Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "http://www.clausius-tower-society.koszalin.pl/index.html"

Transkrypt

1 yłd rc zminy objętości czynni roboczego rc techniczn w ułdzie otwrtym n przyłdzie turbiny RównowŜność prcy i ciepł w obiegu zmniętym I zsd termodynmii dl zminy stnu msy ontrolnej Szczególne przypdi I zsdy termodynmii w sformułowniu msy ontrolnej Mechnizmy przezywni ciepł: przewodnictwo cieplne onwecj promieniownie cieplne

2 rc zminy objętości czynni roboczego sformułownie msy ontrolnej stn stn obciąŝony tło Sds Fdx d ( S) ( ) dx stłe ciśnienie, przed cłą x AE OGÓNOŚCI: δ d cł t zleŝy od drogi DACZEGO δ? Dltego, Ŝe δ nie jest róŝniczą zupełną!! Do stnu ońcowego moŝn dojść róŝnymi drogmi.

3 b c 0 < 0 > d e f 0 0 < 0 < 0 < wyp rc wyonn przez ułd moŝe być dodtni (przypde, d, e), ujemn (przypde b) lub równ zeru (przypde f). Dl obiegu (przypde c) dl tórego ułd po przeminie wrc do puntu wyjści inną drogą,, wypdow prc równ jest zcieniownemu polu równemu róŝnicy prcy wyonnej przez ułd w trcie przeminy i prcy wyonnej nd ułdem (ujemnej prcy wyonnej przez ułd) w trcie przeminy. Dl przeminy zmniętej: wyp d+ d d wyp δ cł oręŝn dl obiegu (cylu) 3

4 rc techniczn w ułdzie otwrtym n przyłdzie turbiny Część energii rozpręŝjącej się gorącej pry, tór przepływ przez turbinę, npędz wirni, tóry poprzez wł wyonuje prcę techniczną (np npędzjąc genertor). urbinę opuszcz zimn pr o nisim ciśnieniu Do/z objętości ontrolnej, poprzez osłonę ontrolną (czerwon res) przeniją dw strumienie czynni roboczego i prc techniczn objętość ontroln wlot gzu lub pry wylot gzu lub pry prc techniczn genertor Sformułownie OBJĘOŚCI ontrolnej 4

5 RównowŜność prcy i ciepł w obiegu zmniętym ) b) gz gz proces proces b J δ δ J δ δ Z esperymentów wyni, Ŝe cłi oręŝne dl obiegów (przemin cylicznych) z prcy i ciepl są proporcjonlne (równe, gdy przyjmiemy wspólne jednosti, J ) 5

6 6 ierwsz zsd termodynmii dl zminy stnu msy ontrolnej + δ δ + δ δ b b δ δ δ δ c c + δ δ + δ δ b c b c ( ) ( ) δ δ δ δ c de E E E jest funcją stnu; tzn. zleŝy od stnu czyli puntu n digrmie (np. wyznczonego przez prmetry stnu, ). iej włsności nie posidją ciepło i prc δ δ b c

7 ( δδ) ( δδ) E E E c E δ δ E jest energią cłowitą msy ontrolnej energi cłowit energi wewnętrzn + energi inetyczn + energi potencjln E U + E in + E pot ; E in M / ; E pot Mgz Energie E in, E pot zleŝą od msy, prędości i wysoości msy ontrolnej Energi wewnętrzn U zwier wszystie pozostłe formy energii msy ontrolnej (w tym energię termiczną) i jest związn ze stnem termodynmicznym ułdu (jest funcją stnu termodynmicznego) E/M e; U/M u, energie włściwe de 7

8 Szczególne przypdi pierwszej zsdy termodynmii w sformułowniu msy ontrolnej U rzemin wrune wyni dibtyczn 0 U - stł objętość 0 U obieg zmnięty U 0 rozpręŝnie 0 U 0 swobodne 8

9 Relizcj przeminy dibtycznej Ułd relizujący przeminę dibtyczną. Gz znjdujący się w cylindrze zmniętym tłoiem jest dobrze izolowny od otoczeni (nie m wyminy ciepł z otoczeniem). Niewiel zmin obciąŝeni tło powoduje młe zminy ciśnieni gzu i odpowiednie zminy objętości i tempertury. Swobodne rozpręŝnie gzu Ułd relizujący rozpręŝnie swobodne gzu. Jeden z dobrze izolownych zbiorniów jest wypełniony gzem, drugi odpompowny. Zbiornii połączone są rurą z zworem. 9

10 ydwnictwo Nuowe N SA Copyright 005 John iley nd Sons, Inc rzyłd Zmienimy g wody o temperturze 00 o C w prę o temperturze równieŝ 00 o C, pozwljąc wodzie wrzeć pod normlnym ciśnieniem tmosferycznym ( tm, czyli,0x0 5 ) w ułdzie przedstwionym n rysunu. Objętość wody zmieni się od wrtości początowej x0-3 m 3 dl cieczy do,67 m 3, iedy m on postć pry. ) Ją prcę wyonuje ułd w tym procesie? b) Ją energię otrzymuje ułd podczs ogrzewni? c) Ile wynosi zmin energii wewnętrznej ułdu w rozwŝnym procesie? pd p p ( ) ( ) ,00,67m 0,00m,690 J p c pr m 56J gg 56J U 56J 69J 087J,09MJ 0

11 Mechnizmy przezywni ciepł ) rzewodnictwo cieplne g z S S Energi przepływ w postci ciepł od zbiorni o temperturze g do zbiorni o niŝszej temperturze z przez przewodzącą ciepło płytę o grubości, przeroju S i przewodności cieplnej włściwej t S g z przew δ & δt S d dz prwo Fourier rzewodność ciepln włściw (przewodność ciepln) to stosune ilości energii cieplnej przenoszonej w jednostce czsu przez jednostową powierzchnię do grdientu tempertury

12 rzewodność ciepln włściw wybrnych substncji przew Opór cieplny & t R R S ( ) Opór cieplny, nlogi z oporem eletrycznym. RóŜnic tempertur gr rolę npięci, moc przewodzon rolę gęstości prądu. Jednostą oporu cieplnego jest elwin/wt [K/] H C [/m. K] metle stl nierdzewn 4 ołów 35 luminium 35 miedź 40 srebro 48 gzy powietrze (suche) 0,06 hel 0,5 wodór 0,8 mteriły budowlne pin poliuretnow 0,04 wełn minerln 0,043 wt szln 0,048 drewno sosnowe 0, beton omórowy 0,6 szło oienne,0 cegł 0,8 beton zwyły,5 grnit 3,

13 3 rzewodzenie ciepł przez płytę wielowrstwową Strumień cieplny przepływjący przez obie wrstwy musi być ti sm: Stcjonrny strumień ciepł przez płytę wyonną z dwóch róŝnych mteriłów, o tym smym przeroju le o róŝnej grubości. stnie stcjonrnym tempertur X n grnicy pomiędzy dwom mteriłmi m ustloną wrtość zleŝną od wypdowego oporu cieplnego ( ) ( ) z g x g S S + ( ) z g R R R R R + + S g z x ( ) ( ) z x x g S S t & ( ) ( ) z x x g z g x + +

14 Sprwdzin Copyright 005 John iley nd Sons, Inc Ośrode przewodzący słd się z czterech wrstw o jednowej grubości i przeroju, wyonnych z czterech róŝnych mteriłów. N rysunu podno tempertury n powierzchnich bocznych i grnicznych pomiędzy wrstwmi, zmierzone dl stcjonrnego strumieni cieplnego. Uszereguj wrstwy według ich przewodności cieplnej włściwej, zczynjąc od njwięszej wrtości 4

15 Copyright 005 John iley nd Sons, Inc rzyłd N rysunu przedstwiono przerój ściny wyonnej z wrstwy drewn sosnowego o grubości i muru ceglnego o o grubości d ( ), rozdzielonych dwiem wrstwmi o jednowej grubości i tiej smej przewodności włściwej, wyonnymi z nieznnego mteriłu. rzewodność ciepln włściw drewn sosnowego jest równ cegieł d ( 5 ). Strumień ciepł przechodzący przez ścinę osiągnął stn stcjonrny. Jedyne znne tempertury n powierzchnich grnicznych to 5 o C, 0 o C i 5-0 o C. Ją wrtość m tempertur 4? d S ds d ( ) ( ) 4 5 +, 5, d d ( ) 5 d 4 d d 4 8 C 5

16 ) Konwecj onw wewn δ & δt wrstw onwecyjn zewn h S dom szyb przewodzenie h współczynni onwecji /m K, S powierzchni, m, róŝnic tempertur h współczynni onwecji onwecj nturln 5-5 (powietrze) onwecj wymuszon 5-50 (powietrze) wod (wrzenie) Zdnie. Obliczyć strumień ciepł trconego przez ono z domu o temperturze wewnątrz 0 C do otoczeni o temperturze -0 C. Ono to pojedyncz szyb o grubości 5 mm i przewodnictwie cieplnym /mk, o powierzchni.5x.5 m. itr n zewnątrz powoduje, Ŝe wrtość współczynni onwecji wynosi 00 /m K. 6

17 3) promieniownie cieplne prom σε S 4 prom moc promieniowni cieplnego emitownego przez ciło w postci fl eletromgnetycznych, σ ε 5,6703x0-8 /m K 4 stł Stefn Boltzmnn zdolność emisyjn powierzchni cił S powierzchni cił tempertur cił σε S 4 bs otocz moc promieniowni cieplnego bsorbownego przez ciło z otoczeni wyp bs prom σε S 4 4 ( ) otocz prom 7

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Kolektor płaski Hoval IDKM 250 do instalacji w dachu. Dane techniczne. Kolektor płaski IDKM250 IDKM200 G/E. absorpcja α 95% emisja ε 5%

Kolektor płaski Hoval IDKM 250 do instalacji w dachu. Dane techniczne. Kolektor płaski IDKM250 IDKM200 G/E. absorpcja α 95% emisja ε 5% Kolektor płski Hovl IDKM 50 Dne techniczne Kolektor płski IDKM50 Typ kolektor rodzj budowy kolektor typ budowy IDKM00 G/E kolektor płski przeszklony, przykrycie bsorber-powłok selektywny bsorpcj α 95%

Bardziej szczegółowo

Prawo Coulomba i pole elektryczne

Prawo Coulomba i pole elektryczne Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku

Bardziej szczegółowo

Odzież ochronna przeznaczona dla pracowników przemysłu narażonych na działanie czynników gorących.

Odzież ochronna przeznaczona dla pracowników przemysłu narażonych na działanie czynników gorących. Odzież chroniąc przed gorącymi czynnikmi termicznymi N wielu stnowiskch prcy m/n w hutch i zkłdch metlurgicznych, podczs spwni, kcji przeciwpożrowych prcownik nrżony jest n dziłnie czynników gorących,

Bardziej szczegółowo

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne Lbortorium nr 11 Temt: Elementy elektropneumtycznych ukłdów sterowni 1. Cel ćwiczeni: Opnownie umiejętności identyfikcji elementów elektropneumtycznych n podstwie osprzętu FESTO Didctic. W dużej ilości

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Kolektor płaski Hoval IDKM 200. Dane techniczne. Kolektor płaski IDKM200 IDKM200 G/E. absorpcja α 95% emisja ε 5% Kolektor-wartości 0,82 1

Kolektor płaski Hoval IDKM 200. Dane techniczne. Kolektor płaski IDKM200 IDKM200 G/E. absorpcja α 95% emisja ε 5% Kolektor-wartości 0,82 1 Kolektor płski Hovl IDKM 00 Dne techniczne Kolektor płski IDKM00 Typ kolektor rodzj budowy kolektor typ budowy IDKM00 G/E kolektor płski przeszklony, przykrycie bsorber-powłok selektywny bsorpcj α 95%

Bardziej szczegółowo

2. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U

2. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U . PRZYKŁAD OBLICZANIA SPÓŁCZYNNIKA PRZENIKANIA CIEPłA PRZYKŁAD Obliczyć współczynnik przenikania ciepła dla ścian wewnętrznych o budowie przedstawionej na rysunkach. 3 4 5 3 4 5.5 38.5 [cm] Rys.. Ściana

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni

Bardziej szczegółowo

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej. Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut

Bardziej szczegółowo

Uszczelnienie przepływowe w maszyn przepływowych oraz sposób diagnozowania uszczelnienia przepływowego zwłaszcza w maszyn przepływowych

Uszczelnienie przepływowe w maszyn przepływowych oraz sposób diagnozowania uszczelnienia przepływowego zwłaszcza w maszyn przepływowych Uszczelnienie przepływowe w mszyn przepływowych orz sposób dignozowni uszczelnieni przepływowego zwłszcz w mszyn przepływowych Przedmiotem wynlzku jest uszczelnienie przepływowe mszyn przepływowych orz

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Stalowe bramy przesuwne

Stalowe bramy przesuwne Stlowe brmy przesuwne Dne montżowe: stn n 06.2008 Powielnie, tkże częściowe, wyłącznie po uzyskniu nszej zgody. Chronione prwem utorskim. Wszystkie wymiry w mm. Zminy konstrukcyjne zstrzeżone. 2 Dne montżowe:

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

10.3. Przekładnie pasowe

10.3. Przekładnie pasowe 0.0. Przekłdnie 0.3. Przekłdnie psowe Przekłdni psow przekłdni kołow ciern z elementmi pośrednimi w postci elstycznych cięgieł, njczęściej o konstrukcji wielodrożnej. Przekłdnie psowe Ps klinowy Ps płski

Bardziej szczegółowo

Pole przepływowe prądu stałego

Pole przepływowe prądu stałego Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera

Bardziej szczegółowo

Politechnika Poznańska. Zakład Mechaniki Technicznej

Politechnika Poznańska. Zakład Mechaniki Technicznej Politechnika Poznańska Zakład Mechaniki Technicznej Metoda Elementów Skończonych Lab. Temat: Analiza rozkładu temperatur na przykładzie cylindra wytłaczarki jednoślimakowej. Ocena: Czerwiec 2010 1 Spis

Bardziej szczegółowo

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A INVERTER SERIA MXZ Typoszereg MXZ gwrntuje cicy, wysokowydjny i elstyczny system, spełnijący wszystkie wymgni w zkresie klimtyzcji powietrz. 6 MXZ-2C30VA MXZ-2C40VA MXZ-2C52VA MXZ-3C54VA MXZ-3C68VA MXZ-4C71VA

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 3-WPC WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA CIEPŁA MATERIAŁÓW BUDOWLANYCH

INSTRUKCJA LABORATORYJNA NR 3-WPC WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA CIEPŁA MATERIAŁÓW BUDOWLANYCH LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 3-WPC WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Modelowanie w projektowaniu maszyn i procesów cz.7

Modelowanie w projektowaniu maszyn i procesów cz.7 Modelowanie w projektowaniu maszyn i procesów cz.7 Solvery MES zaimplementowane do środowisk CAD - termika Dr hab. inż. Piotr Pawełko p. 141 Piotr.Pawełko@zut.edu.pl www.piopawelko.zut.edu.pl Przekazywanie

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

1. Wprowadzenie: dt q = - λ dx. q = lim F

1. Wprowadzenie: dt q = - λ dx. q = lim F PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

kywysokiej jakości gama Mixproof

kywysokiej jakości gama Mixproof . kywysokiej jkości gm Mixproof Zwór Mixproof SMP-BC Koncepcj SMP-BC to snitrny, pneumtyczny zwór grzybowy, przeznczony do bezpiecznego wykrywni przecieków kiedy dw różne produkty przepływją przez jeden

Bardziej szczegółowo

Podstawy fizyki wykład 6

Podstawy fizyki wykład 6 Podstawy fizyki wykład 6 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Elementy termodynamiki Temperatura Rozszerzalność cieplna Ciepło Praca a ciepło Pierwsza zasada termodynamiki Gaz doskonały

Bardziej szczegółowo

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp Rdek N.,* Szlpko J.** *Ktedr Inżynierii Eksplotcji Politechnik Świętokrzysk, Kielce, Polsk **Khmelnitckij Uniwersytet Nrodowy, Khmelnitckij, Ukrin Wstęp 88 POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

Wyznaczanie ciepła topnienia lodu lub ciepła właściwego wybranego ciała

Wyznaczanie ciepła topnienia lodu lub ciepła właściwego wybranego ciała dla specjalnośći Biofizya moleularna Wyznaczanie ciepła topnienia lodu lub ciepła właściwego wybranego ciała I. WSTĘP C 1 C 4 Ciepło jest wielością charateryzującą przepływ energii (analogiczną do pracy

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego - projektownie Ćwiczenie 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego Instrukcj Człowiek - njlepsz inwestycj Projekt współfinnsowny przez Unię Europejską w rch Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania:

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania: Filtracja to zjawiso przepływu płynu przez ośrode porowaty (np. wody przez grunt). W więszości przypadów przepływ odbywa się ruchem laminarnym, wyjątiem może być przepływ przez połady grubego żwiru lub

Bardziej szczegółowo

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw AMME 1 1th JUBILEE INTERNATIONAL SC IENTIFIC CONFERENCE Zstosownie nlizy widmowej sygnłu ultrdwikowego do okreleni gruboci cienkich wrstw A. Kruk Wydził Metlurgii i Inynierii Mteriłowej, Akdemi Górniczo-Hutnicz

Bardziej szczegółowo

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U 3. PRZYKŁAD OBLICZANIA SPÓŁCZYNNIKA PRZENIKANIA CIEPłA U PRZYKŁAD Obliczyć współczynnik przenikania ciepła U dla ścian wewnętrznych o budowie przedstawionej na rysunkach. 3 4 5 3 4 5.5 38.5 [cm] Rys..

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych Optymalizacja energetyczna budynków Świadectwo energetycznej Fizyka budowli dla z BuildDesk. domu jednorodzinnego. Instrukcja krok po kroku Materiały edukacyjne dla doradców Na podstawie projektu gotowego

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi. WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.

Bardziej szczegółowo

Tabela 4. Zawartość składników pokarmowych oraz energii metabolicznej w wybranych paszach dla trzody chlewnej i drobiu

Tabela 4. Zawartość składników pokarmowych oraz energii metabolicznej w wybranych paszach dla trzody chlewnej i drobiu Tbel 4. Zwrtość skłdników pokrmowych orz energii metbolicznej w wybrnych pszch dl trzody chlewnej i drobiu nr Psz ZIELONKI Zwrtość skłdników pokrmowych w kg suchej msy Such Ms Biłko Tłuszcz Włókno Zw.

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Siłowniki pneumatyczne z membraną o powierzchni do 750v2 cm² Siłownik typu 3271 Siłownik typu 3277 do zintegrowanego montażu ustawnika pozycyjnego

Siłowniki pneumatyczne z membraną o powierzchni do 750v2 cm² Siłownik typu 3271 Siłownik typu 3277 do zintegrowanego montażu ustawnika pozycyjnego iłowniki pneumtyczne z membrną o powierzchni do 50v cm² iłownik typu 3 iłownik typu 3 do zintegrownego montżu ustwnik pozycyjnego Zstosownie iłowniki skokowe przeznczone przede wszystkim do montżu n zworch

Bardziej szczegółowo

Pomiary ciśnień i sprawdzanie manometrów

Pomiary ciśnień i sprawdzanie manometrów Poiry ciśnień i srwdznie noetrów Instrukcj do ćwiczeni nr 2 Miernictwo energetyczne - lbortoriu Orcowł: dr inŝ. ElŜbiet Wróblewsk Zkłd Miernictw i Ochrony Atosfery Wrocłw, grudzień 2008 r. I. WSTĘP Ciśnienie

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Wyposażenie służące do przenoszenia pacjenta

Wyposażenie służące do przenoszenia pacjenta 5.1 5. Wymgni dotyczące wyposżeni środk trnsportu zgodnie z Polską Normą PN-EN 1789:2008 Pojzdy medyczne i ich wyposżenie mulnse drogowe Wyposżenie służące do przenoszeni pcjent podstwowego 5.1.1 Nosze

Bardziej szczegółowo

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi. WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła):. PRZEWODZENIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU ODELOWNIE INŻYNIERKIE INN 1896-771X 3,. 37-44, Gliwice 6 PORÓWNNIE WYBRNYCH RÓWNŃ KONTYTUTYWNYCH TOPÓW Z PIĘCIĄ KZTŁTU KRZYZTOF BIEREG Ktedr Wyokich Npięć i prtów Elekt., Politechnik Gdńk trezczenie. W

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

2. Obliczyć natężenie pola grawitacyjnego w punkcie A, jeżeli jest ono wytwarzane przez bryłę o masie M, która powstała przez wydrążenie kuli o

2. Obliczyć natężenie pola grawitacyjnego w punkcie A, jeżeli jest ono wytwarzane przez bryłę o masie M, która powstała przez wydrążenie kuli o Grwitcj. Obliczyć, jką siłą jest przyciągn s, jeżeli znn jest s plnety orz gęstość i proień drugiej plnety tkże odległości, jk n rysunku. (,, / F ) 5 F G.5.5 7 Sił t jest położon do poziou pod kąte β tki,

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 016/017 Zwód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zwody Przedmiot: MATEMATYKA Kls II (67 godz) Rozdził 1. Funkcj liniow 1. Wzór i

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne.

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne. Opis i nliz metod pomiru prędkości kątowej. Prądnice tcometryczne. Prądnice tcometryczne są to młe prądnice elektryczne, któryc npięcie wyjściowe zwier informcję o prędkości obrotowej, w niektóryc przypdkc

Bardziej szczegółowo

POMPY ZATAPIALNE MSV

POMPY ZATAPIALNE MSV POMPY ZATAPIALNE MSV MSV- Chrkterstk ogóln Pomp MSV- przeznczone są do pompowni ścieków snitrnch i przemsłowch, nie zwierjącch cił stłch i włóknistch (ze względu n mł przelot pod wirnikiem). Znjdują zstosownie

Bardziej szczegółowo

k + l 0 + k 2 k 2m 1 . (3) ) 2 v 1 = 2g (h h 0 ). (5) v 1 = m 1 m 1 + m 2 2g (h h0 ). (6) . (7) (m 1 + m 2 ) 2 h m ( 2 h h 0 k (m 1 + m 2 ) ω =

k + l 0 + k 2 k 2m 1 . (3) ) 2 v 1 = 2g (h h 0 ). (5) v 1 = m 1 m 1 + m 2 2g (h h0 ). (6) . (7) (m 1 + m 2 ) 2 h m ( 2 h h 0 k (m 1 + m 2 ) ω = Rozwiazanie zadania 1 1. Dolna płyta podskoczy, jeśli działająca na nią siła naciągu sprężyny będzie większa od siły ciężkości. W chwili oderwania oznacza to, że k(z 0 l 0 ) = m g, (1) gdzie z 0 jest wysokością

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U 3. PRZYKŁAD OBLICZANIA SPÓŁCZYNNIKA PRZENIKANIA CIEPłA U PRZYKŁAD Obliczyć współczynnik przenikania ciepła U dla ścian wewnętrznych o budowie przedstawionej na rysunkach. 3 4 5 3 4 5.5 38.5 [cm] Rys..

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 2. AJ Wojtowicz IF UMK Pierwsza zasada termodynamiki dla masy kontrolnej w obiegu zamkniętym

Termodynamika Techniczna dla MWT, wykład 2. AJ Wojtowicz IF UMK Pierwsza zasada termodynamiki dla masy kontrolnej w obiegu zamkniętym Termodynamia Techniczna dla MWT, wyład. AJ Wojtowicz IF UMK Wyład. Praca i ciepło.. Praca zmiany objętości czynnia roboczego.. Praca techniczna w uładzie otwartym na przyładzie turbiny.3. Pierwsza zasada

Bardziej szczegółowo

Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 5 Procesy cykliczne Maszyny cieplne Janusz Brzychczyk, Instytut Fizyki UJ Z pierwszej zasady termodynamiki: Procesy cykliczne du = Q el W el =0 W cyklu odwracalnym (złożonym z procesów

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Rozdzielacz suwakowy sterowany elektrycznie typ WE10

Rozdzielacz suwakowy sterowany elektrycznie typ WE10 Rozdzielcz suwkowy sterowny elektrycznie typ WE WN do,5 M do dm /min KR KLOGOW - INSRUKCJ OSŁUGI WK 499 78.4 ZSOSOWNIE Rozdzielcz suwkowy sterowny elektrycznie typ WE jest przeznczony do zminy kierunku

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

Zadania rachunkowe z termokinetyki w programie Maxima

Zadania rachunkowe z termokinetyki w programie Maxima Zadania rachunkowe z termokinetyki w programie Maxima pliku, polecenia do wpisywania w programie Maxima zapisane są czcionką typu: zmienna_w_maximie: 10; inny przykład f(x):=x+2*x+5; Problem 1 komorze

Bardziej szczegółowo

Przedmiar robót. Sporządziła Irena Grunwald. Koszalin, styczeń 2010r.

Przedmiar robót. Sporządziła Irena Grunwald. Koszalin, styczeń 2010r. Przedmir robót Obiekt Kod CPV 45214220-8 Budow Sl gimnstyczn Zespołu Szkół Publicznych w Brzeżnie, 78-316 Brzeżno 15, dziłk nr 22 Inwestor Gmin Brzeżno, Brzeżno 50, 78-316 Brzeżno woj. zchodniopomorskie

Bardziej szczegółowo

Instrukcja do laboratorium z fizyki budowli.

Instrukcja do laboratorium z fizyki budowli. Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar współczynnika przewodzenia ciepła materiałów budowlanych Strona 1 z 5 Cel ćwiczenia Prezentacja metod stacjonarnych i dynamicznych pomiaru

Bardziej szczegółowo

Wymiennik ciepła. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Henryk Bieszk. Gdańsk 2011

Wymiennik ciepła. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Henryk Bieszk. Gdańsk 2011 Henryk Bieszk Wymiennik ciepła Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego Gdańsk 2011 H. Bieszk, Wymiennik ciepła, projekt 1 PRZEDMIOT: APARATURA CHEMICZNA TEMAT ZADANIA PROJEKTOWEGO:

Bardziej szczegółowo

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na

Bardziej szczegółowo

Zaoszczędź przestrzeń dzięki zastosowaniu sprężyn falistych TRUWAVE z drutu płaskiego

Zaoszczędź przestrzeń dzięki zastosowaniu sprężyn falistych TRUWAVE z drutu płaskiego Sprężyny fliste Zoszczędź przestrzeń dzięki zstosowniu sprężyn flistych TRUWAVE z drutu płskiego Sprężyny TruWve z drutu płskiego umożliwiją zoszczędzenie do 50% przestrzeni w kierunku osiowym w twoim

Bardziej szczegółowo

XIV KONFERENCJA CIEPŁOWNIKÓW

XIV KONFERENCJA CIEPŁOWNIKÓW XIV KONFERENCJA CIEPŁOWNIKÓW POLITECHNIKA RZESZOWSKA PZITS - Oddział Rzeszów MPEC - Rzeszów Michał STRZESZEWSKI* POLITECHNIKA WARSZAWSKA ANALIZA WYMIANY CIEPŁA W PRZYPADKU ZASTOSOWANIA WARSTWY ALUMINIUM

Bardziej szczegółowo

z dnia 20 czerwca 2005 r. zmieniające rozporządzenie w sprawie kryteriów bilansowości złóż kopalin Dz. U. Nr 116, poz. 978 z dnia 29 czerwca 2005 r.

z dnia 20 czerwca 2005 r. zmieniające rozporządzenie w sprawie kryteriów bilansowości złóż kopalin Dz. U. Nr 116, poz. 978 z dnia 29 czerwca 2005 r. Rozporządzenie Ministr Środowisk 1) z dni 20 czerwc 2005 r. zmienijące rozporządzenie w sprwie kryteriów bilnsowości złóż koplin Dz. U. Nr 116, poz. 978 z dni 29 czerwc 2005 r.) N podstwie rt. 50 ust.

Bardziej szczegółowo

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE)

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) 1. TEORIA PŁYT CIENKOŚCIENNYCH 1 1. 1. TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) Płyt jest to ukłd ogrniczony dwom płszczyznmi o młej krzywiźnie. Odległość między powierzchnimi ogrniczjącymi tę wysokość płyty

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni

Bardziej szczegółowo

XB Płytowy, lutowany wymiennik ciepła

XB Płytowy, lutowany wymiennik ciepła Opis / zstosownie XB jest płytowym, lutownym miedzią wymiennikiem ciepł przeznczonym do stosowni w ukłdch ciepłowniczych (tj. klimtyzcj, ogrzewnie, ciepł wod użytkow). Lutowne płytowe wymienniki ciepł

Bardziej szczegółowo

Niklowany mosiądz. Przyłącze elektryczne Przewód 2 m Przewód 2 m Przewód 2 m Złącze/M8 Przewód 2 m

Niklowany mosiądz. Przyłącze elektryczne Przewód 2 m Przewód 2 m Przewód 2 m Złącze/M8 Przewód 2 m CZUJIKI IDUKCYJE Wielkość oudowy 3 mm M4 x 0,5 4 mm 4 mm M5 x 0,5 Stref dziłni Sn 0,6 mm 0,6 mm 0,8 mm 0,8 mm 1,0 mm Instlcj Do wudowni Do wudowni Do wudowni Do wudowni Do wudowni 22 22 25 25 38 Wskznie

Bardziej szczegółowo

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł TRZECI SEMESTR LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRACA KONTROLNA Z MATEMATYKI ROZSZERZONEJ O TEMACIE: Liczby rzeczywiste i wyrżeni lgebriczne Niniejsz prc kontroln skłd się z zdń zmkniętych ( zdń)

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Wymagane parametry techniczne. Wytrzymałość charakterystyczna walca na ściskanie 25MPa

Wymagane parametry techniczne. Wytrzymałość charakterystyczna walca na ściskanie 25MPa ZAŁĄCZNIK NR 3-WYKAZ MATERIAŁÓW do części konstrukcyjnej projektu budowlnego przebudowy i rozbudowy budynku szkoły podstwowej orz budow hli sportowej w miejscowości Mlcnów przy ul. Mzowieckiej 55, dziłk

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 Zadania dla grupy elektronicznej na zawody II stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 Zadania dla grupy elektronicznej na zawody II stopnia EOELEKTA Ogólnopolsk Olimpid Wiedzy Elektrycznej i Elektronicznej ok szkolny 204/205 Zdni dl grupy elektronicznej n zwody stopni Zdnie Dl diody półprzewodnikowej, której przeieg chrkterystyki prądowo-npięciowej

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

TEORIA WAGNERA UTLENIANIA METALI

TEORIA WAGNERA UTLENIANIA METALI TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

Bowflag. Bowflag 100 Bowflag 200 Bowflag Premium

Bowflag. Bowflag 100 Bowflag 200 Bowflag Premium Bowflg Przenośny mszt typu żgiel do prezentcji wewnątrz i n zewnątrz pomieszczeń. Szerok gm stóp mocującyc. Duży wybór form i wymirów flg. Bowflg 00 Bowflg 00 Bowflg Premium Bowflg 00 Bowflg 00 - sprwdzone

Bardziej szczegółowo