ZASTOSOWANIE SIECI FBM W NEURONOWYM MODELOWANIU MIESZANIA DWUSKŁADNIKOWYCH UKŁADÓW ZIARNISTYCH
|
|
- Patryk Klimek
- 6 lat temu
- Przeglądów:
Transkrypt
1 IŜyieria Rolicza 14/2005 Marek Tukiedorf Wydział Mechaiczy Politechika Opolska ZASTOSOWANIE SIECI FBM W NEURONOWYM MODELOWANIU MIESZANIA DWUSKŁADNIKOWYCH UKŁADÓW ZIARNISTYCH Streszczeie Pokazao wyiki symulacji euroowej procesów mieszaia iejedorodych układów ziaristych. Mieszao dwuskładikowy układ ziaristy przy pomocy statyczego mieszalika płytkowego. Estymacji rozkładów kocetracji składika kluczowego dokoywao w oparciu o predykcję sztuczej sieci euroowej Flexible Bayesia Modelig o 20 ukrytych warstwach euroów. Porówao statystyczie wyiki modelu empiryczego i predyktowaego. Określoo współczyik korelacji. Słowa kluczowe: ziariste układy iejedorode, statyczy mieszalik płytkowy modelowaie euroowe, siec Flexible Bayesia Modelig Wykaz ozaczeń a, adresy siatki a powierzchi kaset; x a y b ( 1, 0 ) iformacja o występowaiu lub braku trasera; d średia średica cząstek; mm N umer kroku mieszaia; u wektor sygałów wejściowych; x wartości kocetracji obserwowaego składika; ρ gęstość składików, kg/m 3 Wprowadzeie Poszukiwaie owych, taich i szybkich sposobów mieszaia iejedorodych układów ziaristych jest bardzo powaŝym wyzwaiem dla przemysłu rolospoŝywczego. ZwaŜywszy a fakt, iŝ mieszaiu materiałów ziaristych towarzyszy często sila segregacja przeciwdziałająca homogeizacji waŝy jest właściwy 367
2 Marek Tukiedorf dobór urządzeń mieszających [Boss 1987]. Są jedak układy ziariste, które ie pozwalają się dobrze zmieszać, ze względu a zbyt istote róŝice pomiędzy ich własościami fizyczymi i chemiczymi [Boss, Tukiedorf 1990]. Dlatego waŝa jest wówczas jak ajszybsza iformacja o ich maksymalych zdolościach do homogeizacji. W modelowaiu procesów mieszaia takich układów dobrze się sprawdzają stosowae od iedawa metody sztuczej iteligecji oparte a uŝyciu sztuczych sieci euroowych (ss) [Tukiedorf 2003]. Jedą z sieci jest ieczęsto stosowaych w Polsce jest sieć typu Flexible Bayesia Modelig pracująca w środowisku Liux. Jakkolwiek dobór sieci moŝe mieć charakter ze zupełie arbitraly, to są pewe powody przemawiające za uŝyciem takiego właśie pakietu. Po pierwsze zarówo pakiet jak i środowisko, w którym działa są bezpłate. Dodatkową zaletą jest to, Ŝe sieć typu FBM jest łatwa w uŝyciu. Przygotowuje się włase procedury umoŝliwiające adaie modelowaiu bardziej idywidualego charakteru iŝ pakiety stadardowe. A co ajwaŝiejsze bayesowskie uczeie sieci ograicza moŝliwość jej przeuczeia zwiększając wyraźie trafość predykcji [Lampie, Vehtari 2001]. Cel badań Celem badań było udowodieie, Ŝe modelowaie procesów mieszaia iejedorodych układów ziaristych przy pomocy pakietu FBM jest dobrą metodą predykcji rozkładów kocetracji mieszaych składików. Modelowao proces mieszaia dwuskładikowego układu ziaristego mieszaego przy pomocy statyczego mieszalika przesypowego z wypełieiem płytkowym [Boss, 1983]. Mieszao układ dwuskładikowy. Sposób prowadzeia badań Mieszaie przy uŝyciu mieszalika statyczego z wypełieiem