Automatyka i sterowanie w gazownictwie Modelowanie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Automatyka i sterowanie w gazownictwie Modelowanie"

Transkrypt

1 Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH

2 Modele matematyczne Własności układu zdeterminowane są przez zbiorniki energii lub masy w układzie nazywamy własnościami dynamicznymi układu ( krótko dynamiką układu ). Stanem ustalonym w układzie nazywamy stan, w którym zbiorniki energii lub masy w układzie są napełnione, co się objawia stałym poziomem sygnału wyjściowego.

3 Modele matematyczne ( wnioski cd. ) Jeżeli chcemy wyznaczyć zachowanie się układu pod wpływem sterowań, to oprócz przebiegu funkcji sterującej musimy znać zawartość zbiorników energii w momencie rozpoczęcia sterowania. Z matematycznego punktu widzenia oznacza to, że dla każdego z równań różniczkowych, opisujących jeden zbiornik musimy mieć zdefiniowany warunek początkowy. W tym momencie należy jeszcze zaznaczyć, że do tej pory nic nie mówiliśmy o związku pomiędzy wewnętrznymi zbiornikami energii w układzie, a sygnałami wyjściowymi. Należy tu stwierdzić, że w przypadku ogólnym nie jest to zależność prosta.

4 Modele matematyczne zmienne stanu Zmiennymi stanu (symbol x(t)) układu nazywamy zmienne opisujące zawartość wewnętrznych zbiorników energii układu; Ilość zmiennych stanu potrzebnych do opisu procesu jest równa ilości niezależnych zbiorników energii w układzie; Rzędem układu nazywamy ilość niezależnych zbiorników energii w układzie. Jest on równy ilości współrzędnych stanu. x y f ( x, u) g( x, u)

5 Budowa modelu matematycznego w oparciu o analizę bilansową w układzie.. Określenie granic układu będącego przedmiotem naszego zainteresowania, tj. wskazać, jakie części rzeczywistości uznajemy za układ, który chcemy opisać,. Określenie powiązania naszego układu z otoczeniem poprzez wprowadzenie odpowiednich więzów lub sygnałów wejściowych, 3. Wybór zmiennych fizycznych ( sygnałów ), występujących w układzie, przy czym wygodnie jest podzielić je na dwie grupy: zmienne przepływu są one miarą wielkości przepływającej przez element, np. prąd przepływający przez rezystor, ciecz lub gaz przepływający przez rurociąg. zmienne spadku są one miarą różnicy stanów na dwóch końcach elementu, np. różnica potencjałów na dwóch końcach rezystora, spadek ciśnienia po obu stronach zwężki w rurociągu, itp.

6 Budowa modelu matematycznego w oparciu o analizę bilansową w układzie cd. 4. Napisanie równania określające zachowanie się układu. Równania te można podzielić na dwie grupy: równania bilansowe są to równania określające równowagę układu, dotyczą one zmiennych przepływu, równania spójności określające zależności występujące pomiędzy zachowaniem się poszczególnych elementów układu ze względu sposób połączenia tych elementów. Dotyczą one zmiennych spadku. 5. Uwzględnienie zależności fizycznych. Są to prawa fizyki łączące zmienne przepływu ze zmiennymi spadku; dzięki nim eliminuje się zmienne zależne, pozostawiając tylko zmienne niezależne.

7 Przykład model matematyczny silnika prądu stałego i R L u(t) (t) e Schemat silnika prądu stałego.

8 Przykład model matematyczny silnika prądu stałego. Granice układu: rozważamy sam silnik, bez źródła zasilania, obciążenia i podłoża,. Uwzględnienie więzów: Jako elementy łączące nasz układ otoczeniem przyjmiemy następujące sygnały: sygnałem wejściowym jest napięcie zasilające, obciążenie silnika zastąpimy dodatkowym momentem przyłożonym na wał silnika, podłoże zastąpimy odpowiednimi siłami reakcji.

9 Przykład model matematyczny silnika prądu stałego 3. Wielkości fizyczne: w rozważanym silniku wyróżniamy dwie części: elektryczną (uzwojenia ) oraz mechaniczną ( wirnik ). Część elektryczna może być dobrze opisana przez dwójnik RL zawierający następujące elementy: rezystancję R, indukcyjność L oraz źródło napięcia reprezentujące siłę elektromotoryczną indukującą się w uzwojeniach podczas ruchu obrotowego wirnika. Jako sygnały występujące w części elektrycznej można więc przyjąć: uu - napięcie zasilania, ur - spadek napięcia na rezystancji, ul - spadek napięcia na indukcyjności, us - siła elektromotoryczna indukowana w uzwojeniach. Część mechaniczna to obracający się wirnik, na który działają określone momenty mechaniczne, które przyjmiemy jako sygnały występujące w tej części układu: M moment napędowy, M moment obciążenia, M3 - moment tarcia, M4 moment bezwładności.

10 Przykład model matematyczny silnika prądu stałego cd. 4. Ułożenie równań: w tym przypadku musimy ułożyć dwa równania: jedno dotyczące zmiennych spadku ( dla części elektrycznej ) będzie to równanie spójności, oraz drugie dotyczące zmiennych przepływu ( dla części mechanicznej ) - będzie to równanie bilansowe. Równanie spójności napiszemy korzystając z prawa Kirchoffa. W tym wypadku suma wszystkich napięć w układzie musi być równa zero. Z kolei równanie bilansu ułożymy korzystając z faktu, że suma wszystkich momentów w układzie (łącznie z momentem bezwładności ) jest równa zero. Oba równania możemy więc zapisać następująco: uu ur ul us = 0 () M M M3 M4 = 0 ()

11 Przykład model matematyczny silnika prądu stałego cd. 5. Zależności fizyczne: w naszym wypadku są to powszechnie znane z fizyki wzory, które dla przypomnienia zapiszemy poniżej: u u u r l s M M M ir di L dt k 3 4 k k J 3 i d dt gdzie: i oznacza natężenie prądu w uzwojeniach, - oznacza prędkość kątową wału silnika, J -oznacza moment bezwładności, k k k3 - oznacza stałe współczynniki. Uwzględniając powyższe zależności w równaniach ( ) i ( ) otrzymujemy:

12 Przykład model matematyczny silnika prądu stałego cd. u u k ir i M L k di dt 3 k J d dt Powyższe równania porządkujemy w taki sposób, aby pochodne znalazły się po lewej stronie i otrzymujemy równanie stanu dla naszego systemu. Będzie ono mieć następującą postać: di R k i dt L L d k k3 i dt J J uu L M J Równanie wyjścia będzie miało postać: y = 0 0

13 Przykład siłownik pneumatyczny membranowy Sygnałem wejściowym siłownika jest ciśnienie Pz podawane na membranę wejściową. Siła wywierana przez ciśnienie jest wprost proporcjonalna do ciśnienia oraz powierzchni membrany. Sygnałem wyjściowym jest przesunięcie trzpienia x. p z (t) A - powierzchnia membrany, m - masa części ruchomych ( membrana i trzpień ), k - stałą sprężystości sprężyny podpierającej, R - współczynnik oporów ruchu części ruchomych. A m k R x(t)

14 Przykład siłownik pneumatyczny membranowy cd. Bilans sił występujących w w/w siłowniku: Oznaczmy siłę pochodzącą od ciśnienia wejściowego przez Fp. F p (t) = Ap z (t) Siła sprężystości sprężyny jest proporcjonalna do przesunięcia trzpienia F s (t)=kx(t) Siła oporu części ruchomych występuje tylko podczas ruchu i w rozważanym przypadku można uznać, że jest ona proporcjonalna do prędkości: F R (t)=rv(t) Siła bezwładności jest opisana powszechnie znanym wzorem: F b (t)=ma(t)

15 Przykład siłownik pneumatyczny membranowy cd. Bilans sił można zapisać następująco: F p = F s +F R +F b Po uwzględnieniu wcześniejszych zależności otrzymujemy: Wiedząc, że: Otrzymujemy: Ap z (t) = kx(t) + Rv(t) + ma(t) v( t) x ( t) a( t) v ( t) x( t) Ap z ( t) kx( t) Rx ( t) mx ( t)

16 Założenia do modelu matematycznego analizowanych elementów pneumatycznych: Zastosowane w układzie wężyki pod wpływem ciśnienia nie zmieniają wymiarów geometrycznych Temperatura przepływającego w wężykach gazu nie zmienia się Przyjęto, że w osuszaczu płaszczowym ubytek masy z transportowanej próbki gazowej na skutek utraty wody jest pomijalnie mały Przemiana gazowa w mieszku pompki membranowej jest izotermiczna i moment mechaniczny wytwarzany przez silnik zasilający pompę jest stały

17 Przykład 3 wężyk doprowadzający gaz wariant (dla krótkiego wężyka ok. 0 cm) Przy użyciu laminarnych rezystancji pneumatycznych. Matematyczna zależność opisująca laminarną rezystancję pneumatyczną przedstawia prawo Hagena Poiseuilla a, opisujące zależność pomiędzy spadkiem ciśnienia w kanale, a przepływem objętościowym. Dla kanału cylindrycznego ma ona postać:

18 Przykład 4 wężyk doprowadzający gaz wariant (dla dłuższego wężyka ok.m) Jako element o stałych skupionych z opóźnieniem:

19 Przykład 5 pompka membranowa Jest to element wymuszający przepływ gazu. Sposób jej sterowania określa, czy układ będzie pracował impulsowo, czy w sposób ciągły. Ck zmienna pojemność pneumatyczna Zz, Zz nieliniowe impedancje zaworków Założono, że: przemiana w mieszku pompki jest izotermiczna i że moment mechaniczny wytwarzany przez silniczek zasilający pompkę jest stały.

20 Przykład 5 pompka membranowa Model zmiennej pojemności pneumatycznej:

21 Przykład 5 pompka membranowa Model nieliniowych rezystancji pneumatycznych tworzących statyczną charakterystykę zaworka:

22

23 Przykład 5 pompka membranowa Model nieliniowych rezystancji pneumatycznych tworzących dynamiczną część rezystancji zaworka:

24 Przykład 6 model komory (za pomocą stałej pojemności pneumatycznej:) p Vcz

25 Transmitancja operatorowa Dotychczas układy rzeczywiste opisywaliśmy (tworząc ich model matematyczny) równaniami różniczkowymi. Np. model silnika prądu stałego. di R k i dt L L d k k3 i dt J J uu L M J Model systemu dynamicznego w postaci transmitancji jest drugim, częściowo alternatywnym, częściowo uzupełniającym sposobem opisu systemów dynamicznych dla potrzeb automatyki. Podstawowa ideą opisu transmitancyjnego jest badanie zachowania się wyjścia obiektu pod wpływem określonych sterowań. W automatyce rozróżniamy dwa rodzaje transmitancji: transmitancję operatorową oraz transmitancję widmową, przy czym są one z sobą ściśle powiązane.

26 Przekształcenie Laplace a Transformata Laplace'a jest jednym z narzędzi matematycznych służących do rozwiązywania liniowych równań różniczkowych zwyczajnych. W metodzie tej przekształca się równanie różniczkowe zwyczajne w równanie algebraiczne, którego zmienną jest operator Laplace'a s. Następnie (w równaniu algebraicznym) wykonuje się konieczne przekształcenia Rozwiązanie równania różniczkowego uzyskiwane jest poprzez zastosowanie odwrotnej transformaty Laplace'a.

27 Definicja transformaty Laplace a Mając funkcję czasową f(t) spełniającą następujący warunek: 0 f t ( t) e dt dla pewnej skończonej liczby rzeczywistej σ, transformatę Laplace'a tej funkcji wyznacza się z następującej całki: f st ( t) F( s) f ( t) e dt Zmienna s określana tutaj jako operator Laplace'a i jest zmienną zespoloną określoną wzorem 0 s =σ + jω.

28 Podstawowe twierdzenia. Liniowość: { af(t) + bf (t)} = af(s) + bf(s), a, b stałe. Całkowanie w dziedzinie rzeczywistej: F( s f ( t) dt 0 s t )

29 Podstawowe twierdzenia cd. 3. Różniczkowanie w dziedzinie rzeczywistej: n n f ( n d t) n dt k s F( s) 0 s nk f ( k ) (0) pierwsza pochodna: df ( t) sf( s) f (0) dt druga pochodna: d f ( t) s F( s) sf (0) f '(0) dt

30 Transformaty Laplace a najczęściej spotykanych funkcji Lp. Oryginał f(t) Transformata F(s).. ( t) impuls jednostkowy ( funkcja Diraca) ( t) skok ( funkcja 3. t jednostkowy Heavyside' a) 4. n t ( t )! 5. t e 6. t n 7. t t e ( t )! 8. sint 9. cost 0. sinht. cosht. e t sint s s ; n s n s ( s ) t e (s ) s s s s s s n ( s )

31 Definicja transformaty operatorowej Transmitancją operatorową układu o jednym wejściu i jednym wyjściu nazywamy następujące wyrażenie: G( s) Y ( s) U ( s) Transmitancja jest więc stosunkiem transformaty Laplace a wyjścia systemu do transformaty wejścia systemu, przy zerowych warunkach początkowych. To ostatnie założenie jest bardzo istotne i decyduje o ograniczeniach stosowalności modelu transmitancyjnego. W praktyce, transmitancja ma najczęściej postać ilorazu dwóch wielomianów zmiennej s, przy czym lokalizacja pierwiastków tych wielomianów ma decydujące znaczenie dla własności układu.

32 Przykład siłownik pneumatyczny membranowy Sygnałem wejściowym siłownika jest ciśnienie Pz podawane na membranę wejściową. Siła wywierana przez ciśnienie jest wprost proporcjonalna do ciśnienia oraz powierzchni membrany. Sygnałem wyjściowym jest przesunięcie trzpienia x. p z (t) A - powierzchnia membrany, m - masa części ruchomych ( membrana i trzpień ), k - stałą sprężystości sprężyny podpierającej, R - współczynnik oporów ruchu części ruchomych. A m k R x(t)

33 Przykład siłownik pneumatyczny membranowy cd. Transmitancję operatorową rozważanego układu wyznaczymy na podstawie bilansu sił występujących w nim: Oznaczmy siłę pochodzącą od ciśnienia wejściowego przez Fp. F p (t) = Ap z (t) Siła sprężystości sprężyny jest proporcjonalna do przesunięcia trzpienia F s (t)=kx(t) Siła oporu części ruchomych występuje tylko podczas ruchu i w rozważanym przypadku można uznać, że jest ona proporcjonalna do prędkości: F R (t)=rv(t) jest siła bezwładności. Jest ona opisana powszechnie znanym wzorem: F b (t)=ma(t)

34 Przykład siłownik pneumatyczny membranowy cd. Bilans sił można zapisać następująco: F p = F s +F R +F b Po uwzględnieniu wcześniejszych zależności otrzymujemy: Wiedząc, że: Ap z (t) = kx(t) + Rv(t) + ma(t) v( t) x ( t) a( t) v ( t) x( t) Otrzymujemy: Ap z ( t) kx( t) Rx ( t) mx ( t) Transformata Laplace a powyższego równania, przy założeniu zerowych warunków początkowych na x oraz x będzie mieć następującą postać: APz(s) = kx(s) + RsX(s) +ms X(s) Jeżeli teraz przypomnimy, że wyjściem układu jest sygnał x, a wejściem sygnał pz, to widzimy, że transmitancja operatorowa układu będzie mieć postać: X ( s) A G( s) P ( s) ms Rs k z

35 Charakterystyki układów. Charakterystyki statyczne opisują własności statyczne systemów dynamicznych. Charakterystyki opisujące własności dynamiczne systemów: Czasowe Częstotliwościowe: - Charakterystyka amplitudowo-fazowa - Charakterystyka amplitudowa - Charakterystyka fazowa

36 Własności statyczne systemów dynamicznych Charakterystyka statyczna opisuje zależność wyjścia systemu dynamicznego od jego wejścia w stanie USTALONYM. u(t) Obiekt y(t) Sposób wyznaczania:. Podajemy sygnał u o stałej wartości na wejście obiektu,. Czekamy, aż wartość wyjścia y(t) się ustali, 3. Odczytujemy wyjście y 4. Zmieniamy stałą wartość wejścia u i powtarzamy kroki -3

37 Przykładowy przebieg charakterystyki statycznej: Wyjście układu y Punkt pracy Wejście układu u UWAGA! Charakterystyka statyczna prawie każdego rzeczywistego układu jest nieliniowa!

38 Punkt pracy układu Punkt pracy układu Jest zdeterminowany przez warunki konkretnego procesu, np. jest to wymagana temperatura pieca, w której przebiega proces, itp. W praktyce obiekt może mieć kilka punktów pracy ( np. kilka różnych temperatur)

39 Linearyzacja statyczna y Zakres liniow y P(u 0, y 0 ) Punkt pracy Zakres liniow y W niewielkim otoczeniu punktu pracy układ może być uważany za liniowy. u

40 Chrakterystyki czasowe Definicja: Charakterystyką czasową nazywamy przebieg czasowy wyjścia układu y(t) wywołany określonym wymuszeniem. Charakterystyka impulsowa: Jest to odpowiedź układu na impuls Diraca δ(t) Charakterystyka skokowa: odpowiedź układu na skok jednostkowy (t)

41 Eksperymentalne wyznaczanie charakterystyk czasowych: u(t) = (t), u(t) (t) Obiekt y(t) zadajnik t Rejestrator, System SCADA

42 Definicja Transmitancja widmowa Transmitancją widmową układu nazywamy stosunek wartości zespolonej składowej wymuszonej odpowiedzi Y w tego układu wywołanej wymuszeniem sinusoidalnym do wartości zespolonej tego wymuszenia: G( j) Y w ( j) U w ( j)

43 Doświadczalne wyznaczanie transmitancji widmowej i charakterystyk częstotliwościowych: u(t) = A u sin(t) Obiekt y(t)=a y sin (t+ ) Rejestracja: M() i () generator

44 Transmitancja widmowa Sygnał wejściowy U: U w ( j ) A U ( ) e jt Odpowiedź obiektu Y: Y w ( j) A Y ( ) e j( t ( ))

45 Transmitancja widmowa Moduł transmitancji: Q P A A j G M u Y ) ( ) ( ) ( ) ( Faza transmitancji: P Q arc tg j G ) ( arg ) ( A(ω) amplituda, (ω) faza ) ( ) ( ) ( ) ( ) ( j e M jq P j G

46 Analityczne wyznaczanie transmitancji widmowej: Wykorzystujemy związek pomiędzy transmitancją widmową i operatorową, pozwalający na wyznaczenie transmitancji widmowej na podstawie transmitancji operatorowej: G( j ) G( s) sj

47 Charakterystyki częstotliwościowe Definicja Charakterystyką amplitudowo fazową układu (charakterystyką Nyquista ) nazywamy wykres transmitancji widmowej tego układu na płaszczyźnie zmiennej zespolonej. Przykład: Q(w) w= 0 M(w) ( ) P(w)

48 Definicja Charakterystyki częstotliwościowe Logarytmiczną charakterystyką amplitudową (charakterystyką Bodego ) nazywamy zależność 0logM() w funkcji log Definicja Logarytmiczną charakterystyką fazy nazywamy zależność () w funkcji log Przykład 0logM()[dB] () log

49 Podstawowe człony dynamiczne Okazuje się, że tym samym modelem matematycznym można opisać wiele zupełnie różnych procesów fizycznych. W konsekwencji tego, grupy procesów będą mogły być opisane transmitancjami tego samego typu. W związku z tym można stwierdzić, że ogromna większość rzeczywistych procesów dynamicznych może być opisana kilkoma podstawowymi transmitancjami, bądź ich połączeniem.

50 Podstawowe człony dynamiczne Jest ich kilkanaście. Na wykładzie zaprezentowane będą cztery człony, najczęściej wykorzystywanych w praktyce do identyfikacji obiektów rzeczywistych (w otwartym układzie sterowania):. Inercyjny I rzędu. Inercyjny II rzędu 3. Inercyjny I rzędu z opóźnieniem 4. Całkujący z opóźnieniem Oraz jeden wykorzystywany do analizy zamkniętych układów regulacji:. Oscylacyjny II rzędu

51 Przykład fizyczny. Podstawowe człony dynamiczne obiekt inercyjny I rzędu Schemat dwójnika RC: u(t) i(t) R y(t) C Zakładamy, że sygnałem sterującym jest napięcie zasilające u(t), a sygnałem wyjściowym spadek napięcia na kondensatorze y(t) u( t) Ri t yt i it G( s) Y ( s) U ( s) t dy C dt u RCs t RC dy dt yt Po przekształceniu w dziedzinie zmiennej zespolonej otrzymujemy:

52 Podstawowe człony dynamiczne obiekt inercyjny I rzędu Transmitancja tego elementu ma postać: Charakterystyka czasowa: G( s) k Ts k y ( t) L A Ak ( t) e y(t) s Ts t T gdzie: k współczynnik wzmocnienia, T stała czasowa, A amplituda skoku jednostkowego. A k A k T t

53 Podstawowe człony dynamiczne obiekt inercyjny II rzędu Przykład fizyczny. Schemat procesu mieszania w zbiornikach: C, C Roztwór o natężeniu objętościowym i stężeniu przechodzi przez dwa zbiorniki mieszalniki o objętościach c oraz c.

54 Podstawowe człony dynamiczne obiekt inercyjny II rzędu Jeżeli przyjmiemy całkowite wymieszanie, to dla stężeń oraz w poszczególnych zbiornikach możemy sformułować następujące równania bilansowe: Przyjmujemy, że sygnałem wyjściowym jest stężenie w drugim zbiorniku. Sygnałem wejściowym stężenie zadane. Po przekształceniach i transformacji otrzymanego równania otrzymamy: dt d C dt d C s C s C s s s G ) ( s T s T k s G

55 Podstawowe człony dynamiczne obiekt inercyjny II rzędu Transmitancja obiektu: gdzie: k współczynnik wzmocnienia T, T stałe czasowe. Charakterystyka czasowa: ) ( s T s T k s G ) ( ) )( ( ) ( T t T t e T T e T T t k s T T s k s L t y u(t)=(t) czas y(t) T T k

56 Podstawowe człony dynamiczne obiekt I rzędu z opóźnieniem Transmitancja obiektu: gdzie: y(t) - opóźnienie (czas martwy) obiektu, k wzmocnienie obiektu, T stała czasowa obiektu. k y( t) L G( s) y(t) s ke Ts s ke k ( t s Ts ) e t T u(t)=(t) T Charakterystyka czasowa czas

57 Charakterystyka czasowa skokowa K A u 0.98 K A u y 0.63 K A u 0 τ T + τ 4 T + τ t Charakterystyka skokowa obiektu inercyjnego z opóźnieniem

58 Podstawowe człony dynamiczne obiekt całkujący z opóźnieniem Transmitancja obiektu: gdzie: y - opóźnienie (czas martwy) obiektu, k wzmocnienie obiektu, T stała czasowa obiektu. G( s) ke Ts s 0.368KA u T β =arctgk A u 0 τ T+τ t Charakterystyka skokowa obiektu całkującego z inercją wyższego rzędu

59 Parametry zastępczego modelu obiektu całkującego z inercją wyższego rzędu na podstawie charakterystyki skokowej Na podstawie rysunku możemy określić wszystkie współczynniki zastępczej funkcji przejścia, mianowicie: Współczynnik wzmocnienia dany jest znanym wzorem K tg Pozostałe parametry zastępcze można wyznaczyć ze wzorów T z ( T A u (0.368 KAuT tg z ) T z z )

60 Podstawowe człony dynamiczne obiekt oscylacyjny II rzędu Transmitancja obiektu: gdzie: k współczynnik wzmocnienia, G( s) k T0 s T0s T0 okres drgań własnych, - współczynnik tłumienia. Warunek wystąpienia oscylacji: <

61 Podstawowe człony dynamiczne obiekt oscylacyjny t T e t k s T s T k s L t y t T sin ) ( ) ( 0 u(t)=(t) czas y(t) Charakterystyka czasowa

Automatyka i sterowanie w gazownictwie Modelowanie

Automatyka i sterowanie w gazownictwie Modelowanie Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Modele matematyczne Własności układu

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

PODSTAWOWE CZŁONY DYNAMICZNE

PODSTAWOWE CZŁONY DYNAMICZNE PODSTAWOWE CZŁONY DYNAMICZNE Człon podstawowy jest to element przetwarzający wprowadzony do niego sygnał wejściowy x(t) na sygnał wyjściowy y(t) w sposób elementarny. Przetwarzanie elementarne oznacza,

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

Ćwiczenie: "Silnik prądu stałego"

Ćwiczenie: Silnik prądu stałego Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Sterowanie Serwonapędów Maszyn i Robotów

Sterowanie Serwonapędów Maszyn i Robotów Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.

Bardziej szczegółowo

Ćwiczenie nr 6 Charakterystyki częstotliwościowe

Ćwiczenie nr 6 Charakterystyki częstotliwościowe Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan Dynamika układów mechanicznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele układów mechanicznych opisują ruch ciał sztywnych obserwowany względem przyjętego układu odniesienia Ruch ciała w przestrzeni

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

Rys 1 Schemat modelu masa- sprężyna- tłumik

Rys 1 Schemat modelu masa- sprężyna- tłumik Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Przyjmuje się umowę, że:

Przyjmuje się umowę, że: MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy

Bardziej szczegółowo

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Dr inż. Michał Chłędowski AUTOMATYKA Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Zakres tematyczny: Podstawowe człony automatyki, opis własności statycznych i dynamicznych,

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Inteligentnych Systemów Sterowania

Inteligentnych Systemów Sterowania Laboratorium Inteligentnych Systemów Sterowania Mariusz Nowak Instytut Informatyki Politechnika Poznańska ver. 200.04-0 Poznań, 2009-200 Spis treści. Układ regulacji automatycznej z regulatorami klasycznymi

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

Zasada działania maszyny przepływowej.

Zasada działania maszyny przepływowej. Zasada działania maszyny przepływowej. Przyrost ciśnienia statycznego. Rys. 1. Izotermiczny schemat wirnika maszyny przepływowej z kanałem miedzy łopatkowym. Na rys.1. pokazano schemat wirnika maszyny

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

1. Transformata Laplace a przypomnienie

1. Transformata Laplace a przypomnienie Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych

Bardziej szczegółowo

Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.

Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego. 1 DWICZENIE 2 PRZENOSZENIE IMPULSÓW PRZEZ CZWÓRNIKI LINIOWE 2.1. Cel dwiczenia Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.

Bardziej szczegółowo

Element całkujący Element całkujący jest opisany równaniem różniczkowym o postaci: y = ku, (4.37) S(s) = ^. (4.38)

Element całkujący Element całkujący jest opisany równaniem różniczkowym o postaci: y = ku, (4.37) S(s) = ^. (4.38) - 87-4.1.6. Element całkujący Element całkujący jest opisany równaniem różniczkowym o postaci: z którego wynika transmitancja operatorowa y = ku, (4.37) S(s) = ^. (4.38) Równanie charakterystyki statycznej

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 3 - Metodyka projektowania sterowania. Opis bilansowy Instytut Automatyki i Robotyki Warszawa, 2015 Metodyka projektowania sterowania Zrozumienie obiektu, możliwości, ograniczeń zapoznanie się z

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna, PRz, r.a. 2011/2012, Żabiński Tomasz

Automatyka i Regulacja Automatyczna, PRz, r.a. 2011/2012, Żabiński Tomasz Wykład 8 Transformata Laplace a - przypomnienie, transmitancja operatorowa, scematy bloko, wprowadzenie do pakietu Matlab/Scilab, regulatory PID - transmitancja, modele matematyczne wybranyc obiektów regulacji,

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

Z-ZIP-103z Podstawy automatyzacji Basics of automation

Z-ZIP-103z Podstawy automatyzacji Basics of automation KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-ZIP-103z Podstawy automatyzacji Basics of automation A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo