładu di dt i A B du c u c dt i u
Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
Szeregi Fouriera (6 rozwiązanych zadań +dodatek)
PWR I Załad eorii Obwodów Szeregi ouriera (6 rozwiązanych zadań +dodae) Opracował Dr Czesław Michali Zad Znaleźć ores nasępujących sygnałów: a) y 3cos(ω ) + 5cos(7ω ) + cos(5ω ), b) y cos(ω ) + 5cos(ω
Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów
Przekzałcenie Laplace a Deinicja i właności, ranormay podawowych ygnałów Tranormaą Laplace a unkcji je unkcja S zmiennej zepolonej, kórą oznacza ię naępująco: L[ ] unkcja S nazywana bywa również unkcją
i odwrotnie: ; D) 20 km h
3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki
Komitet Główny Olimpiady Fizycznej; Kazimierz Rosiński: Fizyka w szkole nr 1, 1956; Czarnecki Stefan: Olimpiady Fizyczne I IV, PZWS, Warszawa 1956.
V OLIMPIADA FIZYCZNA (955/956). Stopień wstępny, zad. doświadczalne D. Źródło: Nazwa zadania: Działy: Słowa luczowe: Koitet Główny Olipiady Fizycznej; Kaziierz Rosińsi: Fizya w szole nr, 956; Czarneci
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczaowych ginazjów 0 tycznia 019 r. etap rejonowy Scheat punktowania zadań Makyalna liczba punktów 40. 85% 4pkt. Uwaga! 1. Za poprawne rozwiązanie zadania
KLASA II Rozkład i Wymagania
KLASA II Rozkład i Wymagania 4. Jak opiujemy ruch? 33 Układ odnieienia. Tor ruchu, droga opiuje ruch ciała w podanym układzie odnieienia klayfikuje ruchy ze względu na kzał oru rozróżnia pojęcia oru ruchu
λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu
Odpowiedzi i rozwiązania:. C. D (po włączeniu baterii w uzwojeniu pierwotny płynie prąd tały, nie zienia ię truień pola agnetycznego, nie płynie prąd indukcyjny) 3. A (w pozotałych przypadkach na trunie
cx siła z jaką element tłumiący działa na to ciało.
Drgania układu o jedny sopniu swobody Rozparzy układ składający się z ciała o asie połączonego z nierucoy podłoże za poocą eleenu sprężysego o współczynniku szywności k oraz eleenu łuiącego o współczynniku
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 ETAP OKRĘGOWY
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 KOD UCZNIA ETAP OKRĘGOWY Instrukcja dla ucznia 1. Arkusz zawiera 7 zadań. 2. Przed rozpoczęciem
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 6 ułady dysretne o wielu stopniach swobody Poniższe
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Nr zadania PUNKTOWANE ELEMENTY ODPOWIEDZI.1 Za czynność Podanie nazwy przemiany (AB przemiana izochoryczna) Podanie nazwy przemiany (BC
gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności.
RUCH DRGJĄCY Ruche drgający (drganiai) nazywa się każdy ruch, który charakteryzuje powtarzalność w czasie wielkości fizycznych (np wychylenia) określających ten ruch Występujące w przyrodzie drgania ożna
WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 2009/2010 Czas trwania: 120 minut
KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 009/010 Cza trwania: 10 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych, za które
Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego
Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap szkolny
UWAGA: W zadaniac o nuerac od 1 do 6 pośród podanyc propozycji odpowiedzi wybierz i zaznacz tą, która tanowi prawidłowe zakończenie otatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Lokootywa o aie 0 ton
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
1. RACHUNEK WEKTOROWY
1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe
PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH
DZIAŁ III. SIŁA WPŁYWA NA RUCH Wielkość fizyczna nazwa ybol Przypiezenie (II zaada dynaiki) a Jednotka wielkości fizycznej Wzór nazwa ybol F N w a niuton na kilogra kg Ciężar Q Q g niuton N Przypiezenie
Wprowadzenie: Dynamika
Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Blok 4: Dynamika ruchu postępowego. Równia, wielokrążki, układy ciał
Blok 4: Dynaika ruchu potępowego Równia, wielokrążki, układy ciał I Dynaiczne równania ruchu potępowego Chcąc rozwiązać zagadnienie ruchu jakiegoś ciała lub układu ciał bardzo częto zaczynay od dynaicznych
Temat ćwiczenia: GENERATOR FUNKCYJNY i OSCYLOSKOP Układ z diodą prostowniczą, pomiary i obserwacje sygnałów elektrycznych Wprowadzenie AMD
Laboraoriu Eleroechnii i eleronii ea ćwiczenia: LABORAORIUM 6 GENERAOR UNKCYJNY i OSCYLOSKOP Uład z diodą prosowniczą, poiary i obserwacje sygnałów elerycznych Wprowadzenie Ćwiczenie a za zadanie zapoznanie
Ruch drgający i falowy
Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla
1. K 5 Ruch postępowy i obrotowy ciała sztywnego
1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość
Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS)
3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.1. DRGANIA TRANSLACYJNE I SKRĘTNE WYMUSZME SIŁOWO I KINEMATYCZNIE W poprzednim punkcie o modelowaniu doszliśmy do przekonania, że wielokrotnie
Wzory z fizyki. 3, m- masa w kg, V- objętość w m. - Ciężar ciała w N, m- masa w kg, g- przyspieszenie ziemskie w
www.afiz34.republika.pl. Gęość ciała, ( ρ- czyaj ro) V r- gęość w 3, - aa w, V- objęość w 3. Ciężar ciała g ( lub Q g ) F g Fg - Ciężar ciała w N, - aa w, g- przypiezeie ziekie w 3. Ciśieie hydroaycze
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
SPRAWDZIAN z działu: Dynamika. TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć.
SPRAWDZIAN z działu: Dynamika TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć....... imię i nazwiko... klaa 1. Które z poniżzych zdań tanowi
ZBIÓR ZADAŃ STRUKTURALNYCH
ZBIÓR ZADAŃ STRUKTURALNYCH Zgodnie z zaleceniami metodyki nauki fizyki we współczesnej szkole zadania prezentowane uczniom mają odnosić się do rzeczywistości i być tak sformułowane, aby każdy nawet najsłabszy
1 W ruchu jednostajnym prostoliniowym droga:
TEST z działu: Kineatyka iię i nazwiko W zadaniac 8 każde twierdzenie lub pytanie a tylko jedną prawidłową odpowiedź Należy ją zaznaczyć data W rucu jednotajny protoliniowy droga: 2 jet wprot proporcjonalna
SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I
SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I 1. (3p) Jaki rodzaj oddziaływań zachodzi w podanych ytuacjach? a) Spadanie jabłka z drzewa -... b) Uderzenie łotkie w gwóźdź...
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI dla uczniów gimnazjum woj. łódzkiego w roku szkolnym 2013/2014 zadania eliminacji wojewódzkich.
ŁÓD ZK IE CEN TRUM DOSK ONALEN IA NAUC ZYC IEL I I KS ZTAŁ CEN IA P RAK TYC ZNE GO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Komisji Wojewódzkiego Konkursu Przedmiotowego z Fizyki Imię i nazwisko
J. Szantyr - Wykład 5 Pływanie ciał
J. Szantyr - Wykład 5 Pływanie ciał Prawo Archimedesa Na każdy element pola ds działa elementarny napór Napór całkowity P ρg S nzds Główny wektor momentu siły naporu M ρg r nzds S dp Αρχίµηδης ο Σΰρακοσιος
R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y
Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α
FIZYKA R.Resnick & D. Halliday
FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Wymagania edukacyjne - fizyka klasa 2 gimnazjum
ymagania edukacyjne - fizyka klaa gimnazjum Klayfikacja śródroczna Ocena dopuzczająca i doaeczna (numery przy wymaganiach anowią odnieienie do podawy programowej) opiuje ruch ciała w podanym układzie odnieienia
Zasada zachowania pędu i krętu 5
Zasada zachowania pęd i krę 5 Wprowadzenie Zasada zachowania pęd pnk aerialnego Jeżeli w przedziale, sa sił działających na pnk aerialny kład pnków aerialnych jes równa zer, o pęd pnk aerialnego kład pnków
pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka
2. Dynamika zadania z arkuza I 2.8 2.1 2.9 2.2 2.10 2.3 2.4 2.11 2.12 2.5 2.13 2.14 2.6 2.7 2.15 2. Dynamika - 1 - 2.16 2.25 2.26 2.17 2.27 2.18 2.28 2.19 2.29 2.20 2.30 2.21 2.40 2.22 2.41 2.23 2.42 2.24
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12
Pracownia Fizyki, Pałac Młodzieży w Katowicach X Wojewódzki Dwuosobowy Konkurs z Fizyki dla Gimnazjum
Pracownia Fizyki, Pałac Młodzieży w Katowicach 07.04.2009 X Wojewódzki Dwuosobowy Konkurs z Fizyki dla Gimnazjum 1. Motocyklista rozpoczął ruch jednostajnie przyspieszony po linii prostej (v 0 = 0) i w
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnia Gdańsa Wydział Eletrotechnii i Autoatyi Katedra Inżynierii Systeów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Systey ciągłe budowa odeli enoenologicznych z praw zachowania Materiały poocnicze
Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Koiji Wojewódzkiego Konkuru Przediotowego z Fizyki Iię i nazwiko ucznia... Szkoła... Punkty
KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM
Konkury w województwie podkarpacki w roku zkolny 2005/2006... pieczątka nagłówkowa zkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, Witaj na I etapie konkuru
Wprowadzenie: Dynamika
Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
5. Ruch harmoniczny i równanie falowe
5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO I ETAP SZKOLNY 19 października 2017 r. Uczennico/Uczniu: 1. Na rozwiązanie wzytkich zadań az 90 inut. 2. Piz długopie/pióre -
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Konkurs fizyczny - gimnazjum. 2018/2019. Etap szkolny
UWAGA: W zadaniac o nuerac od 1 do 6 pośród podanyc propozycji odpowiedzi wybierz i zaznacz tą, która tanowi prawidłowe zakończenie otatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Stojący na zynac wagon
Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH Zadanie 1. (Charaterytyi czętotliwościowe) Problem: Wyznaczyć charaterytyi czętotliwościowe (amplitudową i fazową) członu całującego rzeczywitego
LIGA ZADANIOWA z FIZYKI MAJ 2014
Terin oddania prac: 4. VI. 2014 r. GIMNAZJUM NR 1 w KOŃSKICH Rok zkolny 2013 / 2014 LIGA ZADANIOWA z FIZYKI MAJ 2014 ZADANIA DLA UCZNIÓW KLAS PIERWSZYCH ZADANIE 1 Oblicz wartość iły nośnej balonu wypełnionego
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Ćwiczenie nr 1: Wahadło fizyczne
Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE REJONOWE
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie
Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową
Prawa ruchu: dynamika
Prawa ruchu: dynamika Spis treści 1 Bezwładność 2 I zasada dynamiki 2.1 Zasada bezwładności 2.2 Układ odniesienia 2.3 Ciało izolowane 2.4 Układ inercjalny 3 II zasada dynamiki 3.1 II prawo Newtona 3.2