Atom (cząsteczka niepolarna) w polu elektrycznym

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Atom (cząsteczka niepolarna) w polu elektrycznym"

Transkrypt

1 Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do poa eektycznego dieektyka modyfikuje to poe wychyenie istków eektoskopu połączonego z jedną z okładek kondensatoa płaskiego maeje po umieszczeniu między płytki dieektyka (pojemność kondensatoa ośnie)

2 Atom (cząsteczka niepoana) w pou eektycznym Ze -Ze W pzypadku, kiedy atom (cząsteczka niepoana) nie podega działaniu poa eektycznego śodki ciężkości ładunku dodatniego i ujemnego pokywają się. Moment dipoowy cząsteczki poanej jest ówny zeu. Ze -Ze Wskutek umieszczenia atomu (cząsteczki niepoanej) w pou eektycznym następuje pzemieszczenie śodków ciężkości ładunków (Ze i Ze) co powadzi do indukowania momentu dipoowego. zemieszczenie ozkładu ładunków powadzące do indukowania momentu dipoowego nazywa się poayzacją eektonową.

3 oayzacja eektonowa moment dipoowy Założenia: kształt, ozmia i gęstość chmuy ρ eektonowej nie zmienia się: ρ Q 4 π a W waunkach ównowagi: ρ const,, F F e > a a Ze F F e a -Ze Z pawa Gaussa: e F Ze, Fe Zee ( ) 4 ρ π 2 Q 4π 1 Q 1 e e 2 2 ε 4πε 4πε 1 Ze 4πε a F e 1 4πε ( Ze) a 2

4 oayzacja eektonowa w gazach F F e Stąd: p e Ze 4πε a α 4πa e Ze 1 4πε ( Ze) Moment dipoowy indukowany w cząsteczce niepoanej pod wpływem poa eektycznego - poayzowaność atomu a 2 p e ε α e p e [ α e ] m Uwaga. oayzowaność cząsteczki niepoanej jest mniejsza od sumy poayzowaności twozących ją atomów. Jeżei ozpatujemy układ w któym koncentacja atomów wynosi N, to moment dipoowy na jednostkę objętości (poayzacja ) opisuje ównanie: Np Nαε (Zakładając bak oddziaływań między cząsteczkami (gazy))

5 Cząsteczki poane w pou eektycznym Cząsteczka poana całkowity ozkład ładunku cząsteczki ma moment dipoowy. p Momenty dipoowe poszczegónych cząsteczek skieowane są we wszystkich pzypadkowych kieunkach. Upoządkowanie oientacji momentów dipoowych cząsteczek, zabuzane zdezeniami wynikającymi z uchu temicznego cząsteczek ( poayzacja eektonowa)

6 Dipo w pou eektycznym. q θ p e -q Na dipo umieszczony w pou eektycznym działa paa sił: F M q Moment tej pay sił wynosi: F q gdzie q pe M p M p sinθ e e Zewnętzne poe eektyczne poządkuje momenty dipoowe cząsteczek poanych w kieunku zgodnie ównoegłym z iniami poa.

7 negia dipoa. q θ p e -q negia dipoa w pou eektycznym: p ae ( ϕ ) qϕ ϕ qϕ q ϕ ϕ ϕ Stąd: p p e

8 oayzacja zoientowana Liczba cząsteczek któych enegia potencjana wynosi p opisuje ozkład Botzmana: n n kt p ( θ ) n exp W pzypadku niezbyt wysokich pó w tempeatuze pokojowej p << kt. Można więc ozwinąć tą funkcję w szeeg: (Widać, że więcej p cosθ 1 kt kt p ( θ ) n n 1 e cząsteczek ma moment dipoowy zwócony zgodnie z (cosθ1) niż pzeciwnie (cosθ-1)) Gdzie n można obiczyć wykonując całkowanie powyższego wzou po wszystkich kątach θ, ϕ w wyniku czego otzymamy całkowitą iczbę cząsteczek w jednostce objętości: N 2π d n π ϕ ( θ ) sinθdθ 4πn n N 4π

9 oayzacja zoientowana w gazach oayzacja ówna jest sumie składowych momentów dipoowych skieowanych wzdłuż poa : p e cosθ Wykonując całkowanie po ozkładzie kątowym: 2π π ϕ ( θ ) p cosθ θdθ d n e sin π N p 1 e cosθ pe cosθ d 2 kt ( cosθ ) Stąd: 2 Npe kt

10 oayzacja eektonowa w cieczach Załóżmy, że ciecz zbudowana jest z cząsteczek niepoanych, w któych pod wpływem poa indukuje się moment dipoowy o oientacji zgodnej z kieunkiem poa. Można pzyjąć, że każda cząsteczka, otoczona innymi cząsteczkami, znajduje się w kuistej wnęce. w k Z zasady supepozycji wynika, że: w k

11 oe eektyczne jednoodnie spoayzowanej kui oe jakie wytwaza spoayzowana kua jest takie samo jak pojedynczego dipoa umieszczonego w jego śodku. Jeżei moment dipoowy pojedynczej cząsteczki wynosi: p i q to całkowity moment dipoowy kui: 4 4 p e π Nq π oe eektyczne jednoodnie spoayzowanej kui

12 oe eektyczne jednoodnie spoayzowanej kui c.d. W dowonym punkcie na powiezchni kui potencjał wynosi: ϕ 1 p cos 1 4 cos () e θ θ π 4πε 2 2 4πε ϕ ε ε () cosθ z Jest to ównież potencjał na bzegu wnęki. Wewnątz kui potencjał spełnia -nie Lapace,a. Stąd poe wewnątz kui: z k ϕ k z z z ε ε

13 oayzacja eektonowa w cieczach oe wewnątz wnęki (zgodnie z zasadą supepozycji): Do wzou w ε Np Nαε w Nαε oe Mossottiego Nαε ε podstawiamy za poe we wnęce w : Nα ε 1 Nα oayzacja w cieczy o cząsteczkach niepoanych (-nie nie jest słuszne da cząsteczek poanych, np. H 2 O)

14 Dieektyki w stałym stanie skupienia Opis poayzacji dieektyków w stałym stanie skupienia opiea się na podobnych zasadach jak w pzypadku cieczy, w opaciu o poayzowaność eektonową atomów. W niektóych kyształach występują twałe momenty dipoowe i ich otacja wpływa na poayzację kyształu. W kyształach jonowych, np. NaC występuje poayzowaność jonowa związana z pzemieszczeniem jonów pod wpływem zewnętznego poa.

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

Pole magnetyczne prąd elektryczny

Pole magnetyczne prąd elektryczny Pole magnetyczne pąd elektyczny Czy pole magnetyczne może wytwazać pąd elektyczny? Piewsze ekspeymenty dawały zawsze wynik negatywny. Powód: statyczny układ magnesów. Michał Faaday piewszy zauważył, że

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym. Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Energia kulombowska jądra atomowego

Energia kulombowska jądra atomowego 744 einhad Kulessa 6. Enegia kulombowska jąda atomowego V Enegię tą otzymamy w opaciu o wzó (6.6) wstawiając do niego wyażenie na potencjał (6.4) pochodzący od jednoodnie naładowanej kuli. Obliczenie wykonamy

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

Siły centralne, grawitacja (I)

Siły centralne, grawitacja (I) Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izyka 1- Mechanika Wykład 5.XI.017 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Ruch po okęgu - bezwładność Aby ciało pozostawało w uchu po okęgu

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Wybrane zagadnienia z elektryczności

Wybrane zagadnienia z elektryczności Wybane zaganienia z elektyczności Pomia łaunku elektycznego oświaczenie Millikana atomize płaszczyzna (+) bateia kople oleju mikoskop F el F g płaszczyzna (-) F g F el mg mg e.6 0 9 C Łaunek elektyczny

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz POLE MAGNETYCZNE 1. Obsewacje pola magnetycznego 2. Definicja pola magnetycznego i siła Loentza 3. Ruch ładunku w polu magnetycznym; synchoton 4. Siła działająca na pzewodnik pądem; moment dipolowy 5.

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku

Bardziej szczegółowo

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

KINEMATYCZNE WŁASNOW PRZEKŁADNI

KINEMATYCZNE WŁASNOW PRZEKŁADNI KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej

Bardziej szczegółowo

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)

Bardziej szczegółowo

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

Elektrostatyka dielektryki

Elektrostatyka dielektryki Rozdział 2 Elektrostatyka dielektryki 2.1 Stała dielektryczna. Ładunki polaryzacyjne W rozdziale tym będziemy rozważać wpływ izolujących ośrodków dielektryków na oddziaływanie ładunków elektrycznych i

Bardziej szczegółowo

( ) 2. 4πε. Prawo Coulomba

( ) 2. 4πε. Prawo Coulomba Pawo Coulomba. Cztey identyczne ładunki dodatnie q umieszczono w wiezchołkach kwadatu o boku a. W śodku symetii kwadatu umieszczono ładunek ujemny taki, Ŝe cały układ pozostaje w ównowadze. Znaleźć watość

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

Przedmiot: Fizyka PRACA I ENERGIA. Wykład 7, 2015/2016 1

Przedmiot: Fizyka PRACA I ENERGIA. Wykład 7, 2015/2016 1 PRACA I ENERGIA Wykład 7, 015/016 1 ENERGIA A PRACA Enegia jest to wielkość skalana, chaakteyzująca stan, w jakim znajduje się jedno lub wiele ciał. Enegia kinetyczna jest związana ze stanem uchu ciała.

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Plan wykładu. Rodzaje pól

Plan wykładu. Rodzaje pól Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał

Bardziej szczegółowo

PODSTAWY MODELOWANIA MOLEKULARNEGO

PODSTAWY MODELOWANIA MOLEKULARNEGO PODSTAWY MODELOWANIA MOLEKULARNEGO Mechanika molekulana Dynamika molekulana Symulacje Monte Calo Teoia funkcjonału gęstości Liteatua Metody komputeowe w fizyce, T. Pang, PWN, Waszawa, 1. Podstawy symulacji

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

4πε0ε w. q dl. a) V m 2

4πε0ε w. q dl. a) V m 2 Rozwiązania są moje, Batka i jeszcze te któe znaazłem w A. Niestety nie mogę zagwaantować, że są popawne :( Jeżei twoje opowiezi óżnią się o tych, to napisz o mnie (najepiej z wyjaśnienie ską bieze się

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Pole przepływowe prądu stałego

Pole przepływowe prądu stałego Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA INDUKJA EEKTOMAGNETYZNA; PAWO FAADAYA. uch ramki w polu magnetycznym: siła magnetyczna wytwarza SEM. uch magnesu względem ramki : powstanie wirowego pola elektrycznego 3. Prawo Faradaya 4. eguła entza

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Teat ćwiczenia: ZASTOSOWANIE RACHUNKU WYRÓWNAWCZEGO

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Część I Pole elektryczne

Część I Pole elektryczne Mateiały pomocnicze dla studentów Studiów Zaocznych Wydz Mechatoniki semest II Część I Pole elektyczne Ładunek elektyczny Q wytwaza pole elektyczne, do opisu któego możemy wykozystać dwie wielkości: natężenie

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

elektrostatyka ver

elektrostatyka ver elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna

Bardziej szczegółowo

STATYSTYCZNY OPIS UKŁADU CZĄSTEK

STATYSTYCZNY OPIS UKŁADU CZĄSTEK WYKŁAD 6 STATYSTYCZNY OPIS UKŁADU CZĄSTK Zespół statcz moża opisać: ) Klasczie pzestzeń fazowa P ( P PN, q, q q N) q Każda kofiguacja N cząstek zespołu statczego opisaa jest puktem w pzestzei fazowej.

Bardziej szczegółowo

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Utrwalenie wiadomości Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Za tydzień sprawdzian Ciało fizyczne a substancja Ciało Substancja gwóźdź żelazo szklanka szkło krzesło drewno Obok podanych

Bardziej szczegółowo

Równanie Schrödingera dla elektronu w atomie wodoru

Równanie Schrödingera dla elektronu w atomie wodoru Równanie Schödingea dla elektonu w atomie wodou m 1 d dp l( l + ) P = P sinθ Równanie funkcji kąta biegunowego P(θ) 1 sin θ sinθ dθ ma ozwiązania w postaci stowazyszonych funkcji Legende a P lm ( θ ) =

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie

Bardziej szczegółowo

Pracownia komputerowa

Pracownia komputerowa Stanisław Lampeski Ćwiczenia z chemii fizycznej Pacownia komputeowa Opis wykonania ćwiczeń WYDZIAŁ CHEMII UAM Poznań 009 Mateiały umieszczone na stonie: http://www.staff.amu.edu.pl/~slampe Spis teści Wstęp...

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

n p 2 i = R 2 (8.1) i=1

n p 2 i = R 2 (8.1) i=1 8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem

Bardziej szczegółowo

Normalizacja funkcji falowej

Normalizacja funkcji falowej Normalizacja funkcji falowej Postulaty mechaniki kwantowej Zadanie. Wyznacz stałą normalizacyjną i podaj postać funkcji unormowanej: Ψ = Ncosαx) dla x [, a] Opis sposobu rozwiązania zadania krok po kroku:.

Bardziej szczegółowo

Teoria Względności. Czarne Dziury

Teoria Względności. Czarne Dziury Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie

Bardziej szczegółowo

Współczynniki pojemności

Współczynniki pojemności napisał Micał Wierzbicki Współczynniki pojemności Rozważmy układ N przewodników. Powierzcnia każdego z nic jest powierzcnią ekwipotencjalną: ϕ i = const, i = 1,,..., N. W obszarze między przewodnikami

Bardziej szczegółowo

8. OPORY RUCHU (6 stron)

8. OPORY RUCHU (6 stron) 8. OPORY RUCHU (6 stron) Wszystkie ciała poruszające się w naszym otoczeniu napotykają na mniejsze lub większe opory ruchu. Siły oporu są zawsze skierowane przeciwnie do kierunku wektora prędkości ciała

Bardziej szczegółowo

XIX. PRAWO COULOMBA Prawo Coulomba

XIX. PRAWO COULOMBA Prawo Coulomba XIX PRAWO COULOMBA 191 Pawo Coulomba Wielkość oddziaływania cząstki z otaczającymi ją obiektami zależy od jej ładunku elektycznego, zwykle oznaczanego pzez Ładunek elektyczny może być dodatni lub ujemny

Bardziej szczegółowo

Ć W I C Z E N I E N R C-2

Ć W I C Z E N I E N R C-2 INSTYTUT IZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA IZYKI CZĄSTECZKOWEJ I CIEPŁA Ć W I C Z E N I E N R C- POMIAR NAPIĘCIA POWIERZCHNIOWEGO CIECZY METODĄ

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

17.1.2 Zachowanie ładunku Jednym z podstawowych praw fizyki jest zasada zachowania ładunku. Zasada ta sformułowana przez Franklina mówi, że

17.1.2 Zachowanie ładunku Jednym z podstawowych praw fizyki jest zasada zachowania ładunku. Zasada ta sformułowana przez Franklina mówi, że MODUŁ VI Moduł VI Pole elektyczne 17 Pole elektyczne Pzechodzimy teaz do omówienia oddziaływania elektomagnetycznego. Oddziaływanie to ma fundamentalne znaczenie bo pozwala wyjaśnić nie tylko zjawiska

Bardziej szczegółowo

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E Równania Mawella a fale świetlne Wykład 3 Fale wyaŝone pzez zespolone amplitudy wektoowe Pola zespolone, a więc i ich amplitudy są teaz wektoami: % % Równania Mawella Wypowadzenie ównania falowego z ównań

Bardziej szczegółowo

Magnetyzm i elektromagnetyzm

Magnetyzm i elektromagnetyzm Magnetyzm i elektomagnetyzm Pola magnetyczne Pola magnetyczne są wywołane pouszającymi się ładunkami Pola magnetyczne magnesów stałych są wywołane nieskompensowanymi uchami elektonów w mateiale. Pola magnetyczne

Bardziej szczegółowo

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe Pzygotowanie do Egzaminu Potwiedzającego Kwalifikacje Zawodowe Powtózenie mateiału Opacował: mg inż. Macin Wieczoek Jednostki podstawowe i uzupełniające układu SI. Jednostki podstawowe Wielkość fizyczna

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Fizyka. Wykład 2. Mateusz Suchanek

Fizyka. Wykład 2. Mateusz Suchanek Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

WPROWADZENIE. Czym jest fizyka?

WPROWADZENIE. Czym jest fizyka? WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych

Bardziej szczegółowo