płytkowym układów dwuskładikowych Mieszalik płytkowy składał się z dwóch kaset podzieloych a 9 cel. Kasety zajdowały się a górze i u dołu komia mieszającego Przed rozpoczęciem mieszaia traser (składik kluczowy rozpraszay) umieszczoo w środkowej celi kasety zasilającej, atomiast w ośmiu zewętrzych celach umieszczoo wypełiacz (rys. 1). Następie wypuszczao materiał z kasety zasilającej, który przesypując się po układzie szeregu płytek w komiie mieszającym ulegał mieszaiu. Kasety zamieiao miejscami (odbierająca zasilająca: góra dół). Proces powtarzao pięciokrotie. Zastosoway system umoŝliwiał szybkie osiągaie dobrych efektów zmieszaia. 368
3 Zastosowaie sieci FBM... Tabela 1. Tabela uŝytych materiałów ziaristych oraz ich podstawowe własości Table 1.??? materiał soja rzepak średia średica ziare - d, mm 4,5 2,0 gęstość - ρ, kg/m a) b) c) Rys. 1. Mieszalik statyczy - płytkowy; a) widok ogóly; b) kaseta zasilająca 9 cel; c) kaseta zasypaa materiałem ziaristym traser w środkowej celi; (segregacja pierwota) Fig. 1.??? Topologia sieci, defiicje sygałów wejścia i wyjścia, predykcja Przyjęto algorytm jedokierukowej wieloperceptroowej (MLP) sztuczej sieci euroowej [Tadeusiewicz 1993, 1998], Zastosowao sieć typu Flexible Bayesia Modelig pracującą w środowisku Liux o H = 20 ukrytych warstwach. W procesie przygotowywaia daych a kaŝdą z cel akładao 256-puktową (16x16) siatkę o przekroju kwadratowym (rys. 2). 369
4 Marek Tukiedorf Rys.2. Siatka dla dziewięciu przekrojów cel mieszalika statyczego Fig. 2.??? Przy jej pomocy idetyfikowao ziara trasera uzyskując w te sposób dae do opisu wektorów sygałów wejściowych u. Określały oe rozkład oraz wartości kocetracji x obserwowaego składika (zabarwioa a biało soja) po N = 1 i 2 kroku mieszaia, a powierzchi wszystkich przekrojów 9 cel. Oceiao poziom odciei szarości w poszczególych elemetach siatki adając kolejym adresom ( ax,ay ) iformacje b ( 1, 0 )- kolor czary lub jasy (soja lub rzepak) (Rys. 2). Wektory sygałów wejściowych zdefiiowao astępująco: u [ x ;( a, a ); b ( 0, ); N ] = (2) x y 1 Do auczeia sieci przedstawiao wyiki uzyskae a drodze kolejych kroków mieszaia (zbiór uczący: po 1 i 2 kroku). Następie prowadzoo obserwacje rozkładu składików po kolejych trzech krokach (3, 4, 5). Po piątym kroku mieszaie przerwao uzając, Ŝe mieszaia osiągęła sta rówowagowy [Tukiedorf, 2003]. Sieć w wyiku predykcji - a podstawie doświadczeń zbioru treigowego udzielała odpowiedzi a temat moŝliwego rozkładu poszczególych ziare trasera 370
5 Zastosowaie sieci FBM... w dziewięciu celach kaset, po kolejych krokach mieszaia (3, 4, 5 ) Wyiki modelowaia euroowego porówao z wyikami rozkładów kocetracji zaobserwowaymi empiryczie. Aaliza wyików Wszystkie uzyskae wyiki przedstawioo w formie histogramów obrazujących w odcieiach skali szarości - wartości kocetracji zaobserwowaych i przedyktowaych a powierzchi 9 cel, we wszystkich badaych przekrojach. Wybray przykład rozkładu po ostatim (piątym kroku) mieszaia podao a rysuku 4 a, b. Przy czym obraz a rysuku 4a dotyczy rozkładu empiryczego, podczas gdy obraz a rysuku 4b jest predykcją sieci. Rys. 3. Rozkłady trasera po piątym kroku zmieszaia a) rozkład empiryczy, b) rozkład predyktoway Fig. 3.??? 371
6 Marek Tukiedorf Statystycza aaliza podobieństwa Dokoao statystyczego porówaia wartości rozkładów kocetracji składików dla wszystkich predyktowaych przypadków. W oparciu o test dla współczyika τ Kedalla oceioo istotość róŝic pomiędzy empiryczymi i progozowaymi wartościami kocetracji po trzecim, czwartym i piątym kroku mieszaia. Jest to test do badaia korelacji między dwiema cechami X i Y w oparciu o aalizę dwóch zbiorów rag, odpowiedio wyików obserwacji zmieej losowej X i Y. Miarą korelacji i zarazem statystyką testową jest tzw. współczyik τ Kedalla [Kedall 1975, Magiera 2002]. Porówao 27 rekordów (9 cel x 3 kroki) uzyskując zadawalającą wartość współczyika korelacji τ = 0,6341 (przy τ = 1,0 dla przypadku pełej zgodości wszystkich rag τ = -1,0 dla zupełej iezgodości). Wioski Uzyskae wyiki pozwalają a przyjęcie hipotezy o dobrym statystyczym podobieństwie modeli: empiryczego i euroowego. W prowadzoych juŝ wcześiej badaiach - ad modelowaiem procesów mieszaia układów iejedorodych - przy zastosowaiu mieszalików statyczych, dla iych par składików, uzyskiwao dobre ale ieco iŝsze wartości współczyika τ Kedalla [Tukiedorf 2003]. W przypadku omówioego sposobu modelowaia uzyskao miarodaje predykcje o zachowaiu się trasera a podstawie doświadczeń 40% eksperymetu. WyŜsza wartość współczyika τ w porówaiu z badaiami prowadzoymi wcześiej [Tukiedorf 2003] moŝe być kosekwecją lepszej percepcji sieci będącej skutkiem poprawiejszego auczeia. Bibliografia Boss J Mieszaie materiałów ziaristych, PWN Warszawa-Wrocław. Boss J. Mieszalik statyczy z wypełieiem płytkowym, Patet PRL Boss J., Tukiedorf M Wpływ iektórych parametrów ziaristych a sta dyamiczy układu podczas mieszaia metodą wysypu ze zbiorika, Zeszyty Naukowe Politechiki Łódzkiej, IŜyieria Chemicza, z 16, Kedall M.G., M. G Rak correlatio methods (4th ed.), Griffi Lodo. Lampie J., Vehtari A Bayesia approach for eural etworks-review ad case studies, Neural Networks 14,
7 Zastosowaie sieci FBM... Magiera R Modele, metody statystyki matematyczej, Oficya wydawicza GiS, Wrocław. Tadeusiewicz R Elemetare wprowadzeie do techiki sieci euroowych z przykładowymi programami, Wydawictwo PLJ. Tadeusiewicz R Sieci euroowe, Akademicka Oficya Wydawicza RM, Warszawa. Tukiedorf M Modelowaie euroowe procesów mieszaia iejedorodych układów ziaristych, Rozprawa habilitacyja, Prace i moografie, Akademia Rolicza w Lubliie. THE USE OF A NEURAL NETWORK IN MODELING OF A TWO-COMPONENT GRANULAR SYSTEMS MIXING Summary The results of a eural etwork s simulatio of the mixig processes of ohomogeous graular systems were show. A two-compoet graular system was mixed usig a static plate mixer. Estimatios of the key compoet s cocetratio distributio were performed based o the artificial eural etwork s predictio for the assumed umbers of euros hidde layers. The empirical ad the predicted results were statistically compared. A correlatio coefficiet was estimated betwee them. Key words: o-homogeous graular systems, a static plate mixer, eural modelig, FBM 373
PRZYKŁAD ZASTOSOWANIA SIECI NEURONOWEJ W MODELOWANIU PROCESU MIESZANIA UKŁADÓW ZIARNISTYCH
InŜynieria Rolnicza 7/2005 Marek Tukiendorf Zakład Techniki Rolniczej i Leśnej Politechnika Opolska PRZYKŁAD ZASTOSOWANIA SIECI NEURONOWEJ W MODELOWANIU PROCESU MIESZANIA UKŁADÓW ZIARNISTYCH Streszczenie
PROGNOZOWANIE ROZKŁADU CZĄSTEK PODCZAS MIESZANIA SYSTEMEM FUNNEL-FLOW
InŜynieria Rolnicza 14/200 Dominika Matuszek, Marek Tukiendorf Wydział Mechaniczny Politechnika Opolska PROGNOZOWANIE ROZKŁADU CZĄSTEK PODCZAS MIESZANIA SYSTEMEM FUNNEL-FLOW Wstęp Streszczenie W pracy
Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
WYKORZYSTANIE SIECI NEURONOWYCH (FBM) DO MODELOWANIA PROCESU MIESZANIA DWUSKŁADNIKOWYCH UKŁADÓW ZIARNISTYCH
Inżynieria Rolnicza 7(105)/2008 WYKORZYSTANIE SIECI NEURONOWYCH (FBM) DO MODELOWANIA PROCESU MIESZANIA DWUSKŁADNIKOWYCH UKŁADÓW ZIARNISTYCH Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska Streszczenie.
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI. LABORATORIUM nr 01. dr inż. Robert Tomkowski
METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI LABORATORIUM r 01 Temat: PERCEPTRON dr iż. Robert Tomkowski pok. 118 bud. C robert.tomkowski@tu.koszali.pl tel. 94 3178 251 Metody i zastosowaia sztuczej iteligecji
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
Politechnika Poznańska
Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Transportu SIECI NEURONOWYCH. : marzec w przypadku awarii detektora. Opracowany we pomiarów ruchu
PRACE AUKOWE POLITECHIKI WARSZAWSKIEJ z. 113 Transport 2016 Transportu PREDYK A SIECI EUROOWYCH : marzec 2016 Streszczenie: W artykule zaproponowano wykorzystanie jednej sieci neuronowej do krótko- podstawie
Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15
Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay
ADAPTACJA FUNKCJI KWADRATOWEJ DO OPISU ZMIAN JAKOŚCI MIESZANKI ZIARNISTEJ
Inżynieria Rolnicza 9(107)/008 ADAPTACJA FUNKCJI KWADRATOWEJ DO OPISU ZMIAN JAKOŚCI MIESZANKI ZIARNISTEJ Dominika Matuszek, Marek Tukiendorf Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska Streszczenie:
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9
Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie
TESTY LOSOWOŚCI. Badanie losowości próby - test serii.
TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla
ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI NEURONOWEJ
InŜynieria Rolnicza 12/2006 Katarzyna Siejka, Andrzej Tukiendorf Katedra Techniki Rolniczej i Leśnej Politechnika Opolska ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI
ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU
Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji
Prognozowanie obciążeń 24-godzinnych w systemie elektroenergetycznym z użyciem zespołu sieci neuronowych
Krzysztof SIWEK 1, STANISŁAW OSOWSKI 1,2 1 Politechika Warszawska, 2 Wojskowa Akademia Techicza Progozowaie obciążeń 24-godziych w systemie elektroeergetyczym z użyciem zespołu sieci euroowych Streszczeie.
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
Prognozowanie wielkości sprzedaży z wykorzystaniem sztucznych sieci neuronowych na przykładzie przedsiębiorstwa branży kwiatowej
Krzysztof Jurczyk 1 AGH Akademia Góriczo-Huticza Agata Kutyba 2 AGH Akademia Góriczo-Huticza Progozowaie wielkości sprzedaży z wykorzystaiem sztuczych sieci euroowych a przykładzie przedsiębiorstwa braży
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne
D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka
ANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie
MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego
Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
Statystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Analiza potencjału energetycznego depozytów mułów węglowych
zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej
KOMPUTEROWA ANALIZA OBRAZU W OCENIE MIESZANIA JEDNORODNEJ MIESZANINY ZIARNISTEJ
Inżynieria Rolnicza 9(118)/2009 KOMPUTEROWA ANALIZA OBRAZU W OCENIE MIESZANIA JEDNORODNEJ MIESZANINY ZIARNISTEJ Joanna Rut, Katarzyna Szwedziak Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska
Zeszyty naukowe nr 9
Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH
InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W
Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g.
Zadaia przykładowe z rozwiązaiami Zadaie Dokoao pomiaru masy ciała 8 szczurów laboratoryjych. Uzyskao astępujące wyiki w gramach: 70, 80, 60, 90, 0, 00, 85, 95. Wyzaczyć przeciętą masę ciała wśród zbadaych
WSPOMAGANIE PROCESU MIESZANIA NIEJEDNORODNYCH UKŁADÓW ZIARNISTYCH WKŁADKĄ TYPU DOUBLE CONE
Inżynieria Rolnicza 2(9)/27 WSPOMAGANIE PROCESU MIESZANIA NIEJEDNORODNYCH UKŁADÓW ZIARNISTYCH WKŁADKĄ TYPU DOUBLE CONE Dominika Matuszek, Marek Tukiendorf Katedra Techniki Rolniczej i Leśnej, Politechnika
Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
Statystyka powtórzenie (I semestr) Rafał M. Frąk
Statystyka powtórzeie (I semestr) Rafał M. Frąk TEORIA Statystyka Statystyka zajmuje się badaiem procesu zbieraia oraz iterpretacji daych liczbowych lub jakościowych. Przedmiotem statystyki są metody badaia
Statystyka matematyczna dla leśników
Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje
Siłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych.
Siłowie ORC sposobem a wykorzystaie eergii ze źródeł iskotemperaturowych. Autor: prof. dr hab. Władysław Nowak, Aleksadra Borsukiewicz-Gozdur, Zachodiopomorski Uiwersytet Techologiczy w Szczeciie, Katedra
Geometrycznie o liczbach
Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 8
Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 8. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie aalizy
Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona
Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów
H brak zgodności rozkładu z zakładanym
WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy
OCENA WPŁYWU WKŁADEK DASZKOWYCH NA PROCES MIESZANIA UKŁADÓW ZIARNISTYCH SYSTEMEM FUNNEL-FLOW
InŜynieria Rolnicza 12/2006 Dominika Matuszek, Marek Tukiendorf Katedra Techniki Rolniczej i Leśnej Politechnika Opolska OCENA WPŁYWU WKŁADEK DASZKOWYCH NA PROCES MIESZANIA UKŁADÓW ZIARNISTYCH SYSTEMEM
Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych
InŜynieria Rolnicza 11/2006 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie METODA PROGNOZOWANIA WARTOŚCI PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH MASZYN ROLNICZYCH
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna
3 MAŁGORZATA STEC Dr Małgorzata Stec Zakład Statystyki i Ekoometrii Uiwersytet Rzeszowski Uwarukowaia rozwojowe województw w Polsce aaliza statystyczo-ekoometrycza WPROWADZENIE Rozwój społeczo-gospodarczy
L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3
L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
ZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
OCENA MIESZANINY NIEJEDNORODNEJ Z BIOMASĄ ZA POMOCĄ KOMPUTEROWEJ AKWIZYCJI OBRAZU
Inżynieria Rolnicza 6(104)/2008 OCENA MIESZANINY NIEJEDNORODNEJ Z BIOMASĄ ZA POMOCĄ KOMPUTEROWEJ AKWIZYCJI OBRAZU Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska Streszczenie. W niniejszej pracy
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
Wytwarzanie energii odnawialnej
Adrzej Nocuñ Waldemar Ostrowski Adrzej Rabszty Miros³aw bik Eugeiusz Miklas B³a ej yp Wytwarzaie eergii odawialej poprzez współspalaie biomasy z paliwami podstawowymi w PKE SA W celu osi¹giêcia zawartego
Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2
Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych sieci neuronowych 4
Wojciech Sikora 1 AGH w Krakowie Grzegorz Wiązania 2 AGH w Krakowie Maksymilian Smolnik 3 AGH w Krakowie Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych
ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA
SYSTEMY WSPOMAGANIA W INŻYNIERII PRODUKCJI Środowisko i Bezpieczeństwo w Iżyierii Produkcji 2013 5 ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA 5.1 WPROWADZENIE
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02.
Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 1 Algorytmy sortowaia (27.2.12)
BARBARA DUTKA. Instytut Mechaniki Górotworu PAN, ul. Reymonta 27; Kraków. Streszczenie
Prace Istytutu Mechaiki Górotworu PAN Tom 19, r 2, czerwiec 2017, s. 35-42 Istytut Mechaiki Górotworu PAN Opis statystyczy wyików pomiarów metaoośości i wskaźika itesywości desorpcji prowadzoych w latach
Prawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym
Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
BADANIA DOCHODU I RYZYKA INWESTYCJI
StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli
Ocena możliwości zastosowania rozkładu normalnego do opisu wybranych parametrów ruchu drogowego w miastach na przykładzie Radomia
Marzea Dębowska-Mróz, Ewa Feresztaj-Galardos, Reata Krajewska, Adrzej Rogowski Ocea możliwości zastosowaia rozkładu ormalego do opisu wybraych parametrów drogowego w miastach a przykładzie Radomia JEL:
1. Metoda zdyskontowanych przyszłych przepływów pieniężnych
Iwetta Budzik-Nowodzińska SZACOWANIE WARTOŚCI DOCHODOWEJ PRZEDSIĘBIORSTWA STUDIUM PRZYPADKU Wprowadzeie Dochodowe metody wycey wartości przedsiębiorstw są postrzegae, jako ajbardziej efektywe sposoby określaia
74 Oznaczenia. lepkość plastyczna [Pa s] n wskaźnik charakterystyczny płynięcia [ ] K, η. współczynniki równań korelacyjnych. , η b. 1.
* Streszczeie - - 74 Ozaczeia τ aprężeie stycze [Pa] η dyamiczy współczyik lepkości [Pa s] γ szybkość ściaia [1/s] τ 0 graicze aprężeie stycze (graica płyięcia) [Pa] η p lepkość plastycza [Pa s] wskaźik
ZASTOSOWANIE PAKIETU SIMULINK DO MODELOWANIA TRANSMISJI VDSL*
Paweł Sroka Politechika Pozańska Istytut Elektroiki i Telekomuikacji psroka@et.put.poza.pl 2004 Pozańskie Warsztaty Telekomuikacyje Pozań 9-10 grudia 2004 ZASTOSOWANIE PAKIETU SIMULINK DO MODELOWANIA TRANSMISJI
obie z mocy ustawy. owego.
Kwartalik Prawo- o-ekoomia 3/015 Aa Turczak Separacja po faktycza lub prawa obie z mocy ustawy cza, ie ozacza defiitywego owego 1 75 1 61 3 Art 75 88 Kwartalik Prawo- o-ekoomia 3/015 zaspokajaia usp iedostatku
Wybrane litery alfabetu greckiego
Wybrae litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilo η eta Θ θ theta κ kappa Λ λ lambda µ mi ν i ξ ksi π pi ρ, ϱ ro σ sigma τ tau Φ φ, ϕ fi χ chi Ψ ψ psi Ω ω omega Ozaczeia a i
Statystyka opisowa - dodatek
Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię