1. Wprowadzenie do techniki regulacji 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Wprowadzenie do techniki regulacji 1"

Transkrypt

1 1. Wprwadzni d tchnii rglacji 1 Różnic wyniając z strwania w ładzi twartym i zamniętym rzpatrzmy na przyładzi strwania silnia bcwzbdng prąd stałg. Analizę tg ład przprwadzn przy załżni, ż dynamię silnia bcwzbdng prąd stałg mżna, z dbrym przybliżnim, pisać za pmcą równania różniwg pirwszg rzęd. Na rys.1 przdstawin prszny schmat silnia bcwzbdng prąd stałg. Uw=cnst R i U J Rys. 1 Uprszny schmat bcwzbdng silnia prąd stałg W ładzi tym strjmy prędścią ątwa (t) za pmcą napięcia twrnia U(t). Zalżnść wiążącą t wilści mżna wyznayć rzystając z równań pisjących bwód ltryny i mchaniny maszyny. R i U Rys. 2 Schmat bwd ltryng twrnia Na rys. 2 przdstawin schmat bwd ltryng twrnia względniający prnść R twrnia raz siłę ltrmtryną indcji. Siła ltrmtryna jst równa: = cϕ (1.1) gdzi c stała nstrcyjna maszyny, φ strmiń wzbdznia, prędść brtwa silnia. 1 Przyład wprwadzający zarpnięt z pdręnia: Kala R.: Pdstawy atmatyi. Wydawnictw Plitchnii Śląsij, Gliwic 2.

2 2 Pdstawy atmatyi Pniważ napięci U w w bwdzi wzbdznia jst stał, stały jst taż strmiń wzbdznia φ. Mżmy zatm napisać: gdzi stała ltrmchanina maszyny = (1.2) Stsjąc praw Kirchhffa d bwd twrnia trzymjmy równani: Równani równwagi mmntów na wal silnia ma pstać: = = U ir (1.3) d J M = gdzi: J całwity mmnt bzwładnści, M mmnt ltrmagntyny silnia, M mmnt bciążnia M (1.4) Zachdzi taż zalżnść (1.) gdzi: m stała mchanina M = c φ i= i (1.) m m Wbc tg pdstawiając d równania (1.4) zalżnści (1.3) i (1.) trzymjmy równani dynamii silnia: JR m d 1 R + = U m M (1.) raz T d + = U M (1.7) gdzi: T = JR m - stała aswa bit, R rzystancja twrnia, = 1 ; R = wzmcninia statyn. m W ładzi tym strjmy prędścią ątwą (t) za pmcą napięcia twrnia U(t), przy występwani załócnia w pstaci bciążnia M(t). Przdstawiając równani (1.7), za pmcą schmat blwg, trzymjmy schmat strwania silnia w ładzi twartym (w twartj pętli sprzężnia zwrtng).

3 1. Wprwadzni d tchnii rglacji 3 M(t) U(t) x(t) d( t) T +( t) = x( t) (t) Rys. 3. Schmat blwy strwania silnia w twartj pętli Clm strwania jst mżliwini pracy silnia z stałą, rślną prędścią (t). Przanalizjmy pracę silnia w ładzi twartym. W pirwszym tapi analizy przyjmijmy, ż znana jst dładni dynamia ład. Dla napięcia zasilania U(t)=U, rzpatrzmy dwa przypadi: - mmnt bciążnia jst równy zr, - mmnt bciążnia jst równy M(t)=M. W pirwszym przypad równani dynamii silnia przyjmj pstać:. (1.8) d T + = U Przy zrwych warnach pątwych (tzn., gdy silni startj z prędścią ()=), rzwiązani równania różniwg (1.8) jst następjąc (1.9): t ( t ) = U ( 1 T ). (1.9) Dla przyładwych danych: T=2, U =12, =2 przbig (t), przdstawia rys. 4.

4 4 Pdstawy atmatyi Rys. 4. Przbig prędści ątwj silnia bcwzbdng w ładzi twartym Wartść prędści ątwj w stani stalnym (dla t-> ) równa się st = U. Stąd wynia, ż aby silni pracwał z aną prędścią ( = st ), nalży g zasilać napięcim równym: U = st. Strwani taig ład wydaj się bardz prst. W analizi tg przypad pyniliśmy jdna załżni, ż mmnt bciążnia jst równy zr. Prędść w big jałwym jst inna niż przy bciążni. Nalży zatm przanalizwać sytację, w tórj mmnt bciążnia będzi różny d zra. W tj sytacji dynamia ład pisana jst równanim (1.7), a rzwiązani tg równania (przy zrwych warnach pątwych) jst następjąc: t ( t ) = ( U M )( T 1 ). (1.1) Tn przypad, przy załżni wartści mmnt bciążnia M(t)=M =, raz wzmcninia =1, przdstawia rys..

