Wykład 18 Dielektryk w polu elektrycznym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 18 Dielektryk w polu elektrycznym"

Transkrypt

1 Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości. A zatem dielektryk zachowuje się w polu elektrycznym całkowicie odmiennie od zachowania się przewodników. Każdy dielektryk przy wprowadzeniu w obręb pola elektrycznego uzyskuje makroskopowy elektryczny moment dipolowy. To zjawisko nosi nazwę polaryzacji, a mechanizm polaryzacji w znacznym stopniu zależy od tego, z jakich cząstek jest zbudowany dielektryk. Jeżeli w cząstkach dielektryka środki ładunków dodatnich i ujemnych pokrywają się ze sobą, to taki cząstki nazywamy niepolarnymi, a dielektryk zbudowany z tych cząstek będziemy nazywały dielektrykiem niepolarnym. Jeżeli dielektryk niepolarny znajduje się w polu elektrycznym, wówczas dodatnie ładunki cząstek (jądra atomów) przesuwają się wzdłuż linii pola. Natomiast ujemne ładunki (elektrony) przesuwają się w przeciwnym kierunku. W deformowanej w polu elektrycznym cząstce środek ładunków ujemnych nie pokrywa się ze środkiem ładunków dodatnich, a zatem w polu elektrycznym cząstka staje się dipolem elektrycznym indukowanym o momencie dipolowym p q l. 4

2 Dipole indukowane ustawione są od razu równolegle do linii pola elektrycznego. Po wyłączeniu pola elektrycznego cząstki wracają do stanu wyjściowego, a dielektryk traci indukowany moment dipolowy. Niektóre cząstki (na przykład molekuły wody H O ) wskutek asymetrycznej budowy posiadają moment dipolowy. Takie cząstki nazywamy polarnymi, a dielektryki zbudowane z polarnych cząstek będziemy nazywały dielektrykami polarnymi. W cieczach i gazach zawierających polarne cząstki w zerowym zewnętrznym polu elektrycznym, chaotyczne ruchy cieplne cząstek powodują, że wypadkowy makroskopowy moment dipolowe substancji wynosi zero. Zazwyczaj, wewnętrzne siły elektryczne (siły oddziaływania elektronów i jąder cząstek), odpowiedzialne za asymetryczną budowę polarnych cząstek są znacznie większe niż elektryczne siły oddziaływania cząstki z zewnętrznym polem elektrycznym. A zatem zewnętrzne pole elektryczne nie jest w stanie deformować cząstkę. W jednorodnym zewnętrznym polu elektrycznym na ładunki dipola elektrycznego działają siły F ±. Ta para sił tworzy wypadkowy moment sił M [ r q] [ p ], (8.) który powoduje, że dipol zaczyna obracać się i przychodzi do stanu gdy moment sił jest równy zeru. Ze wzoru (8.) wynika, że ten stan równowagowy następuje, gdy p. A zatem w dielektrykach polarnych zewnętrzne pole elektryczne stara się ustawić dipole elektryczne wzdłuż linii pola, co powoduje, że dielektryk uzyskuje makroskopowy moment dipolowy. Przeciwdziałają temu ruchy cieplne dipoli. zorientowaną. Polaryzacja dielektryków polarnych zwana jest polaryzacją dipolową lub polaryzacja 5

3 Jeżeli pole elektryczne nie jest polem jednorodnym, to jak widać z rysunku (b) siły F ± nie są zrównoważone i dipol stara się przesunąć się w obszar pola o największym natężeniu pola. Wektor polaryzacji dielektryka. Podatność elektryczna dielektryka W zewnętrznym polu elektrycznym każdy mały element objętości dielektryka wyniku polaryzacji uzyskuje dipolowy moment elektryczny V w p N p i i, (8.) gdzie N oznacza liczbę dipoli zawartych w objętości V dielektryka, a p i - moment elektryczny i -tego dipolu. Wektorem polaryzacji dielektryka nazywamy wielkość P p dp lim V V dv C m. (8.3) Dipole elektryczne p i wytwarzają w spolaryzowanym dielektryku swoje pole elektryczne - pole polaryzacji. Zgodnie z zasadą superpozycji pole polaryzacji oraz zewnętrzne pole elektryczne, pochodzące od ładunków znajdujących się poza dielektrykom, tworzą we wnętrzu dielektryka wypadkowe pole elektryczne o natężeniu +. (8.4) Jeżeli wyłączymy zewnętrzne pole elektryczne, to w większości dielektryków pole polaryzacji wkrótce znika. Istnieją jednak dielektryki - elektrety, które są zdolne podtrzymywać długo stan spolaryzowanego dielektryka. Z doświadczeń wynika, że dla większości z dielektryków wektor polaryzacji P ( x, y, z) jest wprost proporcjonalny do natężenia pola elektrycznego działającego na cząstki we wnętrzu dielektryka P χ χ ( + ). (8.5) Współczynnik χ nosi nazwę podatności dielektrycznej substancji. 6

4 Substancje, dla których jest słuszny wzór (8.5) będziemy nazywały izotropowymi dielektrykami. W przypadku niektórych krystalicznych dielektryków - kryształów, z doświadczeń wynika, że kierunek wektora polaryzacji P nie pokrywa się z kierunkiem wektora pola elektrycznego. W tym przypadku wzór (8.5) przyjmuje postać P i ( χ + χ χ ) +. (8.6) ix x iy y iz z Tu wskaźnik i x, y, z określa składowe wektora polaryzacji. Dziewięć wielkości χ ij tworzą tak zwany tensor podatności dielektrycznej. Substancje, dla których jest słuszny wzór (8.6) będziemy nazywały anizotropowymi dielektrykami. Zwróćmy uwagę, że nie wszystkie dielektryki zachowują się w polu elektrycznym zgodnie ze wzorami (8.5) albo (8.6). Istnieje liczna grupa kryształów, która posiada niezerową polaryzacji nawet w zerowym zewnętrznym polu elektrycznego. Takie uporządkowane elektrycznie kryształy nazywamy ferroelektrykami. Dla ferroelektryków przenikalność dielektryczna jest funkcją zewnętrznego pola elektrycznego. Pole elektryczne we wnętrzu dielektryka Dla tego, żeby znaleźć pole elektryczne (8.4) w dielektryku, rozpatrzmy płaski kondensator między okładkami którego znajduje się izotropowy dielektryk. Pole elektryczne wytwarzane ładunkami kondensatora jest równe σ (8.7) i jest skierowane od lewej okładki kondensatora ku prawej okładce. σ jest gęstością powierzchniowa ładunku. W wyniku polaryzacji dielektryka (w polu elektrycznym kondensatora) na powierzchni dielektryka powstają ładunki elektryczne: na lewej powierzchni ujemne końce dipoli elektrycznych, natomiast na prawej powierzchni - dodatni ładunki spolaryzowanych dipoli elektrycznych. We wnętrzu dielektryka około ujemnego końca dipolu znajduje się w pobliżu dodatni koniec sąsiedniego spolaryzowanego dipolu, wskutek czego wypadkowy ładunek wewnątrz dielektryku wynosi zeru. 7

5 Nie skompensowane ładunki elektryczne na powierzchni dielektryka nazywamy ładunkami związanymi. Właśnie ładunki związane na powierzchni dielektryka są źródłem pola polaryzacji. Oznaczając przez σ gęstość powierzchniową ładunku występującego na powierzchni dielektryka (ładunku związanego) dla natężenie pola polaryzacji możemy zapisać σ (8.8) Zwróćmy uwagę, że pole polaryzacji ma kierunek przeciwny do pola zewnętrznego. Rozważmy teraz w dielektryku objętość zorientowanych dipoli. Polaryzacja dielektryka wynosi dv L ds i niech w tej objętości istnieje dn p dn P nd ql, (8.9) dv gdzie n d dn dv - koncentracja dipoli, a q - ładunek dodatni jednego z biegunów dipolu. 8

6 Na powierzchni ds spolaryzowanego dielektryka znajduje się n d ( ds l) dipoli, a zatem całkowity związany ładunek powierzchniowy jest równy dq σ ds ndlds q. (8.) Z tego wzoru wynika, że σ l q P. (8.) n d Tu uwzględniliśmy wzór (8.9). W ogólnym przypadku dowolnej wzajemnej orientacji wektorów i P (patrz wzór (3.6)) można udowodnić, że zamiast wzoru (8.) otrzymujemy σ. (8.) P n Tu P n jest składowa wektora polaryzacji P prostopadła do powierzchni dielektryka. Po podstawieniu (8.) do wzoru (8.8) i uwzględnieniu, że wektor polaryzacji P jest równoległy do pola zewnętrznego, a zatem ma kierunek przeciwny niż pole polaryzacji znajdujemy P W przypadku izotropowych dielektryków P χ χ ( + ), a zatem (8.3) χ ( + ). (8.4) Skąd χ + χ. (8.5) Pole elektryczne we wnętrzu dielektryka składa się z sumy wektorowej pola zewnętrznego oraz pola polaryzacji. Biorąc pod uwagę wzór (8.5) dla pola elektrycznego we wnętrzu dielektryka otrzymujemy +. (8.6) + χ 9

7 Wprowadzając pojęcie przenikalności elektrycznej : + χ, (8.7) wzór (8.6) możemy zapisać w postaci. (8.8) Ponieważ >, ze wzoru (8.8) otrzymujemy, że pole elektryczne w dielektryku jest zawsze mniejsze niż pole zewnętrzne. jest równa Różnica potencjałów pomiędzy okładkami kondensatora wypełnionego dielektrykiem U d U ϕ ϕ d, (8.9) gdzie d - odległość między okładkami kondensatora; kondensatora próżniowego. U d - różnica potencjałów Więc obecność dielektryka pomiędzy okładkami kondensatora powoduje zmniejszenie różnicy potencjałów ( ) - krotne, w porównanie z kondensatorem próżniowym o tym samym ładunku. A więc pojemność kondensatora wypełnionego dielektrykiem ( C Q U ) wzrasta i wynosi C C. (8.) Tu C Q U - pojemność kondensatora próżniowego. Wektor indukcji elektrycznej. Prawo Gaussa dla wektorów, D, P Wyżej udowodniliśmy, że w dielektryku pole elektryczne składa się z sumy wektorowej pola zewnętrznego oraz pola polaryzacji. Źródłem pola zewnętrznego są ładunki swobodne (ładunki na okładkach kondensatora), natomiast źródłem pola polaryzacji są ładunki związane, które powstają wskutek polaryzacji dielektryka. Oznaczając przez Q sw algebraiczną sumę ładunków swobodnych, a przez Q p - algebraiczną sumę ładunków związanych, prawo Gaussa dla pola elektrycznego możemy zapisać w postaci 3

8 S ds ( Qsw + Q p ). (8.) Wzór (8.) jest mało przydatny dla wyliczenia pola elektrycznego w dielektryku ponieważ ładunek polaryzacyjny Q p w prawej części równania (8.) jest funkcją niewiadomego pola. Jednak wyliczenie pola w dielektryku znacznie może uprościć się jeżeli wprowadźmy dodatkową wielkość nazywaną indukcją elektryczną D + P. (8.) Korzystając z (8.5) i (8.7), wzór (8.) możemy zapisać w postaci D + P + χ ( + χ. (8.3) ) Najpierw zwróćmy uwagę, że wektor D ma taką samą wartość na zewnątrz oraz wewnątrz dielektryka. Istotnie, zgodnie ze wzorem (8.8) wektor D we wnętrzu dielektryka wynosi D. (8.4a) Na zewnątrz dielektryka P, a zatem ze wzoru (8.) mamy D. (8.4b) Z porównania (8.4a) i (8.4b) widzimy że wektor indukcji elektrycznej D z dokładnością do współczynnika pokrywa się z zewnętrznym polem elektrycznym. Źródłem pola zewnętrznego są ładunki swobodne, a zatem dla tego pola prawo Gaussa ma postać S Q ds sw. (8.5) Po podstawieniu (8.4) do wzoru (8.5) otrzymujemy prawo Gaussa dla wektora D S D ds Q sw. (8.6) 3

9 W prawej stronie równania (8.6) jest tylko całkowity ładunek swobodny. Korzystając ze wzorów (8.) i (8.6) łatwo znaleźć prawo Gaussa dla wektora P : S ds D ds P ds ( Qsw + Q S S p ). (8.7) Skąd, z uwzględnieniem (8.6) otrzymujemy S P ds Q p. (8.8) Skorzystamy teraz z twierdzeniem Gaussa - Ostrogradskiego S A ds V diva dv. (8.9) Tu A ( x, y, z) - dowolne pole wektorowe. Biorąc pod uwagę wzór (8.9) ze wzoru (8.) otrzymujemy V div ( ρ sw + ρ ) p dv, (8.3) gdzie ρ sw - gęstość objętościowa ładunków swobodnych, a ρ p - gęstość objętościowa ładunków związanych. Skąd div ( ρ sw + ρ ) p. (8.3) W podobny sposób ze wzorów (8.6) i (8.8) otrzymujemy divd ρ sw, (8.3) divp ρ p. (8.33) Wzory (8.3) - (8.33) nazywają się różniczkowymi (lokalnymi) postaciami praw Gaussa dla wektorów, D, P. 3

10 Warunki graniczne dla wektorów, D, P na powierzchni styku dielektryków Z praw Gaussa dla wektorów, D, P wynika, że wektor indukcji pola elektrycznego D wiąże się wyłącznie z ładunkami swobodnymi. A zatem linii pola wektora D zaczynają się i kończą się na ładunkach swobodnych. Wektor polaryzacji P jest związany wyłącznie z ładunkami związanymi. A więc linii pola wektora P zaczynają się i kończą się na ładunkach polaryzacyjnych. Wektor natężenia pola elektrycznego jest związany ze wszystkimi ładunkami. A zatem jedna część linii pola wektora zaczynają się i kończą się na ładunkach swobodnych, a druga część linii pola wektora zaczynają się na ładunkach swobodnych (albo związanych) a kończy się na ładunkach związanych (albo swobodnych). Zachowanie wektora D na powierzchni styku dielektryków znajdziemy korzystając z prawa Gaussa dla tego wektora D P Na powierzchni styku dielektryków brak ładunków swobodnych, a zatem stosując prawo Gaussa dla wektora D (8.6) otrzymujemy: D ds D ds Q. Skąd mamy Dn S DnS albo ( ) n sw D D, n n. (8.34) n n 33

11 Zachowanie wektora na powierzchni styku dielektryków znajdziemy korzystając z potencjalności pola elektrostatycznego. Praca sił potencjalnych wzdłuż zamkniętego obwodu jest równa zeru ( dl ) τ dl. Skąd mamy τ l τ l albo, τ τ D τ D τ. (8.35) 34

12 Ze wzorów (8.34) i (8.35) wynika następujący wzór na załamanie linii pola elektrycznego na powierzchni styku dielektryków tg tgα α. (8.36) Zachowanie wektora P na powierzchni styku dielektryków znajdziemy korzystając ze wzoru (8.): σ P. n P. (8.37) n P n σ σ nergia układu ładunków. nergia pola elektrycznego W mechanice udowodniliśmy, że energia potencjalna dwóch oddziałujących grawitacyjnie punktów materialnych jest równa prace którą musimy wykonać przy przenoszeniu jednego z punktów w nieskończoność. Siła Coulomba, określająca oddziaływania dwóch ładunków Q i Q jest podobna do siły grawitacyjnej, a zatem energia potencjalna oddziaływania dwóch ładunków wynosi W A k r Q Q r QQ dr k r. (8.38) Tu k 4π. Zapiszmy wzór (8.38) w postaci QQ Qϕ + Qϕ W k, (8.39) r gdzie ϕ Q k r jest potencjałem pola elektrycznego wytwarzanego ładunkiem Q w miejscu gdzie znajduje się ładunek Q. Odpowiednio ϕ Q k r 35

13 jest potencjałem pola elektrycznego wytwarzanego ładunkiem Q w miejscu gdzie znajduje się ładunek Q. Jeżeli teraz do układu dwóch ładunków Q i Q dodajemy trzeci ładunek Q 3, to do energii potencjalnej W musimy dodać energię oddziaływania ładunków Q 3 i Q QQ3 Qϕ3 + Q3ϕ3 W 3 k, (8.4) r 3 oraz energię oddziaływania ładunków Q 3 i Q QQ3 Qϕ3 + Q3ϕ3 W 3 k. (8.4) r 3 Wtedy całkowita energia potencjalna układu trzech ładunków wynosi Q ( ϕ + ϕ 3 ) + Q W W ( ϕ + ϕ + W 3 3 ) + Q + W 3 ( ϕ ϕ 3 ) 3 Q i i ϕ i. (8.4) Tu ϕi ϕij jest potencjałem pola elektrycznego w miejscu znajdowania się ładunku Q i j i wytwarzanego pozostałymi ładunkami. W przypadku N ładunków uogólniając wzór (8.4) otrzymujemy następujący wzór na energię potencjalną N oddziałujących ładunków W N Q i i ϕ i. (8.43) Rozważmy teraz odosobniony przewodnik, którego ładunek, pojemność oraz potencjał wynoszą: Q, C, ϕ. Zmniejszymy ładunek przewodnika o mały ładunek dq C dϕ. Przy oddaleniu tego ładunku od przewodnika na nieskończoność siły elektryczne będą wykonywały pracę da ϕ dq Cϕdϕ. A zatem przy całkowitym rozładowaniu przewodnika od Q do zera, siły elektryczne wykonują pracę Cϕ A da C ϕdϕ. (8.44) ϕ 36

14 Wzór (8.44) określa energię potencjalną naładowanego przewodnika Cϕ W. (8.45) W podobny sposób znajdujemy, że energia potencjalna kondensatora wynosi W CU QU Q. (8.46) C Tu Q - ładunek jednej z okładek kondensatora, a U - napięcie między okładkami kondensatora. Biorąc pod uwagę, że w przypadku kondensatora płaskiego C S d i U d, wzór (8.46) możemy zapisać w postaci W CU ( S d) ( d ) Sd D V, (8.47) gdzie V Sd - objętość dielektryka znajdującego się między okładkami kondensatora. potencjalna Ze wzoru (8.47) wynika, że na jednostkę objętości dielektryka przypada energia W D w. (8.48) V Wielkość w, określona wzorem (8.48), nosi nazwę gęstości objętościowej energii pola elektrycznego. W ogólnym przypadku dowolnej wzajemnej orientacji wektorów i D (na przykład w dielektryku anizotropowym) można udowodnić, że zamiast wzoru (8.48) otrzymujemy ( D) w. (8.49) Mimo że wzór (8.48) wyprowadzono dla specjalnego przypadku kondensatora płaskiego, ten wzór a raczej wzór (8.49) jest słuszny ogólnie: jeżeli w punkcie przestrzeni istnieje pole elektryczne o natężeniu, to możemy uważać, że w punkcie tym jest zmagazynowana energia w ilości ( D ) na jednostkę objętości. 37

15 Ponieważ, zgodnie z (8.) D + P, ze wzoru (8.49) otrzymujemy ( D) w ( ) P +. (8.5) Pierwszy wyraz po prawej stronie równania (8.5) określa prace którą musimy wykonać przy wytworzeniu w jednostce objętości pola elektrycznego o natężeniu. Drugi wyraz w równaniu (8.5) jest równy pracy, która wykonuje pole elektryczne przy polaryzacji jednostki objętości dielektryka. Jeżeli pole elektryczne nie jest jednorodne, energię zmagazynowaną w objętości V określa następujące wyrażenie W ( D ) dv V. (8.5) 38

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E

Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E Elektrostatyka Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D=ϱ E=0 D= E Źródłem pola elektrycznego są ładunki, które mogą być: punktowe q [C] liniowe [C/m] powierzchniowe

Bardziej szczegółowo

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Elektrostatyka dielektryki

Elektrostatyka dielektryki Rozdział 2 Elektrostatyka dielektryki 2.1 Stała dielektryczna. Ładunki polaryzacyjne W rozdziale tym będziemy rozważać wpływ izolujących ośrodków dielektryków na oddziaływanie ładunków elektrycznych i

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Temat XXI. Pole Elektryczne w Materii

Temat XXI. Pole Elektryczne w Materii Temat XXI Pole Elektryczne w Materii Dipol elektryczny Proste podejście do dipola E E k r 2 Q 2 l 4 E cos E E cos + - cos 2 2 r l 2 l 4 r l Ql E k k r p r 3 3 p = Ql moment dipolowy Moment dipolowy jako

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny)

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Potencjał pola elektrycznego U ab ΔV W q b a F dx q b a F q dx b a (x)dx U gradv ab ΔV b a dv dv dv x,y,z i j k (x)dx dx dy dz Natężenie pola wskazuje kierunek w którym potencjał

Bardziej szczegółowo

Pojemnośd elektryczna

Pojemnośd elektryczna Pojemnośd elektryczna Tekst jest wolnym tłumaczeniem pliku guide05pdf kursu dostępnego na stronie http://webmitedu/802t/www/802teal3d/visualizations/coursenotes/indexhtm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prawo Coulomba a prawo Newtona Janusz Andrzejewski 2 Natężenie i potencjał pola elektrycznego A q A B q A D q A C q A q 0 D B C A E E E E r r r r 0 0 + + + + + + D

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 2: lektrostatyka cz. 2. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Dygresja matematyczna - operatory Operator przyporządkowuje np. polu skalarnemu odpowiednie

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

Pojemność elektryczna

Pojemność elektryczna Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Pole elektryczne w ośrodku materialnym

Pole elektryczne w ośrodku materialnym Pole elektryczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Stała dielektryczna Stała

Bardziej szczegółowo

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego Wykład 7 8.9 Pole elektryczne na powierzchniach granicznych 8.0 Gęstość energii pola elektrycznego 9. Prąd elektryczny 9. Natężenie prądu, wektor gęstości prądu 9. Prawo zachowania ładunku 9.3 Model przewodnictwa

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 1. Elektrostatyka.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek

Bardziej szczegółowo

znak minus wynika z faktu, że wektor F jest zwrócony

znak minus wynika z faktu, że wektor F jest zwrócony Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,

Bardziej szczegółowo

Elektryczność i magnetyzm

Elektryczność i magnetyzm Elektryczność i magnetyzm Pole elektryczne, kondensatory, przewodniki i dielektryki. Zadanie 1. Dwie niewielkie, przewodzące kulki o masach równych odpowiednio m 1 i m 2 naładowane ładunkami q 1 i q 2

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład szósty 14 marca 019 Z ostatniego wykładu Doświadczenie Millikana Potencjał i pole od dipola

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka

Wykład FIZYKA II. 1. Elektrostatyka Wykład FIZYKA II. Elektrostatyka Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html ELEKTROMAGNETYZM Już starożytni

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA

WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników:

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Zastosowanie metod dielektrycznych do badania właściwości żywności

Zastosowanie metod dielektrycznych do badania właściwości żywności Zastosowanie metod dielektrycznych do badania właściwości żywności Ze względu na właściwości elektryczne materiały możemy podzielić na: Przewodniki (dobrze przewodzące prąd elektryczny) Półprzewodniki

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład siódmy 19 marca 2019 Z ostatniego wykładu Siła działająca na okładkę kondensatora Energia

Bardziej szczegółowo

Wykład 8: Elektrostatyka Katarzyna Weron

Wykład 8: Elektrostatyka Katarzyna Weron Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

ELEKTROSTATYKA. cos tg60 3

ELEKTROSTATYKA. cos tg60 3 Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki

Bardziej szczegółowo

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka

Bardziej szczegółowo

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

Podstawy fizyki sezon 2 1. Elektrostatyka 1

Podstawy fizyki sezon 2 1. Elektrostatyka 1 Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Strumień pola elektrycznego

Strumień pola elektrycznego Powierzchnia Gaussa Właściwości : - jest to powierzchnia hipotetyczna matematyczna konstrukcja myślowa, - jest dowolną powierzchnią zamkniętą w praktyce powinna mieć kształt związany z symetrią pola, -

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa

Bardziej szczegółowo

Elektrostatyka, cz. 2

Elektrostatyka, cz. 2 Podstawy elektromagnetyzmu Wykład 4 Elektrostatyka, cz. Praca, energia, pojemność i kondensatory, ekrany elektrostatyczne Energia Praca w polu elektrostatycznym dw =F dl=q E dl W = L F d L=q L E d L=q

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Część IV. Elektryczność i Magnetyzm

Część IV. Elektryczność i Magnetyzm Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 551 479 p.n.e.) Dialogi, II/15 Wykład 10 Wprowadzenie

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 11: Elektrostatyka dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektron ma masę m e ładunek -e i Każdy proton ma masę m p ładunek

Bardziej szczegółowo

Lekcja 43. Pojemność elektryczna

Lekcja 43. Pojemność elektryczna Lekcja 43. Pojemność elektryczna Pojemność elektryczna przewodnika zależy od: Rozmiarów przewodnika, Obecności innych przewodników, Ośrodka w którym się dany przewodnik znajduje. Lekcja 44. Kondensator

Bardziej szczegółowo

LXVIII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVIII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie. Samochód rajdowy o masie m porusza się po płaskiej, poziomej nawierzchni. Współczynnik tarcia jego kół

Bardziej szczegółowo

2 K A T E D R A F I ZYKI S T O S O W AN E J

2 K A T E D R A F I ZYKI S T O S O W AN E J 2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność

Bardziej szczegółowo

GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW

GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW Nagrzewanie pojemnościowe jest nagrzewaniem elektrycznym związanym z efektami polaryzacji i przewodnictwa w ośrodkach

Bardziej szczegółowo

Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka

Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka Elektrostatyka mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 20 kwietnia 2013 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo