ELEKTROSTATYKA. Ładunek elektryczny. Siła oddziaływania między elektronem a protonem znajdującymi się w odległości równej promieniowi atomu wodoru: 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "ELEKTROSTATYKA. Ładunek elektryczny. Siła oddziaływania między elektronem a protonem znajdującymi się w odległości równej promieniowi atomu wodoru: 2"

Transkrypt

1 LKTROSTATYKA Oddziaływania elektmagnetyczne: zjawiska elektyczne, pmieniwanie elektmagnetyczne i ptyka, pwiązane z mechaniką kwantwą. Ładunek elektyczny Siła ddziaływania między elektnem a ptnem znajdującymi się w dległści ównej pmieniwi atmu wdu: gawitacyjne: F Gmpme / N m kg, m kg), ( e p elektstatyczne: N, siła, azy większa. W dużych biektach ilść elektnów i ptnów jest jednakwa i dlateg gmne siły pzyciągania i dpychania elektstatyczneg wzajemnie kmpensują się i pzstaje jedynie słaba siła gawitacyjna. Oddziaływanie gawitacyjne dużych biektów mże kazać się silniejsze d ddziaływania elektstatyczneg (pzykładem są czane dziuy we Wszechświecie). Źódłem siły gawitacyjnej jest masa gawitacyjna. Siła elektstatyczna wywłana jest ładunkiem elektycznym. Ładunek elektyczny mże być ddatni lub ujemny.

2 Ładunek elementany e C Niektóe cząstki elementane (np. neutn, ftn i neutin) chaakteyzują się zewym ładunkiem elektycznym. Naładwana cząstka ma ładunek skwantwany, tzn. ówny całkwitej wielktnści e. Paw zachwania ładunku sfmułwane pzez Fanklina w W układzie zamkniętym całkwity ładunek pzstaje stały. Paw t jest spełnine nawet pzy anihilacji naładwanych cząstek.

3 Paw Culmba Siła działająca pmiędzy dwma naładwanymi cząstkami jest ppcjnalna d ilczynu ładunków q 1 i q i dwtnie ppcjnalna d kwadatu dległści między nimi gdzie k jest współczynnikiem ppcjnalnści. Jednstka ładunku jest C. Stała k w układzie SI wynsi F F q1q k (4.1) 1 4π q 1 q 1 / 4π. Wówczas gdzie 1 4πk C /(Nm ). Wielkść tę nazywamy pzenikalnścią elektyczną póżni. (4.)

4 (a) (b) q 1 F 3 F 3 F F q q F 1 F q 3 F1 Rys (a) Siły działające na ładunek q za stny ładunków q 1, q, q 3. (b) Wypadkwa siła tzymana w wyniku ddania wektweg sił działających na ładunek q. Zasada supepzycji sił elektstatycznych ptwiedzna jest ekspeymentalnie.

5 Ple elektyczne Definicja pla Wielkść miezna jest w N/C lub V/m. v F (4.3) q Ple elektyczne ładunku punktweg Q w dległści : 1 1 Q q q 4π czyli ( x,y,z) 1 Q ' 4π (4.4) gdzie ' jest wektem jednstkwym skiewanym d ładunku Q d punktu P(x, y, z). Ple elektyczne pchdzące d n ładunków punktwych 1 4π n n j, j j 1 j j 1 Q j ( x, y,z) (4.5)

6 W pzypadku ładunku złżneg gęstści ładunku ρ dq/dv ρ(x,y,z) [jednstka C/m 3 ] 4π 1 ρ V ( x',y',z' ) keśla względną pzenikalnść elektyczną śdka. dx' dy' dz' (4.6) W skali mik (np. w atmie) gęstść ładunku zmienia się silnie d punktu d punktu i wtedy takie pjęcie taci sens. Dipl l - Q -Q Dipl q F F Dipl elektyczny chaakteyzujemy mmentem diplwym p Ql. Zauważmy, że F / F1 l /, czyli l 1 l ( ) Qq p k q k 3 F F (4.7) Ple elektyczne dipla 1 4π p (4.8) 3 F 1 Rys. 4.. Siły działające na ładunek q ze stny dipla mmencie p Ql.

7 Stumień pla Każdemu elementwi ds pzypisujemy wekt ds nmalny d pwiezchni i j keślający ientację elementu ds ds j ds j ds; n ds Stumień natężenia pla elektyczneg pzez pwiezchnię ds j d Φ ds (4.9) j j j Rys Stumień pla elektyczneg. Całkwity stumień pzez pwiezchnię S: Φ ds ds (4.10) j j j Jednstka stumienia ma wymia Vm. S

8 Paw Gaussa Dla ładunku punktweg q tczneg kulą pmieniu i śdku pkywającym się z płżeniem ładunku, stumień Φ pzechdzący pzez sfeę q Φ ds 4π 1 4π 4π q (4.11) Stumień pla nie zależy d wielkści pwiezchni. A Rzpatzymy dwlną pwiezchnię, któa zawiea θ kulę waz z ładunkiem i udwdnimy, że całkwity stumień pzez tę pwiezchnię jest identyczny jak stumień pzez pwiezchnię kulistą. R Pwiezchnia elementu A jest większa d pwiezchni a Rys. 4.4 Stumień pzez dwlną zamkniętą pwiezchnię zawieającą ładunek q. elementu a ( ) A a R 1 csθ ze względu na ten sam kąt byłwy dω a A cs θ R az ze względu na nachylenie elementu d kieunku adialneg. Kąt θ jest kątem zawatym zewnętzną nmalną a kieunkiem adialnym.

9 Stumień natężenia pla pzez ba elementy jest ówny dφ a az Wstawiając d ównania na stumień watści dstajemy 1,a dφ A Acsθ q R 4π R, A R i ( ) cs θ R q dφ, A a 4π a A a R 1 a (4.1) Stumienie pzez ba elementy są ówne. Również całkwity stumień pzez bie pwiezchnie będzie jednakwy, a więc stumień natężenia pla pzez dwlną zamkniętą pwiezchnię taczającą ładunek q będzie ówny q. Jeżeli ładunek leży na zewnątz zamkniętej dwlnej pwiezchni, t stumień pzez tę pwiezchnię znika.

10 Jeżeli mamy n ładunków punktwych bjętych pwiezchnią, t stumień pzez tę pwiezchnię wynsi: W pzypadku ładunku gęstści bjętściwej ρ(x,y,z) ds 1 ρdv S n Φ q i i 1 (4.13) V (4.14) Paw Gaussa bzmi: stumień natężenia pla elektyczneg pzez dwlną pwiezchnię zamkniętą ówna się ilczynwi całkwiteg ładunku zamknięteg w tej pwiezchni pzez.

11 Pwiezchniwy zkład ładunku a S a Całkwity stumień natężenia pla elektyczneg ds S Zgdnie z twiedzeniem Gaussa S σs czyli ple elektyczne naładwanej płaszczyzny jest ówne σ (4.17) Fig Nieskńczna pwiezchnia metalwa gęstści pwiezchniwej ładunku s.

12 Kndensat płaski a b I II III Fig Ple elektyczne między dwma płaszczyznami ównych gęstściach ładunku pwiezchniweg s lecz pzeciwnych znakach. Ple wytwzne pzez płaszczyznę b wynsi b σ / i jest skiewane d tej płaszczyzny. W bszaze I: I ai W bszaze II: II aii W bszaze III: III aiii bii bi σ σ (4.18) biii σ σ σ σ 0 σ Na zewnątz płaszczyzn ple elektyczne znika, natmiast między płaszczyznami wynsi σ /. 0

13 Pwiezchnia pzewdnika Większść ciał stałych dzielimy na pzewdniki i izlaty (dielektyki). Ddatkwy ładunek umieszczny na pwiezchni lub wewnątz dielektyka pzstaje nieuchmy. W pzewdniku ple elektyczne mże istnieć jedynie w ciągu kótkieg kesu czasu dpóki swbdne elektny nie zgmadzą się na pwiezchni pzewdnika pd wpływem działania zewnętzneg pla i nie utwzą pzeciwnie skiewaneg pla. Zgdnie z twiedzeniem Gaussa Q Pwiezchnia S ds w S W stanie ównwagi ładunkwej pzewdnika Pzewdnik w 0, ładunek wewnętzny pzewdnika Qw 0. Linie sił pla elektyczneg na pwiezchni Rys. 4.9 Wewnątz pstpadłścianu pzewdnika są skiewane pstpadle d pdstawie DS znajduje się ładunek sds. pwiezchni. S σ S czyli natężenie pla na pwiezchni pzewdnika σ (4.0)

14 Ptencjał elektyczny Pkażemy, że całka z pla elektyczneg p kzywej łączącej punkty A i B B ds cnst pzybiea tę samą watść dla wszystkich dóg łączących punkty A i B. A Dla ładunku punktweg paca sił pla elektstatyczneg wynsi W AB B A B F ds q ds q A A B ds U A U B (4.1) i jest ówna zmianie enegii ptencjalnej pla elektstatyczneg. Pzyjmujemy U 0, gdy ładunek znajduje się w nieskńcznści. Wówczas U A q A ds (4.)

15 Jeżeli pzesuniemy ładunek q z nieskńcznści d punktu płżneg w dległści d ładunku punktweg Q, t enegia ptencjalna będzie ówna pacy pzeciwk sile elektstatycznej U Q q 1 d 1 4π 4π qq [ ] 1 Wbec teg, enegia ptencjalna ładunku punktweg q umieszczneg w plu ładunku Q wynsi U 1 4π qq (4.3) Ptencjał elektyczny keślamy jak enegię ptencjalną jednstkweg ładunku Jednstką ptencjału elektyczneg jest wlt V J/C. V U (4.4) q Ptencjał ładunku punktweg Q V Q 1 (4.5) 4π Ptencjał elektyczny jest pacą jaką należy wyknać aby pzesunąć ładunek jednstkwy z nieskńcznści na dległść d ładunku punktweg Q.

16 Różnica ptencjałów (napięcie elektyczne) pmiędzy dwma punktami stanwi pacę jaką należy wyknać w celu pzesunięcia jednstkweg ładunku z jedneg punktu pla d dugieg. A V V ds (4.6) Z statnieg wyażenia wynika Z klei wekt pzesunięcia ds Pzyjmując teaz, że gadv widzimy, że ilczyn skalany ds dv A dv B B ds (4.7) V dx V dy V dz (4.8) x y z ds i V x i dx V x dx c ptwiedza elację (4.7). Pkazaliśmy zatem, że j V y jdy V y dy gadv kdz k V z V z dz dv (4.9) (4.30)

17 Znak minus znacza, że wekt natężenia pla elektyczneg skiewany jest d większeg d mniejszeg ptencjału. Wekt gad V pkywa się z kieunkiem wzstu funkcji V. Pzykład: óżnica ptencjałów pmiędzy dwiema pzeciwnie naładwanymi ównległymi płytkami σ σ Zgdnie z (4.7) V x Pnieważ linie sił pla elektyczneg skiewane są d ładunków ddatnich d ujemnych, t znak minus wskazuje, że ddatnia płytka chaakteyzuje się wyższym ptencjałem. Różnica ptencjałów między płytkami wynsi σx xq V (4.31) S x Rys Dwie ównległe płytki naładwane ównymi c d watści lecz pzeciwnymi ładunkami.

18 Jeżeli kilka naładwanych ciał płżnych jest w dległściach dpwiedni 1,,..., n d punktu P, t ptencjał elektyczny w tym punkcie jest ówny sumie ptencjałów d pszczególnych ciał. V ds K ds V V K V Siły elektstatyczne są zachwawcze. ( 1 n ) 1 n ds 0 (4.3) Pwyższa całka p kntuze zamkniętym nazywana jest cykulacją wekta natężenia pla elektyczneg. Wzó (4.3) nie jest słuszny w pzypadku zmiennych w czasie pól elektycznych. Pla takie nie są ptencjalne.

19 Pjemnść elektyczna Stsunek nagmadzneg ładunku d óżnicy ptencjałów V nazywamy pjemnścią C: C Q V (4.33) Jednstka pjemnści: C/V F (faad). Stsuje się mniejsze jednstki jak mikfaad (µf), nanfaad (nf), pikfaad (pf). Różnica ptencjałów pmiędzy dwma płytkami wynsi pjemnść kndensata płaskieg wynsi V x Q/ S. Stąd wynika, że Q S C V x (4.34)

20 Gęstść enegii pla elektyczneg Załóżmy, że pczątkw nienaładwany kndensat stpniw ładwan, pzy czym óżnica ptencjałów wzastała d 0 d V. Ładunek na kładkach kndensata będzie wzastał d 0 d Q, gdzie Q CV. Paca wyknana pzy pzemieszczaniu ładunku dq d ujemnie naładwanej płytki d naładwanej ddatni wynsi negia zmagazynwana w kndensatze Zauważmy, że W Pdstawiając t d (4.35) tzymamy Uwzględniając z klei (4.34) mamy dw Vdq V Q q Q Vdq dq 1 (4.35) C C 0 0 Q V czyli Q S x S W W ( S ) 1 C Sx

21 Teaz dzieląc bie części pzez bjętść kndensata Sx, tzymujemy gęstść enegii pla elektyczneg w 1 (4.36) Z badziej gólnych ale zaazem badziej złżnych zważań wynika, że całkwita enegia knieczna d ufmwania dwlneg zkładu ładunków, jest ówna dkładnie całce p / licznej p całej pzestzeni V, gdzie jest plem utwznym pzez taki zkład ładunku W dv (4.37)

22 Dielektyki Jeżeli między kładkami umieścimy substancję, t pjemnść kndensata wzasta d C d C. Mżemy wówczas keślić względną pzenikalnść dielektyczną substancji σ 0 σ σ σ 0 Rys Pwstanie ładunku indukwaneg s' na pwiezchni dielektyka umieszczneg między kładkami kndensata. C' (4.38) C W dielektykach ładunki nie mają mżliwści swbdneg pzemieszczania Playzacja dielektyka t indukcja ładunku na pwiezchni dielektyka pd wpływem zewnętzneg pla elektyczneg. Wskutek zjawiska playzacji zmienia się watść natężenia pla w śdku dielektycznym; wpływ pla wewnętzneg. Cząsteczki niesplayzwane (np. H, Cl, CCl 4, węglwdy): śdki ciężkści ładunków ddatnich i ujemnych pkywają się.

23 Pd wpływem zewnętzneg pla elektyczneg w cząstkach niesplayzwanych indukuje się mment diplwy p α (4.39) gdzie α jest współczynnikiem playzwalnści atmu. Cząsteczki splayzwane samistnym mmencie diplwym p e e (H O, NH 3, HCl, CH 3 Cl)

24 Rdzaje playzacj Playzacja skiewana: pd wpływem zewnętzneg pla elektyczneg cząsteczki dielektyka dążą d zajęcia takieg płżenia, aby kieunek wektów ich mmentów diplwych p był zgdny z kieunkiem wekta. Playzacja elektnwa: cząsteczki niesplayzwane uzyskują w plu elektycznym mmenty diplwe indukwane w wyniku dkształcenia bit elektnwych. Playzacja jnwa (NaCl, CsCl): zsunięcie jnów pd wpływem pla elektyczneg. e Wskaźnik ilściwy playzacji wekt playzacji P e lim 1 V V 0 N znacza liczbę dipli zawatych w bjętści V dielektyka, a N i1 p ei p ei (4.40) mment elektyczny i-teg dipla. W pzypadku dielektyka jedndneg cząsteczkach niesplayzwanych P N p (4.41) gdzie e N znacza liczbę cząsteczek w jednstce bjętści. Stsując wzó (4.39) tzymujemy P N α χ (4.4) Współczynnik χ e e N α pdatnść dielektyczna substancji. e

25 Twiedzenie Gaussa w pzypadku becnści dielektyków. Wekt indukcji elektycznej Watść liczbwa jest zawsze dwtnie ppcjnalna d stałej dielektycznej śdka. Z teg względu wpwadzn wielkść D niezależną d stałej dielektycznej danej substancji D (4.43) D nazywamy wektem indukcji elektycznej i miezymy w C/m : D chaakteyzuje zatem t ple elektyczne, któe wytwazają w danej substancji same tylk ładunki swbdne. Ładunki związane pwstające w dielektyku wywłują zmianę zkładu w pzestzeni ładunków swbdnych wytwazających ple. Stumień indukcji elektycznej Całkwity stumień D d Φ D D ds D ds qswb S j j Φ (4.45) gdzie zgdnie z definicją wekta indukcji elektycznej uwzględnin tylk ładunki swbdne.

26 W póżni D, a zatem ównanie (4.45) pzybiea pstać ds q (4.46) S Ple w dwlnym śdwisku óżni się d pla w póżni tym, że wytwazają je ładunki zaówn swbdne, jak i związane. W gólnym pzypadku S swb ds qswb qzwią (4.47) Ładunki swbdne wytwazają zewnętzne ple elektyczne, natmiast ładunki związane wytwazają ple wewnętzne splayzwaneg dielektyka.

27 (a) (b) A B A σ -σ p σ p -σ p B - - S P e - l n α - l/ l/ S P e n α Ple elektyczne p Rys Pwstawanie ładunku związaneg. ładunków związanych jest skiewane pzeciwnie względem pla zewnętzneg, wytwzneg pzez ładunki swbdne. Natężenie pla wypadkweg p Znajdziemy teaz sumę ładunków związanych, któe pwstały w wyniku playzacji dielektyka, bjęteg zamkniętą pwiezchnią S.

28 Suma algebaiczna wszystkich ładunków dipli całkwicie bjętych pwiezchnią, ówna się zeu. Pzy bliczaniu q uwzględnia się zatem tylk te diple, któe pzecinają pwiezchnię S. Waunek ten spełniają wszystkie diple, któych śdki leżą wewnątz bjętści l Scsα. zwią Liczba dipli pzeciętych pzez element S wynsi Nl Scsα. Całkwity ładunek związany Ilczyn q zwi q zwią ą, pwiezchni S N ql csα S N p e csα S N p e ówny jest mdułwi wekta playzacji. A zatem qzwią Pe csα S Pe n S Pe ds (4.48) Sumy ładunków związanych, znajdujących się wewnątz zamkniętej pwiezchni S qzwią Pe ds (4.49) Twiedzenie Gaussa S ds q S swb S P e ds

29 stąd S ( Pe ) ds (4.50) qswb Wstawiając tu q swb z ównania (4.45) tzymujemy Pzet Uwzględniając (4.4) mamy ( Pe ) ds S P e Z dugiej stny, w myśl definicji (4.43), wekt D ówny jest D Zatem S D ds D (4.51) D χ ( 1 χ ) (4.5) e e 1 χ e (4.53) Stała dielektyczna ówna się pdatnści dielektycznej zwiększnej 1. Dla póżni 1, a χ 0. e

ELEKTRYCZNOŚĆ i MAGNETYZM

ELEKTRYCZNOŚĆ i MAGNETYZM ELEKTRYCZNOŚĆ i MAGNETYZM ELEKTROTATYKA zagadnienia związane z ddziaływaniem ładunków elektycznych w spczynku Pdstawwe pjęcia elektstatyki siły elektstatyczne wywłane są ładunkiem elektycznym ładunek elementany

Bardziej szczegółowo

Pole elektryczne w próżni

Pole elektryczne w próżni Kuala Lumul, Malesia, ebuay 04 W- (Jaszewicz według Rutwskieg) 9 slajdów Ple elektyczne w óżni LKTROSTTYK zagadnienia związane z ddziaływaniem ładunków elektycznych w sczynku 3/9 L.R. Jaszewicz Pdstawwe

Bardziej szczegółowo

POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA

POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA POLE MAGNETYCZNE: PRAWO GAUSSA, -S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA Wpwadzenie Ple magnetyczne, jedna z pstaci pla elmg: wytwazane pzez zmiany pla elektyczneg w czasie,

Bardziej szczegółowo

E r. Cztery fundamentalne oddziaływania: 1. Grawitacyjne 2. Elektromagnetyczne 3. Słabe jądrowe 4. Silne Elektromagnetyzm , Q.

E r. Cztery fundamentalne oddziaływania: 1. Grawitacyjne 2. Elektromagnetyczne 3. Słabe jądrowe 4. Silne Elektromagnetyzm , Q. Cztey fundamentalne ddziaływania: 1. Gawitacyjne. Elektmagnetyczne 3. Słabe jądwe 4. Silne Elektmagnetyzm Elektycznść E, Q Magnetyzm B, Q M Równania Maxwella Wykład 6 015/16 1 ELEKTROSTATYKA Wykład 6 015/16

Bardziej szczegółowo

Cztery fundamentalne oddziaływania

Cztery fundamentalne oddziaływania Cztey fundamentalne ddziaływania:. Gawitacyjne. lektmagnetyczne 3. Słabe 4. Silne jądwe lektmagnetyzm lektycznść, Q Magnetyzm B, Q M Równania Maxwella Wykład - Fizyka II 00/ LKTROSTATYKA Wykład - Fizyka

Bardziej szczegółowo

POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki.

POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki. POLE MAGNETYCZNE Paw Ampea Kieunek wekta eguła pawej ęki. l Cykulacją wekta p kęgu ds ds π 4πε c Mżna wykazać, że związek ten jest słuszny dla kntuu dwlneg kształtu bejmująceg pzewdnik. ds Rys. 6.. Całkę

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA INDUKJA ELEKTROMAGNETYZNA W 83 ku, p dziesięciu latach wytwałych pób, M. Faadaywi udał się wykazać i keślić w jaki spsób zmienne ple magnetyczne pwduje pwstanie pla elektyczneg. Wyknał ekspeyment, któy

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 1: lektrstatyka cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektrn ma masę m e ładunek -e i Każdy prtn ma masę m p ładunek

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Prawo Gaussa. Potencjał elektryczny.

Prawo Gaussa. Potencjał elektryczny. Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

PODSTAWY FIZYKI DLA ELEKTRONIKÓW

PODSTAWY FIZYKI DLA ELEKTRONIKÓW WOJSKOWA AKADEMIA TECHNICZNA Antni Rgalski PODSTAWY FIZYKI DLA ELEKTRONIKÓW WARSZAWA 00 SPIS TREŚCI PRZEDMOWA 9 Rzdział. WPROWADZENIE 3.. Czym jest fizyka? 3.. Wstęp matematyczny 4... Pchdna funkcji 4...

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE

ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE Wpwadzenie Ple magnetyczne występuje wkół magnesów twałych, pzewdników z pądem, uchmych ładunków elektycznych a także wkół

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E = 3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

magnetyzm ver

magnetyzm ver e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu

Bardziej szczegółowo

Zjawisko indukcji. Magnetyzm materii.

Zjawisko indukcji. Magnetyzm materii. Zjawisko indukcji. Magnetyzm mateii. Wykład 6 Wocław Univesity of Technology -04-0 Dwa symetyczne pzypadki PĘTLA Z PĄDEM MOMENT SIŁY + + POLE MAGNETYCZNE POLE MAGNETYCZNE P A W O I N D U K C J I MOMENT

Bardziej szczegółowo

. Ilorazy amplitud wyznacza się zazwyczaj z kątów ψ r. t ΙΙ. = 2 2 r

. Ilorazy amplitud wyznacza się zazwyczaj z kątów ψ r. t ΙΙ. = 2 2 r ELIPSOMETRIA Celem elipsmetii jest wyznaczenie stałych ptycznych i stuktualnych cienkich wastw i płaskich pwiezchni pzez pmia elipsy playzacji światła dbiteg lub pzepuszczneg. Pzy baku dwójłmnści i aktywnści

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 1

INSTRUKCJA DO ĆWICZENIA NR 1 KATEDA EHANK STOSOWANEJ Wydział echaniczny POLTEHNKA LUBELSKA NSTUKJA DO ĆWZENA N PZEDOT TEAT OPAOWAŁ EHANKA UKŁADÓW EHANZNYH Badania analityczne układu mechaniczneg jednym stpniu swbdy D inż. afał usinek.

Bardziej szczegółowo

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku. Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zagadnienia 1. Mateatyczne pdstawy etd hdwlanych 2. Watść cechy ilściwej i definicje paaetów genetycznych 3. Metdy szacwania paaetów genetycznych 4. Watść hdwlana cechy

Bardziej szczegółowo

DYNAMIKA WÓD PODZIEMNYCH

DYNAMIKA WÓD PODZIEMNYCH DYNAMIKA WÓD PODZIEMNYCH ównanie Benullieg Spadek hydauliczny Współczynnik filtacji Paw Dacy`eg Pędkść filtacji, pędkść skuteczna Dpływ d wu Dpływ d studni zpatujemy 2 schematy: Dpływ z wastwy wdnśnej

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Enegetyczny Podstawy elektotechniki Pof. d hab. inż. Juliusz B. Gajewski, pof. zw. PW Wybzeże S. Wyspiańskiego 7, 5-37 Wocław Bud. A4 Staa kotłownia, pokój 359 Tel.: 7 3 3 Fax: 7 38

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

ROZDZIAŁ 2. Elektrotechnika podstawowa 23

ROZDZIAŁ 2. Elektrotechnika podstawowa 23 lektotechnika podstawowa 3 ROZDZIAŁ lektostatyka. Kondensatoy + Nieuchome (niezmienne) ładunki elektyczne ozmieszczone w śodowisku dielektycznym są źódłami pola elektostatycznego. W paktyce model taki

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana

Bardziej szczegółowo

Teoria Pola Elektromagnetycznego

Teoria Pola Elektromagnetycznego Teoia Pola Elektomagnetycznego Wykład Pole elektostatyczne Stefan Filipowicz . Pole elektostatyczne 1.1. Ładunek elektyczny Pzy badaniu zjawisk pola elektycznego, w wielu ważnych z punktu widzenia paktyki

Bardziej szczegółowo

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1.

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1. Wykład 9 7. Pojemność elektyczna 7. Pole nieskończonej naładowanej wastwy z σ σładunek powiezchniowy S y ds x S ds 8 maca 3 Reinhad Kulessa Natężenie pola elektycznego pochodzące od nieskończonej naładowanej

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson

Bardziej szczegółowo

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =? PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

WARUNEK WYTRZYMAŁOŚCIOWY NA ŚCINANIE

WARUNEK WYTRZYMAŁOŚCIOWY NA ŚCINANIE WARUNEK WYTRZYMAŁOŚCIOWY NA ŚCINANIE Rzeczywise napężenia syczne napężenia dpuszczalneg k, czyli: w pzekju ścinanym S nie mgą być większe d gdzie: (1) S napężenia syczne pzy ścinaniu [Pa], siła ścinająca

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

magnetyzm cd. ver

magnetyzm cd. ver ve-28.6.7 magnetyzm cd. paca pzemieszczenia obwodu w polu F F Ιl j ( ) (siła Ampee a) dw Φ Fdx Ι ldx ΙdS ds ds dφ ds dw ΙdΦ ( Ι ds) stumień dx dla obwodu: W Ι dφ Ι ( Φ ) 2 Φ 1 paca wykonana jest kosztem

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie

Bardziej szczegółowo

Wykład 10. Reinhard Kulessa 1

Wykład 10. Reinhard Kulessa 1 Wykład 1 14.1 Podstawowe infomacje doświadczalne cd. 14. Pąd elektyczny jako źódło pola magnetycznego 14..1 Pole indukcji magnetycznej pochodzące od nieskończenie długiego pzewodnika z pądem. 14.. Pawo

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW 4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi

Bardziej szczegółowo

6. POWIERZCHNIOWE MOMENTY BEZWŁADNOŚCI

6. POWIERZCHNIOWE MOMENTY BEZWŁADNOŚCI 6. POWERZCHNOWE MOMENTY BEZWŁADNOŚC Zadanie 6. Dla figury przedstawinej na rysunku 6.. wyznaczyć płżenie głównh centralnh si bezwładnści i kreślić względem nich główne centralne mmenty bezwładnści. Rys.6..

Bardziej szczegółowo

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 8

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 8 WYKŁAD 8 8. RUCH WÓD GRUNTOWYCH 8.1. Właściwści gruntu, praw Darcy Ruch wód gruntwych w śrdku prwatym nazywamy filtracją. D śrdków prwatych zaliczamy grunt, skały, betn itp. Wda zawarta w gruncie występuje

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana

Bardziej szczegółowo

Pola elektryczne i magnetyczne

Pola elektryczne i magnetyczne Pola elektyczne i magnetyczne Zadania z ozwiązaniami Pojekt współfinansowany pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego Zadanie 1 Cząstka alfa (jądo atomu helu) ma masę m = 6.64*1 7

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

XIX. PRAWO COULOMBA Prawo Coulomba

XIX. PRAWO COULOMBA Prawo Coulomba XIX PRAWO COULOMBA 191 Pawo Coulomba Wielkość oddziaływania cząstki z otaczającymi ją obiektami zależy od jej ładunku elektycznego, zwykle oznaczanego pzez Ładunek elektyczny może być dodatni lub ujemny

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

LABORATORIUM SILNIKÓW SPALINOWYCH Materiały pomocnicze

LABORATORIUM SILNIKÓW SPALINOWYCH Materiały pomocnicze Oacwał: Adam Ustzycki Kateda Silników Salinwy i Tantu LABORATORIUM SILNIKÓW SPALINOWYCH Mateiały mcnicze Temat: Bilans cielny silnika Bilans cielny silnika jest t zestawienie zdziału cieła dwadzneg d silnika

Bardziej szczegółowo

1. Konfigurację elektronową elektronów w niewzbudzonym atomie sodu (Na o liczbie atomowej Z=11 i masowej A=23) możemy zapisać:

1. Konfigurację elektronową elektronów w niewzbudzonym atomie sodu (Na o liczbie atomowej Z=11 i masowej A=23) możemy zapisać: Fizyka Sem. I, INFORMATYKA, TST PRZYKŁADOWY KT Odpwiedz na pniższe pytania. Odpwiedzi zaznaz na akuszu, któy tzymałeś z tym zestawem. Na każde pytanie jest tylk jedna dba dpwiedź. Odpwiedź zaznaz znakiem

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

Przekroje efektywne wyboczenia lokalnego 61,88 28,4 0,81 4 =1,34>0,673. = 28,4 ε k. ρ,, = λ 0,22 λ = 1,34 0,22 1,34 =0,62. = =59,39,

Przekroje efektywne wyboczenia lokalnego 61,88 28,4 0,81 4 =1,34>0,673. = 28,4 ε k. ρ,, = λ 0,22 λ = 1,34 0,22 1,34 =0,62. = =59,39, Przekrój efektywny stalweg dźwigara z zastępczymi płytami rttrpwymi klasy 4 W bustrnnie sztywn umcwanym dźwigarze skrzynkwym długści 15,0 m ze stali S355 usztywnin pasy i śrdniki żebrami pdłużnymi (rys.

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Teoria Względności. Czarne Dziury

Teoria Względności. Czarne Dziury Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość. WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia

Bardziej szczegółowo

Pole magnetyczne prąd elektryczny

Pole magnetyczne prąd elektryczny Pole magnetyczne pąd elektyczny Czy pole magnetyczne może wytwazać pąd elektyczny? Piewsze ekspeymenty dawały zawsze wynik negatywny. Powód: statyczny układ magnesów. Michał Faaday piewszy zauważył, że

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku

Bardziej szczegółowo

CZAS ZDERZENIA KUL SPRAWDZENIE WZORU HERTZA

CZAS ZDERZENIA KUL SPRAWDZENIE WZORU HERTZA Ćwiczenie Nr CZAS ZDRZNIA KUL SPRAWDZNI WZORU HRTZA Literatura: Opracwanie d ćwiczenia Nr, czytelnia FiM LDLandau, MLifszic Kurs fizyki teretycznej, tm 7, Teria sprężystści, 9 (dstępna w biblitece FiM,

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

( ) 2. 4πε. Prawo Coulomba

( ) 2. 4πε. Prawo Coulomba Pawo Coulomba. Cztey identyczne ładunki dodatnie q umieszczono w wiezchołkach kwadatu o boku a. W śodku symetii kwadatu umieszczono ładunek ujemny taki, Ŝe cały układ pozostaje w ównowadze. Znaleźć watość

Bardziej szczegółowo

Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna.

Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna. Podstawowe pojęcia. Wykład Elementy achunku pawdopodobieństwa. Pzestzeń pobabilistyczna. Doświadczenie losowe-doświadczenie (zjawisko, któego wyniku nie możemy pzewidzieć. Pojęcie piewotne achunku pawdopodobieństwa

Bardziej szczegółowo

Prawo powszechnego ciążenia Newtona

Prawo powszechnego ciążenia Newtona Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =

Bardziej szczegółowo

Komputerowa symulacja doświadczenia Rutherforda (rozpraszanie cząstki klasycznej na potencjale centralnym

Komputerowa symulacja doświadczenia Rutherforda (rozpraszanie cząstki klasycznej na potencjale centralnym Pojekt n C.8. Koputeowa syulacja doświadczenia Ruthefoda (ozpaszanie cząstki klasycznej na potencjale centalny (na podstawie S.. Koonin "Intoduction to Coputational Physics") Wpowadzenie Cząstka o asie

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności

Bardziej szczegółowo

Fizyka 10. Janusz Andrzejewski

Fizyka 10. Janusz Andrzejewski Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE

Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie

Bardziej szczegółowo

IX POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2017/2018

IX POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2017/2018 rk szklny 017/018 1. Niech pierwsza sba dstanie 1, druga następni dpwiedni 3, 4 aż d n mnet. Więc 1++3+4+.+n 017, n( n 1) 017 n(n+1) 4034, gdzie n(n+1) t ilczyn klejnych liczb naturalnych. Warunek spełnia

Bardziej szczegółowo