Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego"

Transkrypt

1 - projektownie Ćwiczenie 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego Instrukcj Człowiek - njlepsz inwestycj Projekt współfinnsowny przez Unię Europejską w rch Europejskiego Funduszu Społecznego Wrszw 01

2 Ćwiczenie 3 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego 3.1 WPROWADZENIE Ukłdy pozycjonujące z ikrosilniki prądu stłego Silniki prądu stłego nie ją wyróżnionych sterownych położeń wirnik. Z tego powodu pozycjonownie z poocą ukłdów npędznych tyi silniki oże być zrelizowne wyłącznie przy zstosowniu położeniowego sprzężeni zwrotnego. Schet blokowy ukłdu z nlogowy przetwornikie położeni np. w postci precyzyjnego potencjoetru zieszczono n rys. 3.1, przykłdową krtę ktlogową tkiego npędu n rys. 3.. Sygnł zdnego położeni włk silnik lub npędznego obiektu jest porównywny z jego rzeczywisty położenie, ierzony z poocą przetwornik. Dopóki zdne położenie nie zostnie osiągnięte, sygnł różnicowy jest różny od zer i po wzocnieniu steruje silnik. Wzcnicz oże ieć postć np. regultor proporcjonlnego lub PID. Gdy położenie rzeczywiste zrównuje się z zdny, zrówno sygnł różnicowy, jk i npięcie sterujące leje do zer. Wychylenie włk silnik z tego położeni powoduje pojwienie się sygnłu różnicowego i ponowne wysterownie silnik sprowdzjące go do położeni docelowego. Sygnł zdnego położeni Ukłd odejujący Sygnł różnicowy Wzcnicz ocy Npięcie sterujące Silnik Mechniz Sygnł położeni Przetwornik położeni Rys Npęd pozycjonujący z ikrosilnikie prądu stłego wg [3.6] Poio koplikcji w postci pętli położeniowego sprzężeni zwrotnego silniki prądu stłego są chętnie stosowne w npędch pozycjonujących ze względu n ich znne zlety, tkie jk: duży oent rozruchowy czy liniowe chrkterystyki regulcyjne. Wprowdzenie dodtkowej pętli prędkościowego sprzężeni zwrotnego (rys. 3.3) uożliwi poprwienie dynicznych włściwości ukłdu przez wykorzystnie dodtkowego tłuieni. Tłuienie to oże być ustwine tk, by wyeliinowć oscylcje ukłdu wokół zdnego położeni lub uzyskć ożliwie krótki cykl pozycjonowni.

3 Ćwiczenie 3 3 Rys. 3.. Krt ktlogow npędu pozycjonującego z przekłdnią redukcyjną i potencjoetryczny przetwornikie położeni [3.10] Sygnł predkości Przetwornik prędkości Sygnł zdnego położeni Ukłd odejujący Sygnł różnicowy Ukłd kopensujący Wzcnicz ocy Npięcie sterujące Silnik Mechniz Sygnł położeni Przetwornik położeni Rys Npęd pozycjonujący z kopenscją prędkościową wg [3.6] Obecnie doinują rozwiązni w których do poiru przeieszczeni stosuje się przetworniki z wzorce inkreentlny (ng. encoders), często zintegrowne z silnikie npędowy (rys. 3.4). Ciąg ipulsów z przetwornik o liczbie proporcjonlnej do przeieszczeni i częstotliwości proporcjonlnej do prędkości kątowej włk silnik jest zieniny n sygnły położeni i prędkości, które stnowią podstwę do obliczeni npięci sterującego silnik. W tego typu cyfrowych ukłdch sterujących powszechnie stosowne jest ipulsowe sterownie silnik, które poleg n ty, że średnie npięcie zsilni jest wynikie stopni wypełnieni prostokątnych ipulsów npięciowych o zncznej częstotliwości doprowdznych do wyprowdzeń silnik (rys. 3.5).

4 4 Ćwiczenie 3 Sygnł zdnego położeni Licznik Genertor zdnej prędkości Miernik prędkości Sygnł błędu położeni Ukłd odejujący Genertor sygnłu STOP Ukłd Wzcnicz selektywny Silnik Mechniz ocy Wzcnicz sygnłu Enkoder Rys Schet blokowy szybkiego ukłdu pozycjonującego z inkreentlny przetwornikie przeieszczeni wg [3.5] Npięcie sterujące u u x u śr u śr1 0 Czs t T cz T cz Rys Ipulsowe sterownie silnik prądu stłego wg [3.3]; T cz okres ipulsowni (czoperowni), u śr1, u śr średnie npięci zsilni zleżne od wypełnieni ipulsów N rys. 3.6 zieszczono widok robot chirurgicznego którego echnizy robocze npędzne są z poocą 39. silników prądu stłego współprcujących z przekłdnii zębtyi. W polski języku techniczny zespół skłdjący się z silnik elektrycznego i reduktor nzywny jest otoreduktore (ng. ger-otor) (rys. 3.7). Obecnie producenci szyn elektrycznych często oferują zestwieni obejujące nie tylko silniki z przekłdnii i przetworniki obrotowo-ipulsowyi, le tkże sterowniki z funkcji pozycjonowni, stbilizowni prędkości, nwet oentu zgodnie z zdwnyi przez użytkownik sygnłi odniesieni. Tkie ukłdy elektroniczne prcujące n sygnłch sprzężeni zwrotnego nzywne są serwonpędi (ng. servo drives) (rys. 3.8). Spotykne są rozwiązni, kiedy serwonpęd jest uieszczony w jednej obudowie z silnikie wykonwczy (rys. 3.9).

5 Ćwiczenie 3 5 Rys Robot chirurgiczny d Vinci S HD npędzny 39 serwonpędi z silniki prądu stłego firy MAXON [3.11] Rys Silniki prądu stłego zintegrowne z przekłdnii redukcyjnyi Rys Przykłdowy serwonpęd w widoku

6 6 Ćwiczenie 3 Rys Silnik wykonwczy zintegrowny z serwonpęde [3.9] 3.1. Dyniczny opis ikrosilnik prądu stłego Prcę silników prądu stłego w wrunkch nieustlonych opisują dw równni równowgi [3.4]: - npięć - oentów di u Rti L K E, (3.1) dt d KTi J s J red K D M F M Fred sgn M red, (3.) dt w których: u - npięcie zsilni, i - prąd twornik, ω - prędkość kątow wirnik, J red - zredukowny sowy oent bezwłdności npędznych zespołów, J s - sowy oent bezwłdności wirnik, K D - współczynnik trci lepkiego w silniku, K E - stł npięci, K T - stł oentu, L - indukcyjność uzwojeni twornik, M F - oent trci sttycznego w silniku, M Fred - zredukowny oent trci obciążeni, M red - zredukowny oent czynny obciążeni, R t - cłkowit rezystncj obwodu twornik. Zniedbując w równniu (3.) skłdnik lepkościowy i oenty obciążeni silnik ożn wyprowdzić trnsitncje opertorowe w celu wyznczni odpowiedzi silnik n określone wyuszeni, w szczególności n ziny npięci sterującego [3.] 1 1 s K s s 1 Ω s T U, (3.3) E gdzie: U(s) trnsfort npięci sterującego, Ω(s) trnsfort prędkości kątowej silnik, τ e elektrognetyczn stł czsow silnik, τ - elektroechniczn stł czsow silnik, przy czy t e L e, (3.4) R R t 0 J s J s. (3.5) K EKT M r Zgodnie ze wzore (3.3) ikrosilnik prądu stłego jest eleente inercyjny rzędu (rys. 3.10). Jednk w silnikch z wirnikie bezrdzeniowy stł czsow elektrognetyczn jest n ogół o kilk rzędów wielkości niejsz od elektroechnicznej i dltego przej-

7 Ćwiczenie 3 7 ściowe stny elektryczne ożn poijć nie popełnijąc istotnego błędu. Trnsitncj (3.3) uprszcz się wówczs do postci 1 1 s K s 1 Ω s T, (3.6) U któr jest opise eleentu inercyjnego pierwszego rzędu [3., 3.7] (rys. 3.11). Stł czsow elektroechniczn τ silnik obciążonego zredukowny sowy oente bezwłdności J red zwiększ się do wrtości Rt J s J red. (3.7) K K E T E Rys Rzeczywisty przebieg prędkości podczs rozruchu silnik [3.1]: n prędkość obrotow silnik, n 0 prędkość obrotow biegu jłowego, τ e - stł czsow elektrognetyczn, τ stł czsow elektroechniczn Rys Idelny przebieg prędkości podczs rozruchu silnik [3.1]: n prędkość obrotow silnik, n 0 prędkość obrotow biegu jłowego, τ stł czsow elektroechniczn

8 8 Ćwiczenie Sposoby sterowni ikrosilników prądu stłego Znne są dw podstwowe sposoby sterowni silników prądu stłego: npięciowe i prądowe, co schetycznie zilustrowno n rys W pierwszy przypdku zchownie silnik opisuje ukłd równń (3.1) i (3.), jego odpowiedzi skokowe ją postć jk n rys lub 3.11 zleżnie od przyjętego uproszczeni. Przy sterowniu tzw. prądowy, które osiągne jest z poocą odpowiedniego sterowni potencjłowego, uzwojeni silnik zsilne są stły prąde, dzięki czeu silnik rozwij określony oent. Ten sposób sterowni stosowny jest przede wszystki w ukłdch pozycjonujących poniewż pozwl n szybsze osiągnie wygnych położeń. Rys Dw sposoby sterowni silnik prądu stłego: ) npięciowe, b) prądowe [3.3]; E npięcie źródł, V i (t) npięcie odniesieni, R E opornik eiterowy Cel ćwiczeni Cele ćwiczeni jest poznnie zsd doboru silników prądu stłego do zstosowń dynicznych i nbycie uiejętności przeprowdzeni tkiego doboru n przykłdzie ukłdu pozycjonującego. 3. ALGORTMY DOBORU SILNIKA wg [3.8] 3..1 Algoryt doboru silnik przy trójkątny profilu prędkości Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego rozpoczyn się od nlizy zdni, które n ogół poleg n przeieszczeniu o określony kąt Δγ ech eleentów o sowy oencie bezwłdności J ech w ciągu określonego czsu T p. N tej podstwie proponuje się profil prędkości W przypdku stosunkowo niewielkich przeieszczeń oże to być profil trójkątny. W sytucji przedstwionej n rys.3.14 w pierwszej fzie relizcji ruchu obciążenie jest rozpędzne ze stły przyspieszenie ε, w drugiej howne z opóźnienie równy co do wrtości przyspieszeniu ε. Uzysknie stłego przyspieszeni jest ożliwe, gdy silnik rozwij stły oent. Osiąg się to przez zsilnie uzwojeni sterującego silnik prąde o stłej wrtości i (rys b). W ty uproszczony podejściu postępownie przy doborze npędu jest nstępujące: Wyznczenie przyspieszeni kątowego Obliczyć przyspieszenie kątowe wirnik silnik według wzoru znnego z klsycznej echniki

9 Ćwiczenie 3 9 1, (3.8) 1 1 T T p p 4 przy czy wygne kątowe przeieszczenie Δγ wirnik wyzncz się ze wzoru, (3.9) ech i p w który: i p przełożenie przekłdni echnicznej, Δγ ech kątowe przeieszczenie pozycjonownego zespołu. Prędkość ω ) ω ε -ε T p Czs t Prąd i i b) - i Czs t Rys Trójkątny profil prędkości przy pozycjonowniu () i przebieg prądu silnik prądu stłego (b) przy relizcji tego profilu Wyznczenie oentu npędowego przy czy Obliczyć oent M potrzebny do przeieszczni obciążeni inercyjnego J red M J J, (3.10) J red red ech p ip s J, (3.11) gdzie: i p przełożenie przekłdni, J ech sowy oent bezwłdności npędznych eleentów, η p sprwność przekłdni. Do obliczeni oentu konieczn jest znjoość sowego oentu bezwłdności J s wirnik silnik. Jeśli jest to ożliwe, wrto przyjąć, że sowy oent bezwłdności wirnik będzie równy oentowi bezwłdności obciążeni. Tki ukłd elektroechniczny njwiększą sprwność przetwrzni energii elektrycznej w echniczną. Wówczs M J. (3.1) s

10 10 Ćwiczenie 3 Jeśli nie ożn spełnić tego złożeni, wtedy nleży wykonć kilk obliczeń podstwijąc do wzoru (3.10) różne wrtości sowych oentów bezwłdności wirników wybrne z ktlogu silników tk, by zorientowć się co do rzędu wielkości potrzebnego oentu Dobór silnik Dobrć silnik, który jąc wirnik o sowy oencie bezwłdności J s, oże rozwijć w sposób ciągły oent M Wyznczenie prądu silnik Obliczyć wrtość prądu sterującego n podstwie znjoości stłej oentu K T silnik Wyznczenie tepertury wirnik Korzystjąc ze wzoru Tw M i. (3.13) K T R0 I Rth 1T0 Tot 1R0 I Rth. (3.14) wyznczyć ustloną teperturę T w wirnik silnik uwzględnijąc przewidywną teperturę T ot otoczeni Obliczenie rezystncji wirnik Obliczyć rezystncję R t wirnik w teperturze T w korzystjąc ze wzoru R t R 1 T T, (3.15) 0 gdzie: R 0 - rezystncj twornik w tep. T 0, R t - rezystncj twornik w tep. T w, T 0 - tepertur odniesieni pretrów silnik, T w ustlon tepertur wirnik, α - cieplny współczynnik rezystywności uzwojeń Wyznczenie ksylnej prędkości silnik Obliczyć ksylną prędkość ω silnik Wyznczenie npięci sterującego w T p 0. (3.16) Obliczyć inilną wrtość U in npięci potrzebnego do sterowni silnik in i n tej podstwie dobrć z ktlogu odpowiedni sterownik. U R i K (3.17) 3.. Algoryt doboru silnik przy trpezowy profilu prędkości t Jeśli obliczon prędkość ω jest większ od dopuszczlnej dl dnego silnik, wówczs nleży dobrć inny silnik lub rozwżyć ożliwość zstosowni trpezowego profilu prędkości (rys. 3.15). W tej sytucji n czs pozycjonowni skłdją się trzy fzy: rozpędznie ze stły przyspieszenie ε, prc ze stłą ksylną prędkością ω i hownie. E

11 Ćwiczenie 3 11 Podczs rozpędzni i howni silnik zsilny jest prąde i, w fzie prcy ustlonej pobier prąd i u wynikjący z oporów ruchu echnizu. Prędkość ω ) ω ε -ε T p Czs t Prąd i b) i i u Czs t - i Rys Pozycjonownie z użycie trpezowego profilu prędkości; ) profil prędkości, b) przebieg prądów sterujących; i prąd rozpędzni i howni silnik, i u prąd pobierny przez silnik w stnie ustlony Obliczenie ukłdu npędowego oże być przeprowdzone w nstępujący sposób: Wyznczenie przyspieszeni kątowego Dl wytypownego silnik obliczyć ksylną wrtość przyspieszeni kątowego ε, jką ożn osiągnąć rozpędzjąc obciążenie inercyjne ksylny dopuszczlny dl silnik oente M x M x. (3.18) J J 3... Wyznczenie drogi przyspieszni i howni red Wyznczyć drogę γ d, jką pokon silnik w fzie przyspieszni do ksylnej dopuszczlnej prędkości ω x i w fzie howni d s d (3.19) orz czs T potrzebny do rozpędzni i czs T d potrzebny do zhowni silnik T T d. (3.0)

12 1 Ćwiczenie Wyznczenie drogi przy prcy ustlonej Obliczyć drogę, którą ukłd pokonć w środkowej fzie cyklu Wyznczenie okresu prcy ustlonej c d. (3.1) Wyznczyć czs T c relizcji ruchu ze stłą prędkością i osttecznie cłkowity czs pozycjonowni Sprwdzenie wrunku cieplnego T p T c c (3.) T T T. (3.3) Sprwdzić, czy przy powtrzniu cyklu pozycjonowni, gdy silnik osiągnie ustlony stn cieplny, nie zostnie przekroczon dopuszczln tepertur wirnik. 3.3 WYKONANIE ĆWICZENIA Ze wskznego ktlogu dobrć silniki prądu stłego, które będą służyły do npędzni ukłdu pozycjonującego według trójkątnego profilu prędkości dl różnych wrtości i p przełożeni przekłdni redukcyjnej. Msowy oent bezwłdności npędznego stołu obrotowego wynosi J ech. Stół N gnizd roboczych, cykl pozycjonowni trw T p Odebrnie i nliz dnych indywidulnych Znotowć przekzne przez prowdzącego dne dotyczące npędznego echnizu i wrunków prcy silników Przeprowdzenie doboru silnik N podstwie dnych indywidulnych dokonć doboru silników do npędu zgodnie z lgoryte przedstwiony w p korzystjąc ze wskznego ktlogu silników dl trzech przełożeń przekłdni redukcyjnej Sprwność przekłdni przyjąć równą 0, Oprcownie sprwozdni c i p,3,4. W sprwozdniu z ćwiczeni nleży zieścić: ) tet zdni i dne indywidulne (p ), b) opis doboru silników wrz ze wszystkii obliczenii (p. 3.3.), c) wnioski dotyczące uzysknych wyników, w szczególności dopsowni zredukownej inercji ukłdu do inercji wirnik silnik dl kżdego z przełożeń, d) krty ktlogowe dobrnych silników. d

13 Ćwiczenie LITERATURA 3.1. Elektryczne szynowe eleenty utotyki. Prc zbiorow pod red. J. Owczrk. WNT. Wrszw Jniszowski K.: Podstwy wyznczni opisu i sterowni obiektów dynicznych. WPW. Wrszw Kenjo T., Ngori C.: Dvigteli postojnnogo tok s postojnnyi gniti. Énergotoizdt. Moskv Kuczński A., Pochnke A., Sochocki R.: Model nlogowy ikrozespołu szyn gnetoelektrycznych w ukłdzie prędkościowy. Przegląd Elektrotechniczny. 1984, nr 8, str Mkiuchi Y.: DC Motor Encoders Becoing Focus of Attention. JEE. 1981, Nr 179, v.18, str Microotor Horizons Brighten with Electronics. JEE. 198, Nr 19, v.19, str Żelzny M.: Podstwy utotyki. PWN. Wrszw API Portescp. Miniture High Perfornce Motors & Peripherl Coponents for Motion Solutions. Ktlog MAXON. Ktlog ikrosilników Mclennn Servo Supplies Ltd. DC Servo Motors - Ovoid Gered. Ktlog

14

15 1 Złącznik 1 Ćwiczenie 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego List dnych indywidulnych Nr tetu J ech N T p gc 1 s

16 Nr tetu J ech N T p gc 1 s

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow

Bardziej szczegółowo

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak

Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak DNIE UKŁDÓW LOKD UTOMTYCZNYCH uor: Zigniew Tuzimek Oprcownie wersji elekronicznej: Tomsz Wdowik 1. Cel i zkres ćwiczeni Celem ćwiczeni jes zpoznnie sudenów z udową orz dziłniem zezpieczeń i lokd sosownych

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne.

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne. Opis i nliz metod pomiru prędkości kątowej. Prądnice tcometryczne. Prądnice tcometryczne są to młe prądnice elektryczne, któryc npięcie wyjściowe zwier informcję o prędkości obrotowej, w niektóryc przypdkc

Bardziej szczegółowo

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne Lbortorium nr 11 Temt: Elementy elektropneumtycznych ukłdów sterowni 1. Cel ćwiczeni: Opnownie umiejętności identyfikcji elementów elektropneumtycznych n podstwie osprzętu FESTO Didctic. W dużej ilości

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH Dwne: Centrlne Biuro Projektowo-Bdwcze Budownictw Wiejskiego 04-026 Wrszw 50, l. Stnów Zjednoczonyc 51 tel. 22-810-83-78; 22-810-64-89; fx; 22-810-58-97; e-il: isprol@isprol.pl ; www.isprol.pl PROJEKTY

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Ochrona przed przepięciami w sieciach ISDN

Ochrona przed przepięciami w sieciach ISDN OGANICZANIE PZEPIĘĆ W YEMACH PZEYŁ YGNAŁÓW Ochron przed przepięcimi w siecich IDN Andrzej ow Wstęp Wzrost zpotrzeowni n usługi odiegjące od klsycznego przekzu telefonicznego spowodowł gwłtowny rozwój sieci

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH Dwne: Centrlne Biuro Projektowo-Bdwcze Budownictw Wiejskiego 04-026 Wrszw 50, l. Stnów Zjednoczonyc 51 tel. 22-810-83-78; 22-810-64-89; fx; 22-810-58-97; e-il: isprol@isprol.pl ; www.isprol.pl PROJEKTY

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r.

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Wrszw, dni 22 lutego 2012 r. Pozycj 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych Dz.U.2012.204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych (Dz. U. z dni 22 lutego 2012 r.) N podstwie rt. 22 ust. 2 pkt 1 ustwy

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka Stron Wstęp Zbiór Mój przedmiot mtemtyk jest zestwem scenriuszy przeznczonych dl uczniów szczególnie zinteresownych mtemtyką. Scenriusze mogą być wykorzystywne przez nuczycieli zrówno n typowych zjęcich

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 8 nr Archiwum Technologii Mszyn i Automtyzcji 008 PIOTR FRĄCKOWIAK KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC W rtykule

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński

PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński PROJEKT BUDOWLANY Relizcj etpu przebudowy i modernizcji 3 piętr Oddziłu Rehbilitcyjnego polegjącego n budowie szybu windowego, montżu windy szpitlnej orz niezbędnej rozbudowie obiektu budynku C znjdującego

Bardziej szczegółowo

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB Mteriły szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA Serwis internetowy BEZPIECZNIEJ CIOP-PIB 1. Wprowdzenie Drgnimi nzywne są procesy, w których chrkterystyczne dl nich wielkości fizyczne

Bardziej szczegółowo

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH Ochron przeciwwybuchow Michł Świerżewski WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH 1. Widomości ogólne Zgodnie z postnowienimi rozporządzeni Ministr Sprw Wewnętrznych

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r. Typ/orgn wydjący Rozporządzenie/Minister Infrstruktury Tytuł w sprwie szczegółowych wrunków i trybu wydwni zezwoleń n przejzdy pojzdów nienormtywnych Skrócony opis pojzdy nienormtywne Dt wydni 16 grudni

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r.

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r. złącznik nr 3 do uchwły nr V-38-11 Rdy Miejskiej w Andrychowie z dni 24 lutego 2011 r. ROZSTRZYGNIĘCIE O SPOSOBIE ROZPATRZENIA UWAG WNIESIONYCH DO WYŁOŻONEGO DO PUBLICZNEGO WGLĄDU PROJEKTU ZMIANY MIEJSCOWEGO

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Przygotowanie kart RUP

Przygotowanie kart RUP Przygotownie krt RUP Bnk Gospodrstw Krjowego, Al. Jerozolimskie 7, 00-955 Wrszw Stron nr 1 z 18 Spis Treści 1. WPROWADZENIE... 3 2. PRZYGOTOWANIE KART RUP... 3 2.1 KARTA RUP_L_0151 Depozyt do sygntury

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Mikrosilniki prądu stałego cz. 2

Mikrosilniki prądu stałego cz. 2 Jakub Wierciak Mikrosilniki cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mikrosilnik z komutacją bezzestykową 1 - wałek,

Bardziej szczegółowo

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,

Bardziej szczegółowo

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym Kurs e-lerningowy Giełd Ppierów Wrtościowych i rynek kpitłowy V edycj Struktur kpitłu, wrtość rynkow przedsiębiorstw n rynku kpitłowym 2010 SPIS TREŚCI I. Wstęp 3 II. Podstwowy miernik rentowności kpitłu

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe

Bardziej szczegółowo

Rozdzielacz suwakowy sterowany elektrycznie typ WE10

Rozdzielacz suwakowy sterowany elektrycznie typ WE10 Rozdzielcz suwkowy sterowny elektrycznie typ WE WN do,5 M do dm /min KR KLOGOW - INSRUKCJ OSŁUGI WK 499 78.4 ZSOSOWNIE Rozdzielcz suwkowy sterowny elektrycznie typ WE jest przeznczony do zminy kierunku

Bardziej szczegółowo

SYSTEM ENERGETYCZNO-NAPĘDOWY JAKO PODSTRUKTURA SYTEMU DYNAMICZNEGO POZYCJONOWANIA JEDNOSTKI OCEANOTECHNICZNEJ

SYSTEM ENERGETYCZNO-NAPĘDOWY JAKO PODSTRUKTURA SYTEMU DYNAMICZNEGO POZYCJONOWANIA JEDNOSTKI OCEANOTECHNICZNEJ Mgr inż. LSZK CHYBOWSKI Politechnik Szczecińsk Wydził Mechniczny Studium Doktornckie SYSTM NRGTYCZNO-NAPĘDOWY JAKO PODSTRUKTURA SYTMU DYNAMICZNGO POZYCJONOWANIA JDNOSTKI OCANOTCHNICZNJ STRSZCZNI W mterile

Bardziej szczegółowo

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na.

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na. STOWARZYSZENIE RYNKÓW FINANSOWYCH ACI POLSKA Afiliowne przy ACI - The Finncil Mrkets Assocition Dodtkowe informcje i objśnieni Wrszw, 21 mrzec 2014 1.1 szczegółowy zkres zmin wrtości grup rodzjowych środków

Bardziej szczegółowo

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI Kwestionriusz gospodrstw domowego Numer ewidencyjny: Dził 0. REALIZACJA WYWIADU. Łączn liczb wizyt nkieter w wylosownym mieszkniu. Wylosowne mieszknie Proszę

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH Krzysztof Górecki Akdemi orsk w Gdyni Klin Detk Pomorsk Wyższ Szkoł Nuk Stosownych w Gdyni ODELOWANIE CHARAKTERYSTYK RDZENI FERROAGNETYCZNYCH Artykuł dotyczy modelowni chrkterystyk rdzeni ferromgnetycznych.

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO. Póz. 2919 DECYZJA NR OKR-4210-38(14)/2014/404/XII/EŚ PREZESA URZĘDU REGULACJI ENERGETYKI

DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO. Póz. 2919 DECYZJA NR OKR-4210-38(14)/2014/404/XII/EŚ PREZESA URZĘDU REGULACJI ENERGETYKI DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO, dlll 10 listopd 2014 r. Elektronicznie podpisn Jnusz Włdysłw Olech Póz. 2919 Dt: 2014-11-10 14:08:59 DECYZJA NR OKR-4210-38(14)/2014/404/XII/EŚ PREZESA URZĘDU

Bardziej szczegółowo

Ćwiczenie 3. Modelowanie układu wykonawczego w środowisku MATLAB / SIMULINK

Ćwiczenie 3. Modelowanie układu wykonawczego w środowisku MATLAB / SIMULINK - laboratorium Ćwiczenie 3 Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Warszawa 013 Ćwiczenie 3 3.

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01 Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. rozliczeń i dministrcji [Pomorze] ADM/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do

Bardziej szczegółowo

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A INVERTER SERIA MXZ Typoszereg MXZ gwrntuje cicy, wysokowydjny i elstyczny system, spełnijący wszystkie wymgni w zkresie klimtyzcji powietrz. 6 MXZ-2C30VA MXZ-2C40VA MXZ-2C52VA MXZ-3C54VA MXZ-3C68VA MXZ-4C71VA

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZENIA PIELĘGNACYJNEGO Część I. Dane osoby ubiegającej się o ustalenie prawa do świadczenia pielęgnacyjnego

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZENIA PIELĘGNACYJNEGO Część I. Dane osoby ubiegającej się o ustalenie prawa do świadczenia pielęgnacyjnego Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Rodzinnych ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40; e-mil: sr@mopr.bytom.pl WNIOSEK

Bardziej szczegółowo

a A BAMIX HALE DLA PRZEMYSŁU Zapytanie ofertowe na wykonanie platformy 828

a A BAMIX HALE DLA PRZEMYSŁU Zapytanie ofertowