ZJAWISKO TERMOEMISJI ELEKTRONÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZJAWISKO TERMOEMISJI ELEKTRONÓW"

Transkrypt

1 ĆWICZENIE N 49 ZJAWISKO EMOEMISJI ELEKONÓW I. Zestaw przyrządów 1. Zasilacz Z d zasilania katdy lampy wlframwej 2. Zasilacz Z d zasilania bwdu andweg lampy z katdą wlframwą 3. Zasilacz LIF d żarzenia katdy lampy tlenkwej 4. Miliampermierz (miernik typ U 722A) d pmiaru natężenia prądu andweg 5. Wltmierz Metex M d pmiaru napięcia żarzenia 6. Wltmierz Metex M d pmiaru napięcia andweg 7. Miliampermierz LM-3 d pmiaru natężenia prądu żarzenia 8. Lampa z katdą tlenkwą 6H6 9. Lampa z katdą wlframwą 5C3S II. Cel ćwiczenia 1. Dida wlframwa: a) wyznaczenie temperatury katdy b) wyznaczenie pracy wyjścia elektrnów z metalu c) pmiar charakterystyki prądw-napięciwej I a = f (U a ) d) sprawdzenie prawa Langmuira 2. Dida tlenkwa: a) pmiar charakterystyki prądw-napięciwej I a = f (U a ) b) sprawdzenie prawa Langmuira c) wyznaczenie temperatury katdy d) wyznaczenie napięcia kntaktweg 1

2 DIODA Z KAODĄ WOLFAMOWĄ III. Przebieg pmiarów 1. Płączyć bwód wg schematu przedstawineg na rys. 1. ma ma Zasilacz Z _ V V _ Zasilacz Z ys.1 2. Wyznaczenie temperatury katdy i pracy wyjścia elektrnów z metalu: a) za pmcą zasilacza Z ustawić napięcie andwe U a = cnst z zakresu d 80V d 100V, w którym występuje prąd nasycenia I a = I s ; b) wyznaczyć zależnść I a = f () prądu andweg I a d temperatury katdy, czyli d różnych mcy grzania katdy; w tym celu za pmcą zasilacza Z zmniejszać napięcie żarzenia U ż d 2,1V d 0,7V c 0,1V i zantwać wartści prądu I a raz wartści U ż i I ż. 3. Badania charakterystyki prądw-napięciwej Ia = f (U a ): a) ustalić kreślną mc żarzenia katdy; w tym celu przy pmcy zasilacza Z ustalić stałe napięcie żarzenia U ż katdy z przedziału 1,1 2,1 V (np. 1,9 V); zantwać wartść U ż i dpwiadającą mu wartść natężenia prądu żarzenia I ż UWAGA! U ż max = 2,4 V i nie wln przekraczać tej wartści b) zdjąć charakterystykę andwą lampy I a = f(u a ) przy U ż = cnst; napięcie andwe U a zmieniać za pmcą zasilacza Z następując: w zakresie 0 10 V c 1 V w zakresie V c 10 V c) sprawdzić, w jakim zakresie wartści U a prąd andwy I a siąga nasycenie ( I a = I s dla U a = Us ) 2

3 IV. Opracwanie wyników pmiarów 1. Wyznaczyć temperaturę pracy katdy (tabela 1) W parciu wyniki pmiarów natężenia prądu andweg I a d temperatury katdy, a więc d mcy grzania katdy M ż = U ż I ż znaleźć wartść względneg pru katdy U = ż dla zmierznych wartści U I ż i I ż przyjmując wartść = 0,340 ± 0,005 Ω. Z załączneg d instrukcji wykresu ż = f) ( lub na pdstawie równania 2 = 1+ α( ) + β( ) + γ( ) 3 gdzie: α = 0,00460 ± 0, [ K] β = 6, ± 3, [ 2 K ] γ = -5, ±8, [ 3 K ] = 293 [K] kreślić temperatury katdy dpwiadające danym wartścim U ż i I ż 2. Wyznaczyć pracę wyjścia elektrnów z metalu (tabela 1) a) wykrzystując zmierzne wartści I a = I s dpwiadające temperaturm I 1 1 kreślnym pwyżej, sprządzić wykres ln( ) ( ) a 2 = f = a + b b) wyznaczyć pracę wyjścia φ k elektrnów z katdy i jej niepewnść wykrzystując zależnść φ k = a k gdzie: k = 1, J/K - stała Bltzmanna a - współczynnik kierunkwy prstej ln( ) ( ) a 1 2 f I = ; wartść pracy wyjścia pdać w [J] i [ev] 3. Wykreślić charakterystykę andwą lampy I a = f(u a ); zaznaczyć na niej bszary pracy didy: bszar prądów granicznych ładunkiem przestrzennym (II) i bszar prądu nasycenia (III); zaznaczyć napięcie U a = U s, przy którym zaczyna się prąd nasycenia I a = I s (tabela 2) 4. Sprawdzić praw Langmuira I a = cu a n ; w tym celu sprządzić wykres ln I a = f (ln U a ) dla II bszaru prądów; kreślając współczynnik kierunkwy prstej trzymamy wartść współczynnika ptęgweg n (tabela 2) 3

4 V. abele pmiarwe abela 1. U a = U a = I a I a U ż U ż I ż I ż [A] [A] [V] [V] [A] [A] [Ω] [Ω] [K] [K] 1 1 [ K ] [ K] 1 1 ln I 2 ln I φ K a2 a a a φ k φ K φ K [K] [K] [J] [J] [%] abela 2. U ż U ż I ż I ż U a Ua I a I a ln U a ln U a ln I a ln I a n n [V] [V] [A] [A] [V] [V] [A] [A] 4

5 DIODA Z KAODĄ LENKOWĄ III. Przebieg pmiarów 1. Płączyć bwód wg schematu przedstawineg na rys. 2 ma V ~Uż Zasilacz _ Ua + ys Zdjąć charakterystykę andwą didy I a = f(u a ) przy nminalnym napięciu żarzenia U ż = 6,3 V; pmiary przeprwadzić w zakresie napięć andwych ujemnych (U a < 0), ddatnich (U a > 0) raz dla U a = 0; dla ujemnych napięć andwych pmiary prwadzić w zakresie 1 0 V c 0,1 V, a w zakresie ddatnich napięć w zakresie 0 3 V c 0,2 V. UWAGA!!! W zakresie ddatnich napięć andwych nie wln przekraczać dpuszczalnej wartści natężenia prądu andweg I a max = 30 ma. IV. Opracwanie wyników pmiarów 1. Wykreślić charakterystykę prądw-napięciwą didy I a = f(u a ) ; na wykresie zaznaczyć bszary pracy didy: bszar prądu pczątkweg (I), bszar prądów granicznych ładunkiem przestrzennym (II) i bszar prądu nasycenia (III). 2. Sprządzić wykres ln I a = f (ln U a ) dla II bszaru prądów w celu sprawdzenia prawa Langmuira; wykrzystując metdę regresji liniwej wyznaczyć wykładnik ptęgwy n w prawie Langmuira I a = c U n a. 3. Wyznaczyć temperaturę katdy a) na pdstawie wyników pmiarów U a i I a dla I bszaru prądów sprządzić wykres ln I a = f (U a ) = au a + b 5

6 b) wykrzystując metdę regresji liniwej wyznaczyć temperaturę katdy raz jej niepewnść ze wzru: = e k a gdzie: e = 1, C ładunek elementarny k = 1, J/K - stałą Bltzmanna a współczynnik kierunkwy prstej ln I a = f(u a ) 4. Wyznaczyć napięcie kntaktwe U K i jeg niepewnść ze wzru U k Ia K = e ln ( 0) I s wykrzystując pmiar tzw. prądu zerweg I a (0), tzn. prądu, który płynie przez didę, jeśli napięcie andwe U a = 0. Przyjąć prąd nasycenia I s = 200 ma, jest temperaturą katdy wyznaczną w pprzednim punkcie. V. abela pmiarwa U ż = DU ż = U a U a I a I a lnu a lnu a lni a lni a n n a a [V] [V] [A] [A] 1 V 1 [ V] U U K U K U [K] [K] [%] [V] [V] [%] K K 6

7 / [K] 250 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,76 18,00 17,50 17,00 16,50 16,00 15,50 15,00 14,50 14,00 13,50 13,00 12,50 12,00 11,50 11,00 10,50 10,00 9,50 9,00 8,50 8,00 7,50 7,00 6,50 6,00 5,50 5,00 4,50 4,00 3,50 3,00 / Zależnść względnej prnści katdy wlframwej d temperatury / = 1 + α(-) + β(-) 2 + γ(-) 3 α = 0,0046 ± 0,00003 [1/Κ] β = 6, ± 3, [1/Κ 2 ] γ = 5, ± 8, [1/Κ 3 ] Τ ο = 293 [Κ] 2,50 2,00 1,50 1,00 0,50 0,00 [K]

8 8

Ogniwo wzorcowe Westona

Ogniwo wzorcowe Westona WZOZEC SEM - OGNWO WESTON mieszczne jest w szklanym naczyniu, w które wtpine są platynwe elektrdy. Ddatni i ujemny biegun gniwa stanwią dpwiedni rtęć (Hg) i amalgamat kadmu (Cd 9-Hg), natmiast elektrlitem

Bardziej szczegółowo

Wykład XVIII. SZCZEGÓLNE KONFIGURACJE OBWODÓW TRÓJFAZOWYCH. POMIARY MOCY W OBWODACH TRÓJFAZOWYCH I 1 U 12 I 2 U 23 3 U U Z I = ; I 12 I 23

Wykład XVIII. SZCZEGÓLNE KONFIGURACJE OBWODÓW TRÓJFAZOWYCH. POMIARY MOCY W OBWODACH TRÓJFAZOWYCH I 1 U 12 I 2 U 23 3 U U Z I = ; I 12 I 23 7. związywanie bwdów prądu sinusidalneg 5 Wykład XVIII. SCEGÓLE KOFIGACJE OBWODÓW TÓJFAOWYCH. POMIAY MOCY W OBWODACH TÓJFAOWYCH Symetrycz układzie gwiazdwym W symetryczm u gwiazdwym, zasilam napięciem

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ. ( i) E( 0) str. 1 WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ. ( i) E( 0) str. 1 WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA Różnica pmiędzy wartścią ptencjału elektrdy mierzneg przy przepływie prądu E(i) a wartścią ptencjału spczynkweg E(0), nsi nazwę nadptencjału (nadnapięcia), η.

Bardziej szczegółowo

LVI Olimpiada Fizyczna Zawody III stopnia

LVI Olimpiada Fizyczna Zawody III stopnia LVI Olimpiada Fizyczna Zawody III stopnia ZADANIE DOŚIADCZALNE Praca wyjścia wolframu Masz do dyspozycji: żarówkę samochodową 12V z dwoma włóknami wolframowymi o mocy nominalnej 5 oraz 2, odizolowanymi

Bardziej szczegółowo

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA Agnieszka Głąbała Karol Góralczyk Wrocław 5 listopada 008r. SPRAWDZENIE PRAWA STEFANA - BOLTZMANA LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE z Ćwiczenia 88 1.Temat i cel ćwiczenia: Celem niniejszego ćwiczenia

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz

Bardziej szczegółowo

Laboratorium elektroniki i miernictwa

Laboratorium elektroniki i miernictwa Ełk 24-03-2007 Wyższa Szkła Finansów i Zarządzania w Białymstku Filia w Ełku Wydział Nauk Technicznych Kierunek : Infrmatyka Ćwiczenie Nr 3 Labratrium elektrniki i miernictwa Temat: Badanie pdstawwych

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 5

Instrukcja do ćwiczenia laboratoryjnego nr 5 Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

POMIAR MOCY CZYNNEJ W OBWODACH TRÓJFAZOWYCH

POMIAR MOCY CZYNNEJ W OBWODACH TRÓJFAZOWYCH ĆWICZENIE NR POMIAR MOCY CZYNNEJ W OBWODACH TRÓJFAZOWYCH.. Cel ćwiczenia Celem ćwiczenia jest pznanie metd pmiaru mcy czynnej w układach trójfazwych... Pmiar metdą trzech watmierzy Metda trzech watmierzy

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 2

Instrukcja do ćwiczenia laboratoryjnego nr 2 Instrukcja do ćwiczenia laboratoryjnego nr 2 Temat: Wpływ temperatury na charakterystyki i parametry statyczne diod Cel ćwiczenia. Celem ćwiczenia jest poznanie wpływu temperatury na charakterystyki i

Bardziej szczegółowo

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2 Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów diod i tranzystorów

ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów diod i tranzystorów ĆWICZENIE LBORTORYJNE TEMT: Wyznaczanie parametrów diod i tranzystorów 1. WPROWDZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych rodzajów diod półprzewodnikowych

Bardziej szczegółowo

ZJAWISKO PIEZOELEKTRYCZNE.

ZJAWISKO PIEZOELEKTRYCZNE. ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

Pomiar parametrów tranzystorów

Pomiar parametrów tranzystorów Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin Pracownia Elektroniki Pomiar parametrów tranzystorów (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: zasada działania tranzystora

Bardziej szczegółowo

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY

Bardziej szczegółowo

Zależność oporności przewodników metalicznych i półprzewodników od temperatury. Wyznaczanie szerokości przerwy energetycznej.

Zależność oporności przewodników metalicznych i półprzewodników od temperatury. Wyznaczanie szerokości przerwy energetycznej. Zależnść prnści przewdników metalicznych i półprzewdników d temperatury. Wyznaczanie szerkści przerwy energetycznej. I. Cel ćwiczenia: badanie wpływu temperatury na prnść metali, stpów i termistrów raz

Bardziej szczegółowo

ĆWICZENIE 1 DWÓJNIK ŹRÓDŁOWY PRĄDU STAŁEGO

ĆWICZENIE 1 DWÓJNIK ŹRÓDŁOWY PRĄDU STAŁEGO ĆWCZENE DWÓJNK ŹÓDŁOWY ĄD STŁEGO Cel ćiczenia: spradzenie zasady rónażnści dla dójnika źródłeg (tierdzenie Thevenina, tierdzenie Nrtna), spradzenie arunku dpasania dbirnika d źródła... dstay teretyczne

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia

Bardziej szczegółowo

IV. Wyznaczenie parametrów ogniwa słonecznego

IV. Wyznaczenie parametrów ogniwa słonecznego 1 V. Wyznaczenie parametrów ogniwa słonecznego Cel ćwiczenia: 1.Zbadanie zależności fotoprądu zwarcia i fotonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii słonecznej.

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR BIPOLARNY Rok studiów Grupa Imię i nazwisko Data

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ OPERACYJNY

LABORATORIUM ELEKTRONIKI WZMACNIACZ OPERACYJNY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 8 WZMACNIACZ OPERACYJNY DO

Bardziej szczegółowo

Ćwiczenie nr 123: Dioda półprzewodnikowa

Ćwiczenie nr 123: Dioda półprzewodnikowa Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 2 PRWO OHM. BDNIE DWÓJNIKÓW LINIOWYCH I NIELINIOWYCH . Cel ćwiczenia. - Zapoznanie się z właściwościami

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6a

Instrukcja do ćwiczenia laboratoryjnego nr 6a Instrukcja do ćwiczenia laboratoryjnego nr 6a Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

Podstawowe układy pracy tranzystora MOS

Podstawowe układy pracy tranzystora MOS A B O A T O I U M P O D S T A W E E K T O N I K I I M E T O O G I I Pdstawwe układy pracy tranzystra MOS Ćwiczenie pracwał Bgdan Pankiewicz 4B. Wstęp Ćwiczenie umżliwia pmiar i prównanie właściwści trzech

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

transformatora jednofazowego.

transformatora jednofazowego. Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 1 Pomiary napięcia i prądu miernikami analogowymi i cyfrowymi Rzeszów 2016/2017 Imię i nazwisko Grupa Rok studiów

Bardziej szczegółowo

Pomiar podstawowych parametrów liniowych układów scalonych

Pomiar podstawowych parametrów liniowych układów scalonych Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,

Bardziej szczegółowo

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia Ćwiczenie nr 4 Badanie filtrów składowych symetrycznych prądu i napięcia 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą składowych symetrycznych, pomiarem składowych w układach praktycznych

Bardziej szczegółowo

Badanie tranzystorów MOSFET

Badanie tranzystorów MOSFET Instytut Fizyki ul Wielkopolska 5 7045 Szczecin Pracownia Elektroniki Badanie tranzystorów MOSFET Zakres materiału obowiązujący do ćwiczenia: budowa i zasada działania tranzystora MOSFET; charakterystyki

Bardziej szczegółowo

Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.

Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH. Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWONIKACH. Cel ćwiczenia: Wyznaczenie podstawowych parametrów spektralnych fotoprzewodzącego detektora podczerwieni. Opis stanowiska:

Bardziej szczegółowo

BADANIE EFEKTU HALLA. Instrukcja wykonawcza

BADANIE EFEKTU HALLA. Instrukcja wykonawcza ĆWICZENIE 57 BADANIE EFEKTU HALLA Instrukcja wykonawcza I. Wykaz przyrządów 1. Zasilacz elektromagnesu ZT-980-4 2. Zasilacz hallotronu 3. Woltomierz do pomiaru napięcia Halla U H 4. Miliamperomierz o maksymalnym

Bardziej szczegółowo

Laboratorium Elementów Elektronicznych. Sprawozdanie nr Charakterystyki i parametry dyskretnych półprzewodnikowych.

Laboratorium Elementów Elektronicznych. Sprawozdanie nr Charakterystyki i parametry dyskretnych półprzewodnikowych. Laboratorium Elementów Elektronicznych Sprawozdanie nr 7 Tematy ćwiczeń: 13. Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych 14. Charakterystyki i parametry transoptorów

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej

Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej Ćwiczenie 2. Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej 1. Przygotowanie do wykonania ćwiczenia. 1.1. Włączyć zasilacz potencjostatu i nastawić go na

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 7

Instrukcja do ćwiczenia laboratoryjnego nr 7 Instrukcja do ćwiczenia laboratoryjnego nr 7 Temat: Badanie właściwości elektrycznych półprzewodnikowych przyrządów optoelektronicznych.. Cel ćwiczenia: Poznanie budowy, zasady działania, charakterystyk

Bardziej szczegółowo

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Politechniki Wrocławskiej TUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 4 Charakterystyki = f(u) złącza p-n.. Zagadnienia do samodzielnego

Bardziej szczegółowo

A6: Wzmacniacze operacyjne w układach nieliniowych (diody)

A6: Wzmacniacze operacyjne w układach nieliniowych (diody) A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka

Bardziej szczegółowo

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,

Bardziej szczegółowo

Cel ćwiczenia. Podstawowe informacje. eu exp mkt ] 1 (1) I =I S[

Cel ćwiczenia. Podstawowe informacje. eu exp mkt ] 1 (1) I =I S[ Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z diodami półprzewodnikowymi poprzez pomiar ich charakterystyk prądowonapięciowych oraz jednoczesne doskonalenie techniki pomiarowej. Zakres ćwiczenia

Bardziej szczegółowo

WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA

WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA POLITECHNIKA ŁÓDZKA INSTYTUT ELEKTROENERGETYKI Instrukcja do ćwiczenia O9 Temat ćwiczenia WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA Ćwiczenie O9 WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

TRANZYSTOR UNIPOLARNY MOS

TRANZYSTOR UNIPOLARNY MOS KTEDR ELEKTRONIKI GH L B O R T O R I U M ELEMENTY ELEKTRONICZNE TRNZYSTOR UNIPOLRNY MOS RE. 2.1 Laboratorium Elementów Elektronicznych: TRNZYSTOR UNIPOLRNY MOS 1. CEL ĆWICZENI - zapoznanie się z działaniem

Bardziej szczegółowo

Stabilizatory o pracy ciągłej. Stabilizator napięcia, prądu. Parametry stabilizatorów liniowych

Stabilizatory o pracy ciągłej. Stabilizator napięcia, prądu. Parametry stabilizatorów liniowych Plitechnika Wrcławska Stabilizatry pracy ciągłej Wrcław 08 Plitechnika Wrcławska Stabilizatr napięcia, prądu Napięcie niestabilizwane E(t) STABLZATOR Napięcie / prąd stabilizwany Plitechnika Wrcławska

Bardziej szczegółowo

E-20A POMIAR MOCY PRĄDU ZMIENNEGO METODĄ OSCYLO- SKOPOWĄ

E-20A POMIAR MOCY PRĄDU ZMIENNEGO METODĄ OSCYLO- SKOPOWĄ Ćwiczenie E-A POMIA MOY PĄDU ZMIENNEGO MEODĄ OSYO- SKOPOWĄ I. el ćwiczenia: Pmiar mcy prądu zmienneg za pmcą scylskpu, pmiar różnicy faz scylskpem, cena dkładnści metdy. II. Przyrządy: Oscylskp, nieznana

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Cel ćwiczenia: Zapoznanie się z własnościami warstwowych złącz półprzewodnikowych p-n. Wyznaczanie charakterystyk stałoprądowych

Bardziej szczegółowo

BADANIE TRANZYSTORA BIPOLARNEGO

BADANIE TRANZYSTORA BIPOLARNEGO BADANIE TRANZYSTORA BIPOLARNEGO CEL poznanie charakterystyk tranzystora bipolarnego w układzie WE poznanie wybranych parametrów statycznych tranzystora bipolarnego w układzie WE PRZEBIEG ĆWICZENIA: 1.

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego 1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)

Bardziej szczegółowo

BADANIE CHARAKTERYSTYK FOTOELEMENTU

BADANIE CHARAKTERYSTYK FOTOELEMENTU Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED)

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) Temat ćwiczenia: Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - godzina wykonania ćwiczenia. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI DIODY

LABORATORIUM PODSTAW ELEKTRONIKI DIODY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 2 DIODY DO UŻYTKU

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Laboratorium systemów wizualizacji informacji

Laboratorium systemów wizualizacji informacji Labratrium systemów wizualizacji infrmacji Badanie charakterystyk statycznych i dynamicznych raz pmiar przestrzenneg rzkładu kntrastu wskaźników ciekłkrystalicznych. Katedra Optelektrniki i Systemów Elektrnicznych,

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Temat ćwiczenia: Ćwiczenie nr 1 BADANIE MONOLITYCZNEGO WZAMACNIACZA MOCY MAŁEJ CZĘSTOTLIWOŚĆI 1. 2. 3. 4. Imię i Nazwisko

Bardziej szczegółowo

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI Ćwiczenie 3 Wybór i stabilizacja punktu pracy tranzystorów bipolarnego el ćwiczenia elem ćwiczenia jest poznanie wpływu ustawienia punktu pracy tranzystora na pracę wzmacniacza

Bardziej szczegółowo

SterownikI wentylatora kominkowego Ekofan

SterownikI wentylatora kominkowego Ekofan SterwnikI wentylatra kminkweg Ekfan DC DC PLUS KARTA TECHNICZNO -EKSPLOATACYJNA STEROWNIKÓW DC / DC PLUS 1. Ogólna charakterystyka sterwników Sterwniki DC raz DC PLUS przeznaczne są d sterwania wentylatrami

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1 Ćwiczenie nr Podstawowe czwórniki aktywne i ich zastosowanie cz.. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobem realizacji czwórników aktywnych opartym na wzmacniaczu operacyjnym µa, ich

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA STAŁEGO. 1. Wiadomości wstępne

STABILIZATORY NAPIĘCIA STAŁEGO. 1. Wiadomości wstępne STABILIZATORY NAPIĘCIA STAŁEGO 1. Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych granicach:

Bardziej szczegółowo

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego. Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące

Bardziej szczegółowo

Badanie żarówki. Sprawdzenie słuszności prawa Ohma, zdejmowanie charakterystyki prądowo-napięciowej.

Badanie żarówki. Sprawdzenie słuszności prawa Ohma, zdejmowanie charakterystyki prądowo-napięciowej. Badanie żarówki. Sprawdzenie słuszności prawa Ohma, zdejmowanie charakterystyki prądowo-napięciowej. Sprawdzenie słuszności prawa Stefana Boltzmanna dla metalowego drucika żarówki cz.1 i cz.2 I LO im.