5 1. Wprwadzni d tchnii rglacji Rys.. Przbig prędści ątwj silnia bcwzbdng, w ładzi twartym, w przypad względninia stałg mmnt bciążnia Wartść prędści ątwj w stani stalnym, przy działani stałg bciążnia, mżna wyznayć z równania (1.4): st U = ( M ) = 24 = 18. Błąd pmiędzy wartścią aną a zysaną prędścią, w tym przypad, wynsi: = ε = = st Im więsz bciążni, tym wartść prędści ątwj silnia w ładzi twartym jst mnijsza (bardzij różni się d wartści anj). Analiza przprwadzna w dwóch pprzdnich przypadach yyła strwania silnia znanj charatrystyc dynaminj. Dynamia silnia zalży d wil ynniów i mż się zminiać w traci dłgij splatacji maszyny (np. starzni się lmntów nstrcyjnych). Przprwadźmy analizę w przypad, w tórym wartść stałj ltrmchaninj różni się d wartści wyznanj na pąt. Załóżmy nwą wartść stałj ja: n =. Wtdy wartść stałj aswj T = n T, a wzmcninia statyn przyjmją wartści n = raz n =. Przbig charatrystyi dynaminj silnia, przy względnini nwych wartści paramtrów w równani (1.2), przdstawia rys..

6 Pdstawy atmatyi Rys.. Przbig prędści ątwj silnia bcwzbdng, w ładzi twartym, w przypad zmiany właściwści dynaminych silnia Ustalna wartść prędści ątwj w tym przypad równa jst: _ = = = 2. st n n U U Nasza widza maszyni i śrdwis, w tórym pracj ni jst dsnała. Załócnia wyniając z zmiany bciążnia, y tż zmiany paramtrów maszyny są nirzrwalni zwiazan z jj pracą. Ja mżna zaważyć strwani w ładzi twartym, przy występwani załócń, ni daj walających rzltatów. Birąc t wszyst pd wagę, rzpatrzmy strwani silnia w ładzi zamniętym (ładzi z sprzężnim zwrtnym - rys. 7). M(t) (t) K U(t) x(t) d ( t) (t) T + ( t) = x( t) rglat r bi t

7 1. Wprwadzni d tchnii rglacji 7 Rys. 7. Schmat blwy strwania silnia w zamniętj pętli sprzężnia zwrtng W ładzi tym mirzymy wartść prędści ątwj (t) (za pmcą tachmtr) i prównjmy (djmjmy) w węźl smacyjnym z wartścią aną (t). W cl trzymania atalnj wartści napięcia zasilającg silni, sygnał błęd jst wzmacniany, przz wzmcnini rglatra prprcjnalng K p. Prównani prędści najęścij ralizwan jst w wltach, z względ na mżliwść zastswania liniwg prztwrnia pmiarwg prędść-napięci. Wzmcnini prztwrnia rśln na schmaci symblm. Zastswany w analizi rglatr prprcjnalny jst najprstszym lmntm rglatra lasyng PID. Zastswan g w cl prsznia analizy ład. Zatm równani dynamii silnia w ładzi z rys. 7 przyjmj pstać: d T + ( 1+ K) = K M, (1.11) a rzwiązani tg równania: (1+ t K M T ( t) = ( )(1 ). (1.12) 1+ K Przprwadźmy analgin rzważania, ja dla ład twartg. Rzpatrzmy najpirw przypad, w tórym mmnt bciążnia jst równy zr. Prędść ątwa wyznana dla zrwg mmnt bciążnia jst następjąca: K ) (1+ K ) t K T ( t) = ( )(1 ). (1.13) 1+ K Przbig prędść ątwj, dla przyjętych wartści =1, K= raz =24, przdstawin na rys

8 8 Pdstawy atmatyi Rys. 8. Przbig prędści ątwj, w ładzi zamniętym, przy zrwym bciążni Wartść prędści ątwj w stani stalnym, dla zrwg bciążnia, mżna wyznayć z zalżnści: K st =. (1.14) 1 + K Dla przyjętych w analizi wartści paramtrów, prędść ątwa w stani stalnym przyjmj wartść st =21,82. Uwzględniając bciążni różn d zra M(t)=M, trzymjmy zalżnść rślającą prędść ątwą, za pmcą równania (1.). Przbig prędści ątwj w tym przypad przdstawin na rys Rys. 9. Przbig prędści ątwj w ładzi zamniętym z względninim bciążnia Wartść prędści ątwj w stani stalnym, przy działani stałg bciążnia, mżna wyznayć z zalżnści: K M st =. (1.1) 1+ K Dla przyjętych w analizi wartści paramtrów, prędść ątwa w stani stalnym przyjmj wartść st =21,27.

9 1. Wprwadzni d tchnii rglacji 9 W przypad trzcim załżn inn wartści paramtrów maszyny d wśnij zidntyfiwanych. Analgini, ja dla ład twartg, wartść stałj aswj T = n T, wzmcninia statyn: n = raz n = Rys. 1. Przbig prędści ątwj, w ładzi zamniętym, w przypad zmiany właściwści dynaminych silnia Wartść prędści ątwj w stani stalnym, dla zrwg bciążnia, mżna wyznayć z zalżnści: n K st = (1.1) 1 + K Dla przyjętych w analizi wartści paramtrów, prędść ątwa w stani stalnym przyjmj wartść st =21,43. Ja mżna zaważyć dla wszystich rzpatrywanych przypadów strwania w ładzi zamniętym, w dróżnini d strwania w ładzi twartym, wartści prędści ątwj były zbliżn i niznani różniły się d wartści anj. Pdsmwani Wnisi wyniając z analizy rzpatrywang przyład są następjąc: - stswani ład zamniętg przciwdziałała wpływwi załócń, działających na bit rglacji, - dynamia (rślna przz stałą aswą ład) w ładzi zamniętym jst dż lpsza niż w ładzi twartym, n

10 1 Pdstawy atmatyi - w przypad zastswania bardzij złżnj strtry rglatra, błąd rglacji mżna sprwadzić d zra. W mawianym przyładzi działani ład rglacji zstał przdstawin w spsób pglądwy. W cl prcyzyjng wyjaśninia istty działania ładów rglacji, analizy i syntzy tych ładów, w ljnych rzdziałach, zstaną przdstawin pdstawy trii rglacji. Tria rglacji jst bszrną dzidziną nai strwani w ładach z sprzężnim zwrtnym. D głównych ań trii rglacji nalżą: - mtdy pis właściwści dynaminych lmntów atmatyi, - mtdy idntyfiacji bitów strwania, - stabilnść ładów atmatyi, - prjtwani ładów rglacji, - mtdy analizy i rcji ładów rglacji.

1. Wstęp. 2. Czwórnik symetryczny Ćwiczenie nr 3 Pomiar parametrów czwórników

1. Wstęp. 2. Czwórnik symetryczny Ćwiczenie nr 3 Pomiar parametrów czwórników TEORI OBWODÓW SPRWODNIE LBORTORIM Pitr Dymaz Pitr Batg Pitr Błażjwski Nr grupy: 4 Trmin: Pnidziałk/ 5-8 Data wyknania ćw.:.4.8 Ćwizni nr Pmiar paramtrów zwórników Ona:. Wstęp Clm ćwiznia był wyznazni pdstawwyh

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

Ćwiczenie PA6. Badanie działania regulatora PID zaimplementowanego w sterowniku S7-1200 firmy Siemens

Ćwiczenie PA6. Badanie działania regulatora PID zaimplementowanego w sterowniku S7-1200 firmy Siemens INSYU AUOMAYKI i ROBOYKI WYDZIAŁ MECHARONIKI - laboratorium Ćwiczni PA6 Badani działania rgulatora PID zaimplmntowango w strowniu S7-00 firmy Simns Instrucja laboratoryjna Opracowani : dr inż. Danuta Holjo

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

INFORMACJE DLA OCENIAJĄCYCH 1. Rozwiązania poszczególnych zadań i poleceń oceniamy są na podstawie punktowych kryteriów oceny. 2.

INFORMACJE DLA OCENIAJĄCYCH 1. Rozwiązania poszczególnych zadań i poleceń oceniamy są na podstawie punktowych kryteriów oceny. 2. INFORMACJE DLA OCENIAJĄCYCH 1. Rzwiązania pszczgólnych zadań i plcń cniamy są na pdstawi punktwych krytriów cny.. Przd przystąpinim d cniania prac zdających zachęcamy d samdzilng rzwiązania zstawu zadań,

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK

Bardziej szczegółowo

Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego

Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego Ćwiczni 4 Ralizacja programowa dwupołożniowj rgulacji tmpratury pica lktryczngo. Cl ćwicznia Clm ćwicznia jst zaznajomini z podstawami rgulacji obiktów ciągłych na przykładzi strowania dwupołożniowgo komputrowgo

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-3 BADANIE SZTYWNOŚCI PROWADNIC HYDROSTATYCZNYCH

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-3 BADANIE SZTYWNOŚCI PROWADNIC HYDROSTATYCZNYCH POLITECHNIK ŁÓDZK INSTYTUT OBBIEK I TECHNOLOGII BUDOWY MSZYN Ćwiczenie H- Temat: BDNIE SZTYWNOŚCI POWDNIC HYDOSTTYCZNYCH edacja i racwanie: dr inż. W. Frnci Zatwierdził: rf. dr ab. inż. F. Oryńsi Łódź,

Bardziej szczegółowo

ZJAWISKO TERMOEMISJI ELEKTRONÓW

ZJAWISKO TERMOEMISJI ELEKTRONÓW ĆWICZENIE N 49 ZJAWISKO EMOEMISJI ELEKONÓW I. Zestaw przyrządów 1. Zasilacz Z-980-1 d zasilania katdy lampy wlframwej 2. Zasilacz Z-980-4 d zasilania bwdu andweg lampy z katdą wlframwą 3. Zasilacz LIF-04-222-2

Bardziej szczegółowo

A. Kanicki: Systemy elektroenergetyczne KRYTERIA NAPIĘCIOWE WYZNACZANIA STABILNOŚCI LOKALNEJ

A. Kanicki: Systemy elektroenergetyczne KRYTERIA NAPIĘCIOWE WYZNACZANIA STABILNOŚCI LOKALNEJ . Kanici: Systemy eletrenergetyczne 94 5. KRYTERI NPIĘCIOWE WYZNCZNI STILNOŚCI LOKLNEJ dp Kryterium załada, że dbiry są mdelwane stałą impedancją a nie rzeczywistymi dδ charaterystyami dbirów. Nie pazuje

Bardziej szczegółowo

Przykłady sieci stwierdzeń przeznaczonych do wspomagania początkowej fazy procesu projektow ania układów napędowych

Przykłady sieci stwierdzeń przeznaczonych do wspomagania początkowej fazy procesu projektow ania układów napędowych Rzdział 12 Przykłady sieci stwierdzeń przeznacznych d wspmagania pczątkwej fazy prcesu prjektw ania układów napędwych Sebastian RZYDZIK W rzdziale przedstawin zastswanie sieci stwierdzeń d wspmagania prjektwania

Bardziej szczegółowo

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =? PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy

Bardziej szczegółowo

Układ wielofazowy i układ trójfazowy

Układ wielofazowy i układ trójfazowy 7. Rzwiązywani bwdów prądu sinusidalng 43 Wyład XV. PODTWOWE TRKTR OWODÓW TRÓJFOWH ład wilfazwy i uład trójfazwy Trminm uład wilfazwy rśla się zbiór w liczbi dwa lub więszj taich, związanych z sbą struturalni

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ. ( i) E( 0) str. 1 WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ. ( i) E( 0) str. 1 WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA Różnica pmiędzy wartścią ptencjału elektrdy mierzneg przy przepływie prądu E(i) a wartścią ptencjału spczynkweg E(0), nsi nazwę nadptencjału (nadnapięcia), η.

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 6. Typowe obiekty i regulatory

PODSTAWY AUTOMATYKI 6. Typowe obiekty i regulatory Politchnia Warszawsa Instytt Atomatyi i Robotyi Prof. dr hab. inż. Jan Macij Kościlny PODSAWY AUOMAYKI 6. yow obity i rglatory Obit rglacji 2 Dwojai sns: - rocs o orślonych własnościach statycznych i dynamicznych,

Bardziej szczegółowo

ELEKTRONICZNE PULSACYJNE ZAWORY ROZPRĘŻNE

ELEKTRONICZNE PULSACYJNE ZAWORY ROZPRĘŻNE wr. 221010 PRZEDSIĘBIORSTWO WIELOBRANŻOWE "AVICOLD" Sp.J. 43 400 CIESZYN, ul. BIELSKA 61c tl. / fax: 0338567444, 0338567445, http://www.avicld.cm.pl 0338567446 mail: avicld@avicld.cm.pl ELEKTRONICZNE PULSACYJNE

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

1.5 Równanie ruchu układu napędowego

1.5 Równanie ruchu układu napędowego 1.5 Równani ruchu układu napędwg Równani ruchu mżna sfrmułwać na pdsawi zasady najmnijszg działania Hamilna, lub zasady zachwania nrgii, kóra ma prsą inrprację fizyczną. Całkwia nrgia E dsarczna przz silnik

Bardziej szczegółowo

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego. A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna

Bardziej szczegółowo

Ogniwo wzorcowe Westona

Ogniwo wzorcowe Westona WZOZEC SEM - OGNWO WESTON mieszczne jest w szklanym naczyniu, w które wtpine są platynwe elektrdy. Ddatni i ujemny biegun gniwa stanwią dpwiedni rtęć (Hg) i amalgamat kadmu (Cd 9-Hg), natmiast elektrlitem

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

Reguła de L Hospitala. Reguła de L Hospitala - odpowiedzi. Różniczka funkcji. Różniczka funkcji - odpowiedzi. Styczna i normalna

Reguła de L Hospitala. Reguła de L Hospitala - odpowiedzi. Różniczka funkcji. Różniczka funkcji - odpowiedzi. Styczna i normalna REGUŁA DE L HOSPITALA Rguła d L Hospitala Oblicz granicę: a lim b lim + f lim ln+ k lim l lim p u lim z lim + ln ln c lim g lim ln h lim ln sin q lim + v lim lim arc ctg π ln sin lnln sin d lim lim i lim

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

Przejścia międzypasmowe

Przejścia międzypasmowe Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (

Bardziej szczegółowo

ĆWICZENIE 1 DWÓJNIK ŹRÓDŁOWY PRĄDU STAŁEGO

ĆWICZENIE 1 DWÓJNIK ŹRÓDŁOWY PRĄDU STAŁEGO ĆWCZENE DWÓJNK ŹÓDŁOWY ĄD STŁEGO Cel ćiczenia: spradzenie zasady rónażnści dla dójnika źródłeg (tierdzenie Thevenina, tierdzenie Nrtna), spradzenie arunku dpasania dbirnika d źródła... dstay teretyczne

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

STRONNICZOŚĆ POZYCJI TESTOWYCH

STRONNICZOŚĆ POZYCJI TESTOWYCH X Knfrncja z cyklu Diagnstyka dukacyjna 20-22 IX 2004 Barbara CIŻKOWICZ Akadmia Bydgska STRONNICZOŚĆ POZYCJI TESTOWYCH Knstruktrzy i użytkwnicy tstów d lat wykrzystują d analizy jakści narzędzi badawczych

Bardziej szczegółowo

WYKORZYSTANIE METOD PL DO ROZWIĄZYWANIA PROBLEMÓW DECYZYJNYCH Z NIELINIOWĄ FUNKCJĄ CELU

WYKORZYSTANIE METOD PL DO ROZWIĄZYWANIA PROBLEMÓW DECYZYJNYCH Z NIELINIOWĄ FUNKCJĄ CELU M.Miszzyńsi KBO UŁ, Badania perayjne I (wyład 7A 7) [] WYKORZYSANIE MEOD PL DO ROZWIĄZYWANIA PROBLEMÓW DECYZYJNYCH Z NIELINIOWĄ FUNKCJĄ CELU Omówimy tutaj dwa prste warianty nieliniwyh mdeli deyzyjnyh,

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Sieci neuronowe model konekcjonistyczny

Sieci neuronowe model konekcjonistyczny Sieci neurnwe mdel knekcjnistyczny Plan wykładu Mózg ludzki a kmputer Mdele knekcjnistycze Perceptrn Sieć neurnwa Sieci Hpfielda Mózg ludzki a kmputer Twój mózg t kmórek, 3 2 kilmetrów przewdów i (biliard)

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Elektrtechnika i Elektrnika Materiały Dydaktyczne Mc w bwdach prądu zmienneg. Opracwał: mgr inż. Marcin Jabłński mgr inż. Marcin Jabłński

Bardziej szczegółowo

36.2. Przetwornik wartości średniej. Z tej klasy przetworników na wyróżnienie zasługuje przetwornik pokazany na rys [2,

36.2. Przetwornik wartości średniej. Z tej klasy przetworników na wyróżnienie zasługuje przetwornik pokazany na rys [2, 36.. Przwrni warści śrdnij 4, 6]. Z j lasy przwrniów na wyróżnini zasługuj przwrni pazany na rys. 36.4 [, C R R i R R - W + 0.5R u D D 0.5R i - W +, R R 0. 5R Rys. 36.4. Przwrni warści śrdnij Przwrni n

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

PSO matematyka I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny

PSO matematyka I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny PSO matematyka I gimnazjum Szczegółwe wymagania edukacyjne na pszczególne ceny POZIOM WYMAGAŃ EDUKACYJNYCH: K knieczny cena dpuszczająca spsób zakrąglania liczb klejnść wyknywania działań pjęcie liczb

Bardziej szczegółowo

Opis i specyfikacja interfejsu SI WCPR do wybranych systemów zewnętrznych

Opis i specyfikacja interfejsu SI WCPR do wybranych systemów zewnętrznych Załącznik nr 1 d OPZ Opis i specyfikacja interfejsu SI WCPR d wybranych systemów zewnętrznych Spis treści 1. OPIS I SPECYFIKACJA INTERFEJSU DO SYSTEMÓW DZIEDZINOWYCH... 2 1.1. Integracja z systemami dziedzinwymi...

Bardziej szczegółowo

Wprowadzenie do MATLABA. Laboratorium. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera

Wprowadzenie do MATLABA. Laboratorium. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera Akadmia Mrska w Gdyni Katdra Autmatyki Okrętwj Tria strwania Wprwadzni d MATLABA Labratrium Mirsław Tmra MATLAB (Matrix Labratry) jst intraktywnym prgramwanim wyskig pzimu wydajni wspirającym pracę przy

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977.

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977. XXV OLMPADA FZYCZNA (1974/1975). Stopiń, zadani doświadczaln D Źródło: Nazwa zadania: Działy: Słowa kluczow: Komitt Główny Olimpiady Fizycznj, Waldmar Gorzkowski: Olimpiady fizyczn XX i XXV. WSiP, Warszawa

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

WYSTAWIANIE FAKTUR I FAKTUR KORYGUJĄCYCH W DZIAŁALNOŚCI GOSPODARCZEJ ŚRODA Z KSIĘGOWĄ JOANNA MATUSIAK

WYSTAWIANIE FAKTUR I FAKTUR KORYGUJĄCYCH W DZIAŁALNOŚCI GOSPODARCZEJ ŚRODA Z KSIĘGOWĄ JOANNA MATUSIAK WYSTAWIANIE FAKTUR I FAKTUR KORYGUJĄCYCH W DZIAŁALNOŚCI GOSPODARCZEJ ŚRODA Z KSIĘGOWĄ JOANNA MATUSIAK WYSTAWIANIE FAKTUR WYSTAWIANIE FAKTUR Od 1 stycznia 2014 r. c d zasady fakturę należy wystawić d 15.

Bardziej szczegółowo

Zakłócenia. Wejścia Zmienne sterujące. Wyjścia Zmienne procesowe. Proces

Zakłócenia. Wejścia Zmienne sterujące. Wyjścia Zmienne procesowe. Proces Atomatka jst to dzidzina widz, która zajmj się możliwościami ogranicznia lb wliminowania dział człowika w cznnościach związanch z strowanim różnorodnch obiktów fizcznch. Trminm atomatka okrśla się tż potoczni

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Regulamin obowiązujący do 25.12.2014:

Regulamin obowiązujący do 25.12.2014: Regulamin bwiązujący d 25.12.2014: Główna Księgarnia Naukwa Spółka Jawna, Grzegrz Stępień, Aleksandra Stępień NIP 526-010-78-84, REGON 011002789 ul. Krakwskie Przedmieście 7 00-068 Warszawa tel. 22-827-67-06

Bardziej szczegółowo

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13 Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał

Bardziej szczegółowo

Teoria Przekształtników - kurs elementarny

Teoria Przekształtników - kurs elementarny Teria Przekształtników - kurs elementarny W5. PRZEKSZTAŁTNIKI IMPSOWE PRĄD STAŁEGO -(1) [ str199-16, str. 5 161-177, 6 str. 161-190-199] Jest t grupa przekształtników najliczniejsza bwiem znajuje zastswanie

Bardziej szczegółowo

( t) UKŁADY TRÓJFAZOWE

( t) UKŁADY TRÓJFAZOWE KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni

Bardziej szczegółowo

Partner projektu F5 Konsulting Sp. z o.o. ul. Składowa 5, 61-897 Poznań T: 061 856 69 60 F: 061 853 02 95

Partner projektu F5 Konsulting Sp. z o.o. ul. Składowa 5, 61-897 Poznań T: 061 856 69 60 F: 061 853 02 95 Plan Kmunikacji na temat prjektu samceny , 2010 Partner prjektu F5 Knsulting Sp. z.. ul. Składwa 5, 61-897 Pznań T: 061 856 69 60 F: 061 853 02 95 SPIS TREŚCI: WPROWADZENIE...

Bardziej szczegółowo

Laboratorium Nowoczesna Diagnostyka Materiałowa Pomiar materiałów magnetycznie miękkich

Laboratorium Nowoczesna Diagnostyka Materiałowa Pomiar materiałów magnetycznie miękkich Laboratorium Nowoczsna Diagnostyka Matriałowa Pomiar matriałów magntyczni miękkich I. Zagadninia do przygotowania:. Podstawow wilkości opisując pol i matriały magntyczn: natężni pola magntyczngo, indukcja

Bardziej szczegółowo

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH załącznik 1 do ćwiczenia nr 6

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH załącznik 1 do ćwiczenia nr 6 PMY MŁOSYGNŁOW NZYSOÓW POLNYH załącznik 1 do ćwznia nr 6 Wstęp Modl małosygnałow tranzystorów mają na l przdstawini tranzystora za pomocą obwod liniowgo. aka rprzntacja tranzystora pozwala na zastąpini

Bardziej szczegółowo

Pompy ciepła. Podział pomp ciepła. Ogólnie możemy je podzielić: ze wzgledu na sposób podnoszenia ciśnienia i tym samym temperatury czynnika roboczego

Pompy ciepła. Podział pomp ciepła. Ogólnie możemy je podzielić: ze wzgledu na sposób podnoszenia ciśnienia i tym samym temperatury czynnika roboczego Pmpy ciepła W naszym klimacie bardz isttną gałęzią energetyki jest energetyka cieplna czyli grzewanie. W miesiącach letnich kwestia ta jest mniej isttna, jednak z nadejściem jesieni jej znaczenie rśnie.

Bardziej szczegółowo

Laboratorium elektroniki i miernictwa

Laboratorium elektroniki i miernictwa Ełk 24-03-2007 Wyższa Szkła Finansów i Zarządzania w Białymstku Filia w Ełku Wydział Nauk Technicznych Kierunek : Infrmatyka Ćwiczenie Nr 3 Labratrium elektrniki i miernictwa Temat: Badanie pdstawwych

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra

Bardziej szczegółowo

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH obliczanie załącznik 1 do ćwiczenia nr 7

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH obliczanie załącznik 1 do ćwiczenia nr 7 LMNY LKONZN LA.: Paramtry małosynałow tranz. bipolarnyc zał. 1 PAAMY MAŁOSYGNAŁOW ANZYSOÓW POLANYH oblzani załącznik 1 do ćwznia nr 7 Wstęp Modl małosynałow tranzystorów mają na cl przdstawini tranzystora

Bardziej szczegółowo

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła

Bardziej szczegółowo

ŚCISKANIE SŁUPÓW PROSTYCH 1

ŚCISKANIE SŁUPÓW PROSTYCH 1 ŚCISKNI SŁUÓW OSTYCH 1 1. NIZ SŁU MIMOŚODOWO ŚCISKNGO ZDNI: przanalizać zachani słupa lnpdpartg mimśrd ściskang siłą (bciążni knsratyn). Mimśród mirzny jst d śrdka ciężkści przju d linii działania siły.

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia:

Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: Adres strny internetwej, na której Zamawiający udstępnia Specyfikację Isttnych Warunków Zamówienia: www.wzz.wrc.pl Wrcław: rbty budwlane plegające na przebudwie i mntażu wewnętrznej instalacji i urządzeń

Bardziej szczegółowo

Wzmacniacz tranzystorowy

Wzmacniacz tranzystorowy Wydział Elktroniki Mikrosystmów i Fotoniki Opracował zspół: Mark Pank, Waldmar Olszkiwicz, yszard Korbutowicz, wona Zborowska-Lindrt, Bogdan Paszkiwicz, Małgorzata Kramkowska, Zdzisław Synowic, Bata Ściana,

Bardziej szczegółowo

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne Rozkład Maxwll a rędkośi ząstzk gazu 9-9. Rozkład Maxwll a rędkośi ząstzk gazu Prędkośi oszzgólnyh ząstzk ogą być w danj hwili dowoln 3 a tylko rędkość śrdnia kwadratowa wynosi sk. Można się jdnak sodziwać,

Bardziej szczegółowo

Podstawowe układy pracy tranzystora MOS

Podstawowe układy pracy tranzystora MOS A B O A T O I U M P O D S T A W E E K T O N I K I I M E T O O G I I Pdstawwe układy pracy tranzystra MOS Ćwiczenie pracwał Bgdan Pankiewicz 4B. Wstęp Ćwiczenie umżliwia pmiar i prównanie właściwści trzech

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Materiały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych.

Materiały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych. ateriały do wyładów na temat Obliczanie sił przerojowych i momentów przerojowych dla prętów zginanych Wydr eletroniczny. slajdów na. stronach przeznaczony do celów dydatycznych dla stdentów II ro stdiów

Bardziej szczegółowo

Wykład XVIII. SZCZEGÓLNE KONFIGURACJE OBWODÓW TRÓJFAZOWYCH. POMIARY MOCY W OBWODACH TRÓJFAZOWYCH I 1 U 12 I 2 U 23 3 U U Z I = ; I 12 I 23

Wykład XVIII. SZCZEGÓLNE KONFIGURACJE OBWODÓW TRÓJFAZOWYCH. POMIARY MOCY W OBWODACH TRÓJFAZOWYCH I 1 U 12 I 2 U 23 3 U U Z I = ; I 12 I 23 7. związywanie bwdów prądu sinusidalneg 5 Wykład XVIII. SCEGÓLE KOFIGACJE OBWODÓW TÓJFAOWYCH. POMIAY MOCY W OBWODACH TÓJFAOWYCH Symetrycz układzie gwiazdwym W symetryczm u gwiazdwym, zasilam napięciem

Bardziej szczegółowo

1. Podstawowe pojęcia:

1. Podstawowe pojęcia: Matriały dydatyczn d ćwicznia T Caratrytyi wytrzymałściw rzrjów ntrucyjnyc. Wydru ltrniczny 8. lajdów na 9. trnac rzznaczny dla tudntów II ru tudiów tacjnarnyc na Wydz. Inżynirii Mcanicznj i Rtyi, irun

Bardziej szczegółowo

Ćwiczenie nr 1: Wahadło fizyczne

Ćwiczenie nr 1: Wahadło fizyczne Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel

Bardziej szczegółowo

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1) 11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij

Bardziej szczegółowo

CZAS ZDERZENIA KUL SPRAWDZENIE WZORU HERTZA

CZAS ZDERZENIA KUL SPRAWDZENIE WZORU HERTZA Ćwiczenie Nr CZAS ZDRZNIA KUL SPRAWDZNI WZORU HRTZA Literatura: Opracwanie d ćwiczenia Nr, czytelnia FiM LDLandau, MLifszic Kurs fizyki teretycznej, tm 7, Teria sprężystści, 9 (dstępna w biblitece FiM,

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Operatory odległości (część 2) obliczanie map kosztów

Operatory odległości (część 2) obliczanie map kosztów Operatry dległści (część 2) bliczanie map ksztów Celem zajęć jest zapznanie się ze spsbem twrzenia mapy ksztów raz wyznaczeni mapy czasu pdróży d centrum miasta. Wykrzystane t zstanie d rzwinięcia analizy

Bardziej szczegółowo

2. Architektury sztucznych sieci neuronowych

2. Architektury sztucznych sieci neuronowych - 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak

Bardziej szczegółowo

Przykład budowania macierzy sztywności.

Przykład budowania macierzy sztywności. Co dzisiaj Przyład bdowania macierzy sztywności. Podejście logiczne Podejście algorytmiczne Przyłady modelowania i interpretacji wyniów Model płytowo-powłoowy i interpretacja naprężeń Błędy modelowania

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ

ZASTOSOWANIA POCHODNEJ ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych

Bardziej szczegółowo

CWICZ Nr 1 UKŁAD NAPĘDOWY Z SILNIKIEM WYKONAWCZYM PRĄDU STAŁEGO STEROWANYM IMPULSOWO Z PRZEKSZTAŁTNIKA TRANZYSTOROWEGO

CWICZ Nr 1 UKŁAD NAPĘDOWY Z SILNIKIEM WYKONAWCZYM PRĄDU STAŁEGO STEROWANYM IMPULSOWO Z PRZEKSZTAŁTNIKA TRANZYSTOROWEGO WIZ Nr 1 UKŁD NPĘDOWY Z SILNIKIE WYKONWZY PRĄDU STŁEGO STEROWNY IPULSOWO Z PRZEKSZTŁTNIK TRNZYSTOROWEGO 1.1. Program ćwicznia Wykonani ćwiczni objmuj następujący zakrs: - zapoznani się z silnikim wykonawczym

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.

Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów. modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:

Bardziej szczegółowo

Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.its.waw.pl

Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.its.waw.pl Adres strny internetwej, na której Zamawiający udstępnia Specyfikację Isttnych Warunków Zamówienia: www.its.waw.pl Warszawa: Wyknanie remntu części III piętra tj. sali 317, krytarza i łazienki w budynku

Bardziej szczegółowo

KRZYWA INFORMACYJNA ZADAŃ JAKO NARZĘDZIE W KONSTRUOWANIU ARKUSZA EGZAMINACYJNEGO

KRZYWA INFORMACYJNA ZADAŃ JAKO NARZĘDZIE W KONSTRUOWANIU ARKUSZA EGZAMINACYJNEGO dr Hnryk Szalnic Okręgwa Kmisja Egzaminacyjna w Krakwi KRZYWA INFORMACYJNA ZADAŃ JAKO NARZĘDZIE W KONSTRUOWANIU ARKUSZA EGZAMINACYJNEGO Autr przntuj trię wyniku zadania tstwg ( Itm rspns thry - IRT) jak

Bardziej szczegółowo

Nowe funkcje w module Repozytorium Dokumentów

Nowe funkcje w module Repozytorium Dokumentów Frte Repzytrium 1 / 6 Nwe funkcje w mdule Repzytrium Dkumentów Frte Repzytrium zmiany w wersji 2012.a 2 Zmiany w trakcie wysyłania dkumentu 2 Wysyłanie dkumentów własnych. Ustawienie współpracy z w serwisem

Bardziej szczegółowo

1. W zależności od sposobu połączenia uzwojenia wzbudzającego rozróżniamy silniki:

1. W zależności od sposobu połączenia uzwojenia wzbudzającego rozróżniamy silniki: Temat: Silniki prądu stałego i ich właściwości ruchowe. 1. W zależności od sposobu połączenia uzwojenia wzbudzającego rozróżniamy silniki: a) samowzbudne bocznikowe; szeregowe; szeregowo-bocznikowe b)

Bardziej szczegółowo

Stanisław Jemioło, Marcin Gajewski Instytut Mechaniki Konstrukcji Inżynierskich

Stanisław Jemioło, Marcin Gajewski Instytut Mechaniki Konstrukcji Inżynierskich Stanisław Jemił, Marcin Gajewsi Instytut Mechanii Knstrucji Inżyniersich SYMULACJA MES OBRÓBKI CIEPLNEJ WYROBÓW STALOWYCH Z UWZGLĘDNIENIEM ZJAWISK TERMO-METALURGICZNYCH Część 1. Nieustalny przepływ ciepła

Bardziej szczegółowo

T R Y G O N O M E T R I A

T R Y G O N O M E T R I A T R Y G O N O M E T R I A Lekcja 8-9 Temat: Pwtórzenie trójkąty prstkątne. Str. 56-57. Teria Twierdzenie Pitagrasa i dwrtne Suma kątów w trójkącie Wyskść Obwód i ple Zad.,,,, 5, 6 str. 56 Zad. 7, 8, 9,

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

Temat: Pochodna funkcji. Zastosowania

Temat: Pochodna funkcji. Zastosowania Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a

Bardziej szczegółowo

INSTRUKCJA MONTAŻU przewodu grzejnego PSB typu 07-5801-XXXX

INSTRUKCJA MONTAŻU przewodu grzejnego PSB typu 07-5801-XXXX Przewód grzejny PSB typ 07-5801-XXXX INSTRUKCJA MONTAŻU przewdu grzejneg PSB typu 07-5801-XXXX Spis treści 1. Zastswanie.. str. 1 2. Dane techniczne.... str. 1 3. Zasady bezpieczeństwa..... str. 2 4. Wytyczne

Bardziej szczegółowo

ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH

ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH Mimo, ż przstrznn konstrkcj kratow znan yły od dawna (por.[17]), to do nidawna stosowan yły stosnkowo rzadko, co yć moż spowodowan yło sporymi kłopotami oliczniowymi,

Bardziej szczegółowo

Automatyzacja Procesów Przemysłowych

Automatyzacja Procesów Przemysłowych Automatyzacja Procsów Przmysłowych Tmat: Układ rgulacji zamknięto-otwarty Zspół: Kirunk i grupa: Data: Mikuś Marcin Mizra Marcin Łochowski Radosław Politowski Dariusz Szymański Zbigniw Piwowarski Przmysław

Bardziej szczegółowo

15. CAŁKA NIEOZNACZONA cz. I

15. CAŁKA NIEOZNACZONA cz. I 5. CAŁKA NIEOZNACZONA cz. I Fukcj pirwot fukcji f w pwym przdzial (właciwym lub iwłaciwym) azywamy tak fukcj F, którj pochoda rówa si fukcji f w tym przdzial. Zbiór wszystkich fukcji pirwotych fukcji f

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

PSO matematyka III gimnazjum. Szczegółowe wymagania edukacyjne na poszczególne oceny

PSO matematyka III gimnazjum. Szczegółowe wymagania edukacyjne na poszczególne oceny PSO matematyka III gimnazjum Szczegółwe wymagania edukacyjne na pszczególne ceny POZIOMY WYMAGAŃ EDUKACYJNYCH: K knieczny cena dpuszczająca DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE pjęcie liczby naturalnej,

Bardziej szczegółowo