( ) 2. 4πε. Prawo Coulomba

Wielkość: px
Rozpocząć pokaz od strony:

Download "( ) 2. 4πε. Prawo Coulomba"

Transkrypt

1 Pawo Coulomba. Cztey identyczne ładunki dodatnie q umieszczono w wiezchołkach kwadatu o boku a. W śodku symetii kwadatu umieszczono ładunek ujemny taki, Ŝe cały układ pozostaje w ównowadze. Znaleźć watość ładunku. + = q 4. Dipol elektyczny składa się dwóch ładunków + i oddalonych od siebie o l. Obliczyć siłę działającą na ładunek q umieszczony w punkcie odległym od + i o i leŝącym na postej postopadłej do osi dipola. ql F =. Całkowity ładunek naładowanego pieścienia o pomieniu R jest ówny. Obliczyć zaleŝność siły działającej na ładunek q umieszczony na osi pieścienia w funkcji odległości od jego śodka. qx F = 4 πε x + R ( ) 4. Między dwiema duŝymi, ównoległymi płytami ukształtowało się jednoodne pole E. W polu tym na sznuku o długości l zawieszono małą, pzewodzącą kulke o masie m. Znaleźć okes wahadła gdy kulka posiada ładunek +q jeśli dolna płyta jest naładowana a) dodatnio, b) ujemnie. l l O.p: a) T = π, b) T = π g qe / m g + qe / m 5. Dwie jednakowe pzewodzące kulki zawieszone są na jedwabnych niciach o długości l. KaŜda z kulek posiada ładunek q i masę m. Obliczyć odległość x w jakiej znajdują się kulki w stanie ównowagi. Pzyjąć Ŝe l>>x (pzy takim załoŝeniu tgα sinα). x = q l πε mg 6. Dwie identyczne pzewodzące kule, mające ładunki o znakach pzeciwnych pzyciągają się siłą.8 N z odległości.5 m. Kule zostają połączone pzewodzącym dutem, któy następnie zostaje usunięty i wtedy kule odpychają się wzajemnie siłą.6 N. Ile wynosiły początkowe ładunki obu kul? ±.* -6 C, ±.* -6 C 7. Dwie jednakowo naładowane cząstki elementane oddalone od siebie.* - m wypowadzono ze stanu ównowagi. Obsewowane pzyspieszanie piewszej cząstki wynosi 7. m/s, a pzyspieszenie dugiej cząstki wynosi 9. m/s. Jeśli masa piewszej cząstki wynosi 6.* -7 kg, to jaka jest masa dugiej cząstki i jaki jest wspólny ładunek obu cząstek? 4.9* -7 kg, 7.* - C

2 8. Znaleźć watość siły, z jaką pzyciągają się dwa óŝnoimiennie jednoodnie naładowane odcinki o długości l i l, leŝące na jednej postej, jeŝeli ładunek całkowity piewszego wynosi q, ładunek dugiego, a odległość pomiędzy śodkami odcinków wynosi. q F = 4 πε l l ln ( l l ) ( l + l ) Wyznaczyć potencjał V i watość natęŝenia pola elektycznego E elektycznego punkcie P leŝącym na osi pieścienia, któego powiezchniowa gęstość ładunku σ jest stała. Wewnętzny pomień pieścienia wynosi R, zewnętzny pomień wynosi R, punkt P znajduje się w odległości d od płaszczyzny pieścienia. σ V = ( R + d R + d ) ε, σ d d E = ε R + d R + d. Znaleźć potencjał V o az natęŝenie pola elektycznego E nieskończenie długiego, postoliniowego, ównomienie naładowanego pzewodnika. Liniowa gęstość ładunku wynosi. Pzy ozwiązaniu nie kozystać z twiedzenia Gaussa. V = ln + const, E = πε πε. Jednoodnie naładowane koło o pomieniu R powiezchniowej gęstości ładunku σ> jest umieszczone pionowo. Do najwyŝszego punktu koła pzymocowano na cienkiej nici o długości l>r kulkę, na któej znajduje się ładunek q>. Wyznaczyć masę kulki wiedząc, Ŝe na skutek działających sił kulki znajduje się ona na osi koła. Watość pzyspieszenia ziemskiego wynosi g. σqr m = gl. Elekton o pędkości 5.* 8 cm/s wpada, pouszając się ównolegle do linii sił, w obsza pola elektycznego o natęŝeniu.* N/C tak zoientowanego, Ŝe hamuje ono uch elektonu. a) Jaką dogę pzebędzie elekton w polu zanim się zatzyma? b) Ile czasu upłynie do chwili zatzymania? c) Jaką część piewotnej enegii staciłby elekton pzechodzący pzez pole kończące się nagle po.8 cm? a) 7. cm b).9* -8 s c)%. W obsza pola elektycznego o natęŝeniu E=.* N/C (skieowanym do góy) pomiędzy dwiema ównoległymi, naładowanymi płytami, tuŝ pzy kawędzi dolnej płyty wpada elekton pouszający się z pędkością v=6.* 6 m/s pod kątem θ=45 względem wektoa E. Płyty mają szeokość l=. cm i są odległe od siebie o d=. cm. Czy elekton udezy w któąś z płyt, a jeśli tak to w któym miejscu? Udezy w góną płytę.7 cm od kawędzi. Oaz zadania ze skyptu Pawo Gaussa

3 4. Ładunek punktowy q znajduje się w jednym z ogów sześcianu o boku a. Jaki stumień pzepływa pzez z kaŝdą ze ścian sześcianu? Dla ścian stykających się z ładunkiem Φ E =, dla pozostałych Φ = q / E 4 ε 5. Wyznaczyć natęŝenie pola elektycznego gęstość dowolnym punkcie oddalonym o od nieskończenie długiej nici naładowanej gęstością liniową gęstością ładunku. E = πε 6. Pzestzenna gęstość ładunku nieskończonego walca gęstość pomieniu R gęstość wynosi ρ. Wyznaczyć natęŝenie pola elektycznego gęstość dowolnym punkcie pzestzeni. R ρ E = dla R ε ρ E = dla R ε 7. Pzestzenna gęstość ładunku nieskończonej wastwy o gubości a wynosi ρ. Wyznaczyć natęŝenie pola w dowolnym punkcie pzestzeni. ρa x a E = dla x ε x ρx a E = dla x ε 8. Cienkościenna ua metalowa ma pomień R. Na powiezchni uy zgomadzony jest ładunek o gęstości liniowej. Obliczyć natęŝenie pola elektycznego w całej pzestzeni. E= dla <R; E = dla >R πε 9. W objętości niepzewodzącej kuli o pomieniu R zawiea zgomadzony jest (ównomienie ozłoŝony) ładunek. Znaleźć watość natęŝenia pola E oaz potencjału V w całej pzestzeni. Poównać wynik z tym któy otzymamy dla takiej samej kuli wykonanej z mateiału pzewodzącego na któej ównieŝ jest zgomadzony ładunek. Dla kuli niepzewodzącej: E = R ; V = dla <R R R E = ; V = dla >R. Dla kuli pzewodzącej: E = ; V = dla <R R E = ; V = dla >R.. Metalowa kula o pomieniu a zawiea ładunek. Kulę otacza metalowa powiezchnia sfeyczna o pomieniu wewnętznym b i pomieniu zewnętznym c. Powłoka zawiea

4 ładunek. Obliczyć watość natęŝenia pola E w całej pzestzeni. Opisać ozkład ładunku w układzie gdy znajduje się on w ównowadze elektostatycznej. E = dla <a E = dla a<<b πε E = dla b<<c E = dla >c Ładunek zgomadzony jest na powiezchni kuli. Na wewnętznej stonie powiezchni sfeycznej jest zgomadzony ładunek -. Na zewnętznej stonie powiezchni znajduje się ładunek.. Dwie duŝe metalowe płyty umieszczono napzeciw siebie. Na wewnętznych powiezchniach płyt zgomadzone są ładunki o gęstościach powiezchniowych odpowiednio +σ i -σ. Jakie jest natęŝenie pola E w punktach a)na lewo od płyt, b)pomiędzy płytami, c) na pawo od nich. RozwaŜyć te punkty, dla któych odległość od płyt jest duŝo mniejsza od ich ozmiau. a)e=; b) E = σ ε ; c) E=. Mała kula o masie m=mg ma ładunek q=* -8 C. Wisi ona na pzytwiedzonej do duŝej niepzewodzącej płyty jedwabnej nici, któa twozy kąt π/6 z płytą. Oblicz powiezchniową gęstość ładunku płyty. mgε σ = =5.* -6 C/m q. Sfea metalowa o pomieniu R otoczona jest kulistą wastwą dielektyka o względnej pzenikalności elektycznej ε i gubości d oaz dugą sfeą o pomieniu R umieszczoną współśodkowo. Ładunek mniejszej sfey wynosi. Wiedząc, Ŝe spełniony jest waunek R + d R, wyznaczyć watość natęŝenia pola elektycznego oaz potencjału w funkcji odległości od śodka kuli. E = ; ( εr + d ) R ( R + d ) V = dla < R ε E = ε ; ( ε ) V = + ε ε R + d E = ; V = dla > R + d Oaz zadania ze skyptu ( ) dla R < R + d <

5 Potencjał 4. Dwie duŝe ównoległe, pzewodzące płyty znajdują się w odległości d=cm i mają jednakowe lecz o pzeciwnych znakach ładunki na napzeciwległych powiezchniach. Na elekton umieszczony w połowie dogi między dwiema płytami działa siła F=.6* -5 N. Jaka jest óŝnica potencjałów między płytami? F V = d =V e 5. Obliczyć pacę potzebna do umieszczenia dwóch ładunków +q i dwóch ładunków q w wiezchołkach kwadatu o boku a, w taki sposób, Ŝe ładunki o tych samych znakach znajdują się w wiezchołkach pzeciwnych. =.q ε a W 6. Jaką óŝnicę potencjałów musi pzebyć elekton, aby (zgodnie z mechaniką Newtona) uzyskał pędkość ówną pędkości światła. UŜywając elatywistycznego wyaŝenia na enegię kinetyczną wyazić zeczywistą pędkość elektonu osiągnięta po pzebyciu obliczonej óŝnicy potencjałów. mec V = =.6* 5 V;.75c e 7. Dwa elektony znajdują się w odległości d=.m od siebie. Tzeci elekton zostaje wystzelony z nieskończoności i zatzymuje się w połowie dogi między dwoma pozostałymi elektonami. Obliczyć jego pędkość początkową. v = e =. m/s πε m d e 8. Obliczyć a) potencjał elektyczny wytwozony pzez jądo wodou w śedniej odległości kąŝącego elektonu (=5.* - m), b) elektyczną enegię potencjalną atomu, gdy elekton znajduje się w tej odległości, c) kinetyczną enegię elektonu, zakładając, Ŝe pousza się on po obicie kołowej o pomieniu i śodku w jądze, c) ile potzeba enegii Ŝeby zjonizować atom wodou. a)+7 V ; b)-7 V ; c).6 ev ; d).6 ev 9. Dwie metalowe kule o pomieniu.m mają ładunki ówne +.* -8 C i -.* -8 C. Zakładamy, Ŝe ozłoŝone ównomienie. Odległość pomiędzy śodkami kul wynosi.m Obliczyć: a) potencjał w punkcie znajdującym się w połowie dogi między ich śodkami oaz b) potencjał kaŝdej z kul. a) -8 V; b)+9 V, -9 V. Pzestzeń między dwiema współosiowymi kulami o pomieniach R i R jest wypełniona niepzewodzącym mateiałem o jednoodnej gęstości ładunku ρ. Znaleźć potencjał elektyczny V jako funkcję odległości od śodka kul, ozpatując obszay a)<r, b)r <<R, c) >R. ρ a) ( R R ) ε

6 b) c) ρ ε ρ ε R R R ( ) R. W stonę duŝej metalowej płyty naładowanej z powiezchniową gęstością ładunku σ=-* -6 C/m został wystzelony elekton o enegii E= ev. Z jakiej odległości został on wystzelony jeśli wiadomo, Ŝe dotał dokładnie do powiezchni płyty. Eε x = =.885mm eσ Kondensatoy i enegia pola. Znaleźć pojemność kondensatoa cylindycznego o pomieniach okładek R i R i długości L. πε L C = R ln R. Kondensato o pojemności C=pF naładowano do óŝnicy potencjałów V =5V i odłączono od bateii. Następnie kondensato połączono ównolegle z dugim kondensatoem początkowo nienaładowanym. Jaka jest pojemność dugiego kondensatoa C jeśli miezona óŝnica potencjałów zmalała do V =5V C =4pF 4. RóŜnicę potencjałów V=V pzyłoŝono do połączonych szeegowo kondensatoów o C =. µf, C =8.µF. a) Jaki jest ładunek i óŝnica potencjałów na kaŝdym z kondensatoów? b) Naładowane kondensatoy ozłączono i połączono azem ich dodatnie oaz ujemne okładki azem, nie pzykładając Ŝadnego napięcia zewnętznego. Jaki jest ładunek i óŝnica potencjałów na kaŝdym z kondensatoów? c) Naładowane kondensatoy z punktu (a) ozłączono i połączono ze sobą okładki o pzeciwnych znakach. Jaki jest ładunek i óŝnica potencjałów na kaŝdym z kondensatoów? a) q =q =4.8* -4 C; V =4V, V =6V b) q =.9* -4 C, q =7.7* -4 C; V =V =96V c) q =q =; V =V = 5. Płytka miedziana o gubości b jest umieszczona dokładnie w połowie odległości między okładkami płaskiego kondensatoa, któego okładki mają powiezchnię A i są odległe o d. Jaka jest pojemność a) pzed, b) po umieszczeniu płytki. ε A a) ε ; b) A d d b 6. Okładki duŝego póŝniowego kondensatoa płaskiego, między któymi odległość jest ówna d, połączone są pzewodnikiem. Pomiędzy okładkami znajduje się metalowa płytka o ładunku elektycznym. Znaleźć całkowity ładunek q, jaki pzepłynie pzez pzewód jeŝeli płytkę pzesuniemy o odległość x w kieunku postopadłym do okładek. Opó pzewodnika zaniedbujemy. Czy wynik ulegnie zmianie jeśli pzestzeń pomiędzy okładkami wypełnimy dielektykiem o względnej pzenikalności elektycznej ε.

7 q = x, nie zaleŝy od watości ε. d 7. Płaski kondensato o okładka o powiezchni A=4cm i odstępie d=mm naładowano do napięcia V=6V. Znaleźć a) pojemność, b)wielkość ładunku na kaŝdej okładce, c)zmagazynowaną enegię, d)pole elektyczne pomiędzy okładkami, e)gęstość enegii pomiędzy okładkami. a) C=.5* - F; b ).* -8 C; c) 6.* -6 J; d) 6.* -6 J; e).6j/m 8. Płaski kondensato powietzny ma pojemność C=pF. a) Jaka jest jego enegia jeśli óŝnica potencjałów wynosi V=5V? b)czy moŝna obliczyć gęstość enegii pomiędzy okładkami? a) C=.* -7 J; b) nie 9. Bioąc pod uwagę początkową pojemność C znaleźć pacę jaką wykonano umieszczając miedzianą płytkę z zadania 5 jeŝeli a) óŝnica potencjałów jest stała, b) ładunek jest stały. a) CV ; b) CV 4 4. a) JeŜeli podwoi się óŝnica potencjałów w cylindycznym kondensatoze, to jak zmieni się zmagazynowana w nim enegia? b) JeŜeli podwoi się pomienie wewnętznej i zewnętznej okładki utzymując stały ładunek, to jak zmieni się zmagazynowana enegia? a) wzośnie cztey azy ; b) nie zmieni się 4. Obliczyć siłę z jaką pzyciągają się okładki kondensatoa płaskiego o okładkach o powiezchni A na któych zgomadzony jest ładunek q, obliczając pacę potzebną na ozsunięcie okładek z x do x+dx. q F = ε A 4. Wyznaczyć pojemność kondensatoa płaskiego, któy wypełniony jest dielektykiem o względnej pzenikalności ε(x), będącej ciągłą funkcją odległości od okładek kondensatoa. Odległość pomiędzy okładkami wynosi d, pole powiezchni okładek jest ówne A. a) = d dx ε x ε S ( ) C Oaz zadania oaz

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Prawo Gaussa. Potencjał elektryczny.

Prawo Gaussa. Potencjał elektryczny. Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla

Bardziej szczegółowo

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1.

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1. Wykład 9 7. Pojemność elektyczna 7. Pole nieskończonej naładowanej wastwy z σ σładunek powiezchniowy S y ds x S ds 8 maca 3 Reinhad Kulessa Natężenie pola elektycznego pochodzące od nieskończonej naładowanej

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

Pola elektryczne i magnetyczne

Pola elektryczne i magnetyczne Pola elektyczne i magnetyczne Zadania z ozwiązaniami Pojekt współfinansowany pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego Zadanie 1 Cząstka alfa (jądo atomu helu) ma masę m = 6.64*1 7

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE

Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

XIX. PRAWO COULOMBA Prawo Coulomba

XIX. PRAWO COULOMBA Prawo Coulomba XIX PRAWO COULOMBA 191 Pawo Coulomba Wielkość oddziaływania cząstki z otaczającymi ją obiektami zależy od jej ładunku elektycznego, zwykle oznaczanego pzez Ładunek elektyczny może być dodatni lub ujemny

Bardziej szczegółowo

Część I Pole elektryczne

Część I Pole elektryczne Mateiały pomocnicze dla studentów Studiów Zaocznych Wydz Mechatoniki semest II Część I Pole elektyczne Ładunek elektyczny Q wytwaza pole elektyczne, do opisu któego możemy wykozystać dwie wielkości: natężenie

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

cz.2 dr inż. Zbigniew Szklarski

cz.2 dr inż. Zbigniew Szklarski Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

ROZDZIAŁ 2. Elektrotechnika podstawowa 23

ROZDZIAŁ 2. Elektrotechnika podstawowa 23 lektotechnika podstawowa 3 ROZDZIAŁ lektostatyka. Kondensatoy + Nieuchome (niezmienne) ładunki elektyczne ozmieszczone w śodowisku dielektycznym są źódłami pola elektostatycznego. W paktyce model taki

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW 4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych

Bardziej szczegółowo

Elektrostatyka. A. Sieradzki IF PWr. Ogień Świętego Elma

Elektrostatyka. A. Sieradzki IF PWr. Ogień Świętego Elma A. Sieadzki I PW Elektostatyka Wykład Wocław Univesity of Technology 3-3- Ogień Świętego Elma Ognie świętego Elma (ognie św. Batłomieja, ognie Kastoa i Polluksa) zjawisko akustyczno-optyczne w postaci

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Elektrostatyczna energia potencjalna. Potencjał elektryczny

Elektrostatyczna energia potencjalna. Potencjał elektryczny Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Prawo powszechnego ciążenia Newtona

Prawo powszechnego ciążenia Newtona Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =

Bardziej szczegółowo

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5 ELEKTROSTATYKA 2.1 Obliczyć siłę, z jaką działają na siebie dwa ładunki punktowe Q 1 = Q 2 = 1C umieszczone w odległości l km od siebie, a z jaką siłą - w tej samej odległości - dwie jednogramowe kulki

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Zjawisko indukcji. Magnetyzm materii.

Zjawisko indukcji. Magnetyzm materii. Zjawisko indukcji. Magnetyzm mateii. Wykład 6 Wocław Univesity of Technology -04-0 Dwa symetyczne pzypadki PĘTLA Z PĄDEM MOMENT SIŁY + + POLE MAGNETYCZNE POLE MAGNETYCZNE P A W O I N D U K C J I MOMENT

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami Elektrostatyka Zadanie 1. Dwa jednoimienne ładunki po 10C każdy odpychają się z siłą 36 10 8 N. Po dwukrotnym zwiększeniu odległości między tymi ładunkami i dwukrotnym zwiększeniu jednego z tych ładunków,

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz POLE MAGNETYCZNE 1. Obsewacje pola magnetycznego 2. Definicja pola magnetycznego i siła Loentza 3. Ruch ładunku w polu magnetycznym; synchoton 4. Siła działająca na pzewodnik pądem; moment dipolowy 5.

Bardziej szczegółowo

ELEKTROSTATYKA. cos tg60 3

ELEKTROSTATYKA. cos tg60 3 Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

Zasady dynamiki ruchu obrotowego

Zasady dynamiki ruchu obrotowego DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Enegetyczny Podstawy elektotechniki Pof. d hab. inż. Juliusz B. Gajewski, pof. zw. PW Wybzeże S. Wyspiańskiego 7, 5-37 Wocław Bud. A4 Staa kotłownia, pokój 359 Tel.: 7 3 3 Fax: 7 38

Bardziej szczegółowo

Energia kulombowska jądra atomowego

Energia kulombowska jądra atomowego 744 einhad Kulessa 6. Enegia kulombowska jąda atomowego V Enegię tą otzymamy w opaciu o wzó (6.6) wstawiając do niego wyażenie na potencjał (6.4) pochodzący od jednoodnie naładowanej kuli. Obliczenie wykonamy

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia

Bardziej szczegółowo

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E = 3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

10. Ruch płaski ciała sztywnego

10. Ruch płaski ciała sztywnego 0. Ruch płaski ciała sztywnego. Pędkość w uchu płaskim Metody wyznaczania pędkości w uchu płaskim y x / chwiowy śodek pędkości. naitycznie Dane:, Szukane: s / /. Na podstawie położenia chwiowego śodka

Bardziej szczegółowo

r. Wektorem o tym samym kierunku jest wektor 6. Dwie cząstki zostały wysłane z początku układu współrzędnych i po pewnym czasie ich połoŝenia

r. Wektorem o tym samym kierunku jest wektor 6. Dwie cząstki zostały wysłane z początku układu współrzędnych i po pewnym czasie ich połoŝenia Rachunek wektoowy 2. Dany jest wekto a = 4i 7k. Wektoem o tym samym kieunku jest wekto 1 6. Dwie cząstki zostały wysłane z początku układu współzędnych i po pewnym czasie ich połoŝenia są opisane wektoami:

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku

Bardziej szczegółowo

Fizyka. Wykład 2. Mateusz Suchanek

Fizyka. Wykład 2. Mateusz Suchanek Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson

Bardziej szczegółowo

21 ELEKTROSTATYKA. KONDENSATORY

21 ELEKTROSTATYKA. KONDENSATORY Włodzimierz Wolczyński Pojemność elektryczna 21 ELEKTROSTATYKA. KONDENSATORY - dla przewodników - dla kondensatorów C pojemność elektryczna Q ładunek V potencjał, U napięcie jednostka farad 1 r Pojemność

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana

Bardziej szczegółowo

UKŁADY KONDENSATOROWE

UKŁADY KONDENSATOROWE UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej

Bardziej szczegółowo

magnetyzm ver

magnetyzm ver e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Siły centralne, grawitacja (I)

Siły centralne, grawitacja (I) Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,

Bardziej szczegółowo

T E S T Z F I Z Y K I

T E S T Z F I Z Y K I 1* Miejsce egzainu 2* Nue kandydata 3* Kieunek studiów 4 Liczba uzyskanych punktów * wypełnia kandydat /100 T E S T Z F I Z Y K I Test ekutacyjny dla kandydatów na studia w Polsce WERSJA I - A 2014 ok

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

17.1.2 Zachowanie ładunku Jednym z podstawowych praw fizyki jest zasada zachowania ładunku. Zasada ta sformułowana przez Franklina mówi, że

17.1.2 Zachowanie ładunku Jednym z podstawowych praw fizyki jest zasada zachowania ładunku. Zasada ta sformułowana przez Franklina mówi, że MODUŁ VI Moduł VI Pole elektyczne 17 Pole elektyczne Pzechodzimy teaz do omówienia oddziaływania elektomagnetycznego. Oddziaływanie to ma fundamentalne znaczenie bo pozwala wyjaśnić nie tylko zjawiska

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz

Bardziej szczegółowo

Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012 r. zawody II stopnia (rejonowe)

Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012 r. zawody II stopnia (rejonowe) Kod ucznia:. Ilość punktów: Konkus Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012. zawody II stopnia (ejonowe) Witamy Cię na dugim etapie Konkusu Matematycznego. Pzed pzystąpieniem

Bardziej szczegółowo

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz

Bardziej szczegółowo

Zastosowanie zasad dynamiki Newtona.

Zastosowanie zasad dynamiki Newtona. Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.

Bardziej szczegółowo

Wykład 10. Reinhard Kulessa 1

Wykład 10. Reinhard Kulessa 1 Wykład 1 14.1 Podstawowe infomacje doświadczalne cd. 14. Pąd elektyczny jako źódło pola magnetycznego 14..1 Pole indukcji magnetycznej pochodzące od nieskończenie długiego pzewodnika z pądem. 14.. Pawo

Bardziej szczegółowo

Fizyka 10. Janusz Andrzejewski

Fizyka 10. Janusz Andrzejewski Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety

Bardziej szczegółowo

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy: Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,

Bardziej szczegółowo

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Wybrane zagadnienia z elektryczności

Wybrane zagadnienia z elektryczności Wybane zaganienia z elektyczności Pomia łaunku elektycznego oświaczenie Millikana atomize płaszczyzna (+) bateia kople oleju mikoskop F el F g płaszczyzna (-) F g F el mg mg e.6 0 9 C Łaunek elektyczny

Bardziej szczegółowo

ε = dw dq. (25.1) Rys Obwód o jednym oczku

ε = dw dq. (25.1) Rys Obwód o jednym oczku XXV. OBWODY ELEKTRYCZNE 25.1. Obwody elektyczne o jednym oczku Aby wytwozyć stały pzepływ ładunku, jest potzebne uządzenie, któe wykonując pacę nad nośnikami ładunku, utzymuje óżnicę potencjałów między

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

Plan wykładu. Rodzaje pól

Plan wykładu. Rodzaje pól Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo