ŚCISKANIE SŁUPÓW PROSTYCH 1
|
|
- Seweryna Krajewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 ŚCISKNI SŁUÓW OSTYCH 1 1. NIZ SŁU MIMOŚODOWO ŚCISKNGO ZDNI: przanalizać zachani słupa lnpdpartg mimśrd ściskang siłą (bciążni knsratyn). Mimśród mirzny jst d śrdka ciężkści przju d linii działania siły. M, [ ] + M [ ] M + k df + k k J + sn sn ( ) C sin k + C cs k 1 J C sin k + C cs k 1 arunki brzg dla yznacznia stałych całkania C 1 i C ; cs k C ; C1 sin k k tan k ( ) tan sin k + cs k 1 k ma sc 1 (1) 0 ma k sc > > 1 ma k 4I arccs + ma ()
2 ŚCISKNI SŁUÓW OSTYCH ziązk ma z siłą jst niliniy, mim ż ykrzystan zlinaryzan rónani linii ugięcia (zlinaryzany zór na zyiznę), jak róniż liniy ziązk fizyczny ( parciu nig trzyman rónani linii ugięcia). Jst t ynikim sprzężnia mmntu zginającg z ugięciami (mmnt zginający ni da się ślić bz znajmści ugięć). Móiąc inaczj - jst t ynik dstępsta d zasady zsztyninia (mói na, ż pły przmiszczń na ilkści sił przjych jst pmijalny) ugięci rśni nigraniczni, gdy siła zmirza d pnj artści, którą nazan siłą ytyczną. ma k cs 0 k n n 1, 3, 5... n jżli mimśród 0, ugięci ma ynsi: k k dla skńcznj i ddatnij artści sc 1 czyli < ; ma 0 dla k czyli ; ma jst niśln i mż rzyjmać dlną artść Tak dług, jak < pręt zachuj się spsób statczny, tzn. znajduj się stani pczątkj rónagi prstlinij. Wóczas, gdy siła siągni artść ytyczną pręt traci statcznść (ulga ybczniu), a jg ugięcia mgą być dlni duż. Wybczni jst t zatm utrata przz ściskany pręt stanu rónagi statcznj na rzcz rónagi bjętnj lub nistatcznj. < > rónaga statczna rónaga bjętna rónaga nistatczna
3 ŚCISKNI SŁUÓW OSTYCH Naprężni słupi z dstępstm d zasady zsztyninia M z y M ma k sc (3) σ ma ma M zma 1+ I W σc ( I człn pisuj si ściskani pręta, zaś drugi - zginani słupa ) σ ma 1+ W σc r < (4) naprężni maksymaln przy ykrzystaniu zasady zsztyninia (pstępani analgiczn, jak przypadku mimśrdg rzciągania) σ ma rzykład liczby M ma zma zma 1 + I I Obliczyć nśnść pręta ściskang, yknang z dutnika 10, długści 5 m. W < y I m m 10 Ga 00 Ma m ziązani: bz zasady zsztyninia (tria II rzędu) II 91. kn z zasadą zsztyninia I kn I - II Δ 100% 35,4 %. SIŁ KYTYCZN D SŁU II.1. Zas lini sprężysty analizany jst tz. słup idalny, tzn. idalni prsty i bciążny cntralni przyłżną siłą ściskającą matriał słupa jst lini sprężysty (matriał Hk a)
4 ŚCISKNI SŁUÓW OSTYCH 4 pręt sbdni pdparty M, M M k df 0 + k sin k + B cs k 0 0 B sin k k n ; n 1,, 3... n ( ) sin I n n I ( 1) min n I pręt sprniky f M, [ ] M f ( ) M( ) k df sin k + B cs k + f 0 f B sin k + f 0 0 k cs k k n ; n 1, 3, 5... I n n ( ) I ( 1) min n I ( )
5 ŚCISKNI SŁUÓW OSTYCH 5 gólna pstać siły ytycznj (siły ulra ) długści ybczni 1 1 min pdsta zasady kształtania słupó siła ytyczna, jak bciążni pdując ybczni słupa (z rguły ybczni znacza utratę przz knstrukcję zdlnści d praidłj pracy), pinna być jak najiększa siła ytyczna jst prprcjnalna d sztynści giętnj słupa min i drtni prprcjnalna d długści ybcznij - tak ięc ziększni siły mż nastąpić jdyni drdz dpidnig ukształtania przju pprzczng lub/i schmatu statyczng słupa. Ni ziększa siły ytycznj zastsani matriału bardz yskij ytrzymałści! przypadku słupó przz dpidni ukształtani przju rzumi się taki dbór jg gmtrii, który z ślnj ilści matriału pzala uzyskać przój maksymalnj sztynści, czyli maksymalnym mmnci bzładnści. Mżna t siągnąć pprzz rzmiszczni matriału tak dalk d śrdka ciężkści przju, jak t tylk mżli. rzykład. l przju słupa ma ynsić 50 cm. rónać siły ytyczn dla słupa przju prstkątnym, kłym i rurym. b h 3 h b k ; k > 1 ; k b h b ; I min 1 1 k 4 ; I ; cm ; I cm4 4 r k ; r r 1 r k 1 r r r k 1 ( ) ( k + 1) k 1 I r r k 1 k k 1
6 ŚCISKNI SŁUÓW OSTYCH 6 z ysó idać, ż przój rury jst zdcydani bardzij knmiczny niż przój lity tym samym plu mm. bzładn. [cm 4 ] prstkąt kł rura spółczynnik ymiaró k mm. bzładn. [cm 4 ] rura stsunk śrdnic k czym stsunk prmini ścianki zn. i n. jst mnijszy (a zatm cińsza jst ścianka rury) tym krzyści płynąc z zastsania przju rurg są iększ. Nistty, jżli grubść jst zbyt mała ścianka rury sama staj się nistatczna i mż djść d lkalng ybcznia pstaci pfałdania pirzchni rury. Zamiast glbalng ybcznia słupa mamy óczas tz. lkalną utratę statcznści (zapbiga się jj przz stsani użbrania). 14 prmini, r i grubść [cm] prmiń znętrzny prmiń nętrzny r grubść ścianki stsunk śrdnic k /r
7 ŚCISKNI SŁUÓW OSTYCH 7 3. NĘŻNI NOMN W SŁUI śrdni naprężni ściskając σ σ min i min σ df. smukłść imin naprężni ytyczn σ aprks. Jhnsna-Ostnflda aprks. Ttmajra-Jasińskig H zya ulra gr smukłść ybczni pza zasm S ybczni zasi S zas lini sprężystj ( S )pracy matriału σ < > H gr H zas pzalini sprężystj pracy matriału < σ < < H gr arunki brzg 0 σ σ ; gr H aprksymacja linia T-J σ TJ a b σ TJ H H aprksymacja parabliczna J-O σ JO σ J O B H H
8 ŚCISKNI SŁUÓW OSTYCH 8 4. OJKTOWNI ĘTÓW ŚCISKNYCH arunk prjktania σ σ W przypadku dpuszcznia d ybcznia zasi pzalini sprężystym przyjmuj się, ż zamiast granicy plastycznści nalży ziąć ytrzymałść blicznią na rzciągani. - H dla > gr gr H σ dla 0<< H H H H gr załżni σ ϕ ( ) σ ϕ ( ) spółczynnik ybczniy Nrmy uzględniają spółczynniku ybczniym taki czynniki jak lsść charaktrystyk matriałych, lsść bciążnia i dstępsta d prstliniści pręta ściskang (tz. imprfkcj). Zgdni z nrmą d prjktania knstrukcji stalych p smukłść zględna p p smukłść prónacza n ( ) ( 1+ ) n ϕ (n spółczynnik imprfkcji) 4.1. lgrytm bliczń 1. arunk ytrzymałściy. przyjąć przój 3 3. bliczyć smukłść pręta i smukłść prónaczą i min p p z tablic ziąć artść sp. ybcznig ϕ dla ślng stsunku p 5. spradzić arunk prjktania σ σ ϕ ( ) 6. jżli arunk prjktania jst spłniny, t prcs prjktania jst zakńczny. W przcinym ypadku nalży ziększyć przój i rócić d punktu 3.
ŚCISKANIE SŁUPÓW PROSTYCH 1. P P kr. równowaga obojętna
ŚCISKNI SŁUÓW OSTYCH 1 1. ÓWNOWG T ZY ŚCISKNIU < > rónaga stateczna rónaga bjętna rónaga niestateczna Tak dług, jak < pręt zachuje się spsób stateczny, tzn. znajduje się stanie pczątkej rónagi prstliniej.
M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych Moment zginający w punkcie B [M xb /pl ]
M. Guminiak Analiza płyt cienkich metdą elementów brzegwych... 44 600 500 400 300 200 100 Mment zginający w punkcie B [M xb /pl 2 10 4 ] 700 600 500 400 300 200 100 Mment zginający w punkcie B [M yb /pl
Przekroje efektywne wyboczenia lokalnego 61,88 28,4 0,81 4 =1,34>0,673. = 28,4 ε k. ρ,, = λ 0,22 λ = 1,34 0,22 1,34 =0,62. = =59,39,
Przekrój efektywny stalweg dźwigara z zastępczymi płytami rttrpwymi klasy 4 W bustrnnie sztywn umcwanym dźwigarze skrzynkwym długści 15,0 m ze stali S355 usztywnin pasy i śrdniki żebrami pdłużnymi (rys.
Wykład 9. Stateczność prętów. Wyboczenie sprężyste
Wykład 9. Stateczność prętó. Wyoczenie sprężyste 1. Siła ytyczna pręta podpartego soodnie Dla pręta jak na rysunku 9.1 eźmiemy pod uagę możliość ygięcia się pręta z osi podczas ściskania. jest modułem
Zginanie ze ściskaniem
Zginanie ze ściskaniem sformułoanie probemu przkład roziązań przkład obiczenioe Sformułoanie probemu W probemach tego tpu nie można stosoać zasad zesztnienia - konstrukcję naeż rozpatrać konfiguracji odkształconej
M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych... 44
M. Guminiak Analiza płyt cienkich metdą elementów brzegwych... 44 Mment zginający w śrdku [M x /pa 2 10 4 ] Mment zginający w śrdku [M y /pa 2 10 4 ] 600 500 400 300 200 100 0 0 2,5 5 7,5 10 12,5 15 17,5
ĆWICZENIE 1 DWÓJNIK ŹRÓDŁOWY PRĄDU STAŁEGO
ĆWCZENE DWÓJNK ŹÓDŁOWY ĄD STŁEGO Cel ćiczenia: spradzenie zasady rónażnści dla dójnika źródłeg (tierdzenie Thevenina, tierdzenie Nrtna), spradzenie arunku dpasania dbirnika d źródła... dstay teretyczne
2.0. Dach drewniany, płatwiowo-kleszczowy.
.0. Dach drewniany, płatwiowo-kleszczowy..1. Szkic.. Charakterystyki przekrojów Własności techniczne drewna: Czas działania obciążeń: ormalny. Klasa warunków wilgotnościowych: 1 - Wilg. 60% (
CZAS ZDERZENIA KUL SPRAWDZENIE WZORU HERTZA
Ćwiczenie Nr CZAS ZDRZNIA KUL SPRAWDZNI WZORU HRTZA Literatura: Opracwanie d ćwiczenia Nr, czytelnia FiM LDLandau, MLifszic Kurs fizyki teretycznej, tm 7, Teria sprężystści, 9 (dstępna w biblitece FiM,
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
Silosy. Napisał prof. dr. inż. Stefan Bryta.
288 Knstrukcj żelbetwe. Silsy. Napisał prf. dr. inż. Stefan Bryta. Są t zbirniki d przechwywania materjałów sypkich (zmielnych, ziarnistych, up. zbże, mąka, cement, ruda, tłuczeń, węgiel, cukier, słód
6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
INFORMACJE DLA OCENIAJĄCYCH 1. Rozwiązania poszczególnych zadań i poleceń oceniamy są na podstawie punktowych kryteriów oceny. 2.
INFORMACJE DLA OCENIAJĄCYCH 1. Rzwiązania pszczgólnych zadań i plcń cniamy są na pdstawi punktwych krytriów cny.. Przd przystąpinim d cniania prac zdających zachęcamy d samdzilng rzwiązania zstawu zadań,
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
Pręt nr 1 - Element żelbetowy wg. PN-B-03264
Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton
Belki na podłożu sprężystym
Belki na podłożu sprężystym podłoże inkleroskie, rónanie różniczkoe ugięcia belki, linie płyoe M-Q-, belki półnieskończone, sposób Bleicha, przykład obliczenioy odłoże inkleroskie Założenia Winklera spółpracy
ZADANIE ST S A T T A E T C E Z C N Z OŚĆ Ś Ć UK U Ł K AD A U D 53
ZDNE TTECZNOŚĆ UKŁDU 5 Treść zadania Wyznazyć najniejszą wartość siły, przy której nastąpi utrata stateznośi. kn 54 Układ podstawowy etody przeieszzeń aa jest trzykrotnie geoetryznie niewyznazalna 55 Dobór
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
= 2 42EI 41EI EI 2 P=15 M=10 M=10 3EI. q=5. Pret s-p. Pret s-p. Pret s-p. Pret s-p. Pret s-l.
Dane wyjściowe do obliczeń kf=0 ks=20 3 EI 2 2EI EI P=5 M=0 3EI M=0 q=5 EI 5 6 8 2 Dobór układu podstawowego metody przemieszczeń n = 2 3 Pret s-p 2 Pret s-p Pret s-p Pret s-p Pret s-l Pret p-s 5 6 Wyznaczenie
METODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
Wytrzymałość Materiałów
Wytrzymałość Materiałów Stateczność prętów prostych Równowaga, utrata stateczności, siła krytyczna, wyboczenie w zakresie liniowo sprężystym i poza liniowo sprężystym, projektowanie elementów konstrukcyjnych
Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:
Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I
Raport obliczeń ścianki szczelnej
Wrocław, dn.: 5.4.23 Raport obliczeń ścianki szczelnej Zadanie: "Przykład obliczeniowy z książki akademickiej "Fundamentowanie - O.Puła, Cz. Rybak, W.Sarniak". Profil geologiczny. Piasek pylasty - Piasek
Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania
Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony
Pan z stny www.sqdia. KRYTERIA OCENIANIA ODPOWIEDZI Póna Matua z OPERONEM Fizyka i astnia Pzi zszzny Listad 0 W ni nij szy sc a ci c nia nia za dań twa tyc są zn t wa n zy kła d w aw n d wi dzi. W t -
T R Y G O N O M E T R I A
T R Y G O N O M E T R I A Lekcja 8-9 Temat: Pwtórzenie trójkąty prstkątne. Str. 56-57. Teria Twierdzenie Pitagrasa i dwrtne Suma kątów w trójkącie Wyskść Obwód i ple Zad.,,,, 5, 6 str. 56 Zad. 7, 8, 9,
FUNKCJA KWADRATOWA. 2. Rozwiąż nierówności: na przedziale x < 2; 3. Wyznacz wartość najmniejszą i największą funkcji f ( x)
FUNKCJA KWADRATOWA. Rzwiąż równanie: a) 0 +,5 0 b) ( + )( ) 0. Rzwiąż nierównści: < ( )( ) > 0 a) b). Wyznacz wartść najmniejszą i największą funkcji na przedziale < ; 5 >. Przekształć z pstaci gólnej
Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń opracowanie: dr inŝ. Marek Golubiewski, mgr inŝ. Jolanta Bondarczuk-Siwicka
Widok ogólny podział na elementy skończone
MODEL OBLICZENIOWY KŁADKI Widok ogólny podział na elementy skończone Widok ogólny podział na elementy skończone 1 FAZA I odkształcenia od ciężaru własnego konstrukcji stalowej (odkształcenia powiększone
Pręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
Moduł. Profile stalowe
Moduł Profile stalowe 400-1 Spis treści 400. PROFILE STALOWE...3 400.1. WIADOMOŚCI OGÓLNE...3 400.1.1. Opis programu...3 400.1.2. Zakres programu...3 400.1. 3. Opis podstawowych funkcji programu...4 400.2.
KONSTRUKCJE METALOWE 1 Przykład 4 Projektowanie prętów ściskanych
KONSTRUKCJE METALOWE Przykład 4 Projektowanie prętów ściskanych 4.Projektowanie prętów ściskanych Siły ściskające w prętach kratownicy przyjęto z tablicy, przykładu oraz na rysunku 3a. 4. Projektowanie
Spis treści Rodzaje stężeń #t / 3 Przykład 1 #t / 42 Przykład 2 #t / 47 Przykład 3 #t / 49 Przykład 4 #t / 58 Przykład 5 #t / 60 Wnioski #t / 63
Konstrukcje metalowe Wykład XV Stężenia Spis treści Rodzaje stężeń #t / 3 Przykład 1 #t / 42 Przykład 2 #t / 47 Przykład 3 #t / 49 Przykład 4 #t / 58 Przykład 5 #t / 60 Wnioski #t / 63 Rodzaje stężeń Stężenie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Pręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
Tydzień 1. Linie ugięcia belek cz.1. Zadanie 1. Wyznaczyć linię ugięcia metodą bezpośrednią wykorzystując równanie: EJy = -M g.
Studi dzienne, kierunek: Budownictwo, semestr IV Studi inżynierskie i mgisterskie (ilość godz. w2, ćw1, proj1) Wytrzymłość mteriłów. Ćwiczeni udytoryjne. Przykłdow treść ćwiczeń. Tydzień 1. Linie ugięci
Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej 1.0 DŹWIGAR DACHOWY Schemat statyczny: kratownica trójkątna symetryczna dwuprzęsłowa Rozpiętości obliczeniowe: L 1 = L 2 = 3,00 m Rozstaw dźwigarów: a =
2. Wpływ odporu sprężystego górotworu na projektowany rozstaw odrzwi obudowy łukowej
Górnictw i Geinżynieria Rk 32 Zeszyt 1 2008 Krnel Frydrych* BADANIA NAD WPŁYWEM WSPÓŁCZYNNIKA PODATNOŚCI PODŁOŻA NA NOŚNOŚĆ OBUDOWY WYROBISKA PODZIEMNEGO 1. Wstęp W bliczeniach prjektwych knstrukcji inżynierskich
ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią
ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
Poz Strop prefabrykowany, zmodyfikowana cegła Ŝerańska
Poz. 2.1. Strop prefabrykowany, zmodyfikowana cegła Ŝerańska ObciąŜenia obliczeniowe zewnętrzne : - warstwy wykończeniowe 6.16 4.30 = 1.72 - ścianki działowe = 1.80 q = 9,52 kn/m² Dobrano płyty stropowe
Raport wymiarowania stali do programu Rama3D/2D:
2. Element poprzeczny podestu: RK 60x40x3 Rozpiętość leff=1,0m Belka wolnopodparta 1- Obciążenie ciągłe g=3,5kn/mb; 2- Ciężar własny Numer strony: 2 Typ obciążenia: Suma grup: Ciężar własny, Stałe Rodzaj
Wyniki wymiarowania elementu żelbetowego wg PN-B-03264:2002
Wyniki ymiaroania elementu żelbetoego g PN-B-0364:00 RM_Zelb v. 6.3 Cechy przekroju: zadanie Żelbet, pręt nr, przekrój: x a=,5 m, x b=3,75 m Wymiary przekroju [cm]: h=78,8, b =35,0, b e=00,0, h =0,0, skosy:
Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź
Ą Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć
Ń Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó
ń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń
Ą ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź
1. Podstawowe pojęcia:
Matriały dydatyczn d ćwicznia T Caratrytyi wytrzymałściw rzrjów ntrucyjnyc. Wydru ltrniczny 8. lajdów na 9. trnac rzznaczny dla tudntów II ru tudiów tacjnarnyc na Wydz. Inżynirii Mcanicznj i Rtyi, irun
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW Materiały pomocnicze do wykładu (Inżynieria Środowiska) PWSZ w Elblągu dr hab. inż. Cezary Orlikowski Instytut Politechniczny MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
7.2 Przykład 7.1. Odniesienie w normie EC3
7. Przkład 7. Spradzić stan graniczn bki sobodni podpartj, zabzpiczonj przd zichrzni, pokazanj na rs. 7.. Odnisini nori EC Odnisini skrpci Rs. 7. Bka konana jst z dutonika acoango IPE 70 z stai S5. ObciąŜni
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat ćwiczenia:
Obciążenia. Wartość Jednostka Mnożnik [m] oblicz. [kn/m] 1 ciężar [kn/m 2 ]
Projekt: pomnik Wałowa Strona 1 1. obciążenia -pomnik Obciążenia Zestaw 1 nr Rodzaj obciążenia 1 obciążenie wiatrem 2 ciężar pomnika 3 ciężąr cokołu fi 80 Wartość Jednostka Mnożnik [m] obciążenie charakter.
ńń Ż Ń Ł Ś Ś Ń Ł Ż Ł ń Ź Ś ń ń ń ń ń ć ń ć Ś Ż ć ń ń ć ń ń Ś ń ć ć Ź ć ć ć Ż ń ć ź Ś Ć ć ń ć Ż ć Ź Ź ń ń Ż ć ć ń ć Ż Ż Ż ć Ż Ż Ż Ż Ż ć Ż ć ć ć ć Ż ńł ć ć Ź Ż ć ć Ść Ść Ż ź Ś Ż ć ń ć ć ć Ź Ść ć ć ć ńł Ś
OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE
OLICZENI STTYCZNO - WYTRZYMŁOŚCIOWE 1. ZESTWIENIE OCIĄśEŃ N IEG SCHODOWY Zestawienie obciąŝeń [kn/m 2 ] Opis obciąŝenia Obc.char. γ f k d Obc.obl. ObciąŜenie zmienne (wszelkiego rodzaju budynki mieszkalne,
1. Projekt techniczny żebra
1. Projekt techniczny żebra Żebro stropowe jako belka teowa stanowi bezpośrednie podparcie dla płyty. Jest to element słabo bądź średnio obciążony siłą równomiernie obciążoną składającą się z obciążenia
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
ZASTOSOWANIA POCHODNEJ
ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych
Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-0350 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe
Opracowanie: Emilia Inczewska 1
Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla
ROZWIĄZYWANIE BELEK Z WYKORZYSTANIEM FUNKCJI HEAVISIDE A I DIRACA**
Górnictw i Geinżynieria Rk 1 Zeszyt 007 Włdzimierz Hałat* ROZWIĄZYWANIE BELEK Z WYKORZYSTANIEM FUNKCJI HEAVISIDE A I DIRACA** 1. Wprwadzenie W wielu prblemach budwnictwa, dnszących się d zginania belek,
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
A.6. OBLICZENIA STATYCZNE
A.6. OBLICZENIA STATYCZNE 1.0. TARAS 1.1. Płyta tarasu -zestawienie obciąŝeń płyta ceram. 10 0, 1,3 0,33 kn/m posadzka betonowa 0,06 1,3 1,3 1,7 kn/m strop TERIVA,00 1,1,0kN/m obciąŝenia uŝytkowe,00 1,
Lista węzłów Nr węzła X [m] Y [m] 1 0.00 0.00 2 0.35 0.13 3 4.41 1.63 4 6.85 2.53 5 9.29 1.63 6 13.35 0.13 7 13.70 0.00 8 4.41-0.47 9 9.29-0.
7. Więźba dachowa nad istniejącym budynkiem szkoły. 7.1 Krokwie Geometria układu Lista węzłów Nr węzła X [m] Y [m] 1 0.00 0.00 2 0.35 0.13 3 4.41 1.63 4 6.85 2.53 5 9.29 1.63 6 13.35 0.13 7 13.70 0.00
UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.
Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym
Rys. 29. Schemat obliczeniowy płyty biegowej i spoczników
Przykład obliczeniowy schodów wg EC-2 a) Zebranie obciąŝeń Szczegóły geometryczne i konstrukcyjne przedstawiono poniŝej: Rys. 28. Wymiary klatki schodowej w rzucie poziomym 100 224 20 14 9x 17,4/28,0 157
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:
STÓŁ NR 1. 2. Przyjęte obciążenia działające na konstrukcję stołu
STÓŁ NR 1 1. Geometria stołu Stół składa się ze stalowej ramy wykonanej z płaskowników o wymiarach 100x10, stal S355 oraz dębowego blatu grubości 4cm. Połączenia elementów stalowych projektuje się jako
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
9.0. Wspornik podtrzymujący schody górne płytowe
9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
CIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami
Zagadnienie statyki kratownicy płaskiej
Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych
MOMENTY BEZWŁADNOŚCI FIGUR PŁASKICH
MOMENT BEZWŁNOŚC FGU PŁSKCH Przekrje pprzeczne prętów włów i elek figur płskie crkterzujące się nstępującmi prmetrmi: plem pwierzcni przekrju [mm cm m ] płżeniem śrdk ciężkści przekrju mmentmi sttcznmi
Konstrukcje metalowe Wykład VI Stateczność
Konstrukcje metalowe Wykład VI Stateczność Spis treści Wprowadzenie #t / 3 Wyboczenie giętne #t / 15 Przykład 1 #t / 45 Zwichrzenie #t / 56 Przykład 2 #t / 83 Niestateczność lokalna #t / 88 Zapobieganie
Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI
GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g
Dodatkowa analiza wskaźnika z art. 243 na podstawie:
wykonanie wykonanie plan wykonanie n-3 n-2 n-1 4kw 2010 2011 2012 2012 2013 2014 59.063.056,54 63.099.718,93 63.829.275,56 63.863.731,42 65.496.070,97 305.148,63 432.734,47 1.302.703,00 3.922.000,00 400.000,00
0,04x0,6x1m 1,4kN/m 3 0,034 1,35 0,05
' 1 2 3 4 Zestawienie obciążeń stałych oddziałujących na mb belki Lp Nazwa Wymiary Cięzar jednostko wy Obciążenia charakterystycz ne stałe kn/mb Współczyn nik bezpieczeń stwa γ Obciążenia obliczeniowe
ANKIETA. Wolontariat postrzegany oczami młodzieży. Ankieta jest anonimowa
ANKIETA Wlntariat pstrzegany czami młdzieży Ankieta jest annimwa Dtyczy idei wlntariatu i służy wyłącznie jak materiał badawczy i pmcniczy d naszej pracy zatytułwanej Wlntariat pmysłem na siebie na knkurs
τ R2 := 0.32MPa τ b1_max := 3.75MPa E b1 := 30.0GPa τ b2_max := 4.43MPa E b2 := 34.6GPa
10.6 WYMIAROWANE PRZEKROJÓW 10.6.1. DANE DO WMIAROWANIA Beton istniejącej konstrukcji betonowej klasy B5 dla którego: - wytrzymałość obliczeniowa na ściskanie (wg. PN-91/S-1004 dla betonu B5) - wytrzymałość
1. Projekt techniczny Podciągu
1. Projekt techniczny Podciągu Podciąg jako belka teowa stanowi bezpośrednie podparcie dla żeber. Jest to główny element stropu najczęściej ślinie bądź średnio obciążony ciężarem własnym oraz reakcjami
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH
OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH
KONSTRUKCJE METALOWE 1 Przykład 4 Projektowanie prętów ściskanych
Konstrukcje metalowe Przykład 4 KONSTRUKCJE METALOWE Przykład 4 Projektowanie prętów ściskanych 4.Projektowanie prętów ściskanych Siły ściskające w prętach kratownicy przyjęto z tablicy, przykładu oraz
Ć w i c z e n i e K 4
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
- 1 - Belka Żelbetowa 4.0
- 1 - elka Żelbetowa 4.0 OLIZENI STTYZNO-WYTRZYMŁOŚIOWE ELKI ŻELETOWEJ Użytkownik: iuro Inżynierskie SPEU utor: mgr inż. Jan Kowalski Tytuł: elki żelbetowe stropu 2001-2014 SPEU Gliwice Podciąg - oś i
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością
1. Wstęp. 2. Czwórnik symetryczny Ćwiczenie nr 3 Pomiar parametrów czwórników
TEORI OBWODÓW SPRWODNIE LBORTORIM Pitr Dymaz Pitr Batg Pitr Błażjwski Nr grupy: 4 Trmin: Pnidziałk/ 5-8 Data wyknania ćw.:.4.8 Ćwizni nr Pmiar paramtrów zwórników Ona:. Wstęp Clm ćwiznia był wyznazni pdstawwyh