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne

Bardziej szczegółowo

Ćwiczenie - 4. Podstawowe układy pracy tranzystorów

Ćwiczenie - 4. Podstawowe układy pracy tranzystorów LABORATORIM ELEKTRONIKI Spis treści Ćwiczenie - 4 Podstawowe układy pracy tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Podstawowe układy pracy tranzystora........................ 2 2.2 Wzmacniacz

Bardziej szczegółowo

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania

Bardziej szczegółowo

Elementy i obwody nieliniowe

Elementy i obwody nieliniowe POLTCHNKA ŚLĄSKA WYDZAŁ NŻYNR ŚRODOWSKA NRGTYK NSTYTT MASZYN RZĄDZŃ NRGTYCZNYCH LABORATORM LKTRYCZN lementy i obwody nieliniowe ( 3) Opracował: Dr inż. Włodzimierz OGLWCZ 3 1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 17 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego -

Bardziej szczegółowo

Zbiór zadań z elektroniki - obwody prądu stałego.

Zbiór zadań z elektroniki - obwody prądu stałego. Zbiór zadań z elektroniki - obwody prądu stałego. Zadanie 1 Na rysunku 1 przedstawiono schemat sterownika dwukolorowej diody LED. Należy obliczyć wartość natężenia prądu płynącego przez diody D 2 i D 3

Bardziej szczegółowo

Zasilacze: - stabilizatory o pracy ciągłej. Stabilizator prądu, napięcia. Parametry stabilizatorów liniowych napięcia (prądu)

Zasilacze: - stabilizatory o pracy ciągłej. Stabilizator prądu, napięcia. Parametry stabilizatorów liniowych napięcia (prądu) asilacze: - stabilizatry pracy ciągłej. Stabilizatr prądu, napięcia Napięcie niestabilizwane (t) SABLAO Napięcie / prąd stabilizwany Parametry stabilizatrów liniwych napięcia (prądu) Napięcie wyjściwe

Bardziej szczegółowo

Test powtórzeniowy. Prąd elektryczny

Test powtórzeniowy. Prąd elektryczny Test powtórzeniowy. Prąd elektryczny Informacja do zadań 1. i 2. Przez dwie identyczne żarówki (o takim samym oporze), podłączone szeregowo do baterii o napięciu 1,6 V (patrz rysunek), płynie prąd o natężeniu

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

TRANZYSTOR UNIPOLARNY MOS

TRANZYSTOR UNIPOLARNY MOS L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE TRANZYSTOR UNIPOLARNY MOS RE. 1.0 1. CEL ĆWICZENIA - zapoznanie się z działaniem tranzystora unipolarnego MOS, - wykreślenie charakterystyk napięciowo-prądowych

Bardziej szczegółowo

Stabilizatory o pracy ciągłej

Stabilizatory o pracy ciągłej Plitechnika Wrcławska nstytut Telekmunikacji, Teleinfrmatyki i Akustyki Stabilizatry pracy ciągłej Wrcław 00 Plitechnika Wrcławska nstytut Telekmunikacji, Teleinfrmatyki i Akustyki Stabilizatr napięcia,

Bardziej szczegółowo

s s INSTRUKCJA STANOWISKOWA

s s INSTRUKCJA STANOWISKOWA INSTKCJA STANOWISKOWA Wstęp. Przewodzenie ciepła zachodzi w obszarze jednego ciała, w którym istnieją różnice temperatur. Ciepło płynie od miejsca o temperaturze wyższej do miejsca o temperaturze niższej.

Bardziej szczegółowo

Laboratorum 4 Dioda półprzewodnikowa

Laboratorum 4 Dioda półprzewodnikowa Laboratorum 4 Dioda półprzewodnikowa Marcin Polkowski (251328) 19 kwietnia 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Opis ćwiczenia 2 3 Wykonane pomiary 3 3.1 Dioda krzemowa...............................................

Bardziej szczegółowo

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia: Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 28 : Wyznaczanie charakterystyk termistorów I. Zagadnienia do opracowania. 1. Pasma energetyczne w

Bardziej szczegółowo

WFiIS. Wstęp teoretyczny:

WFiIS. Wstęp teoretyczny: WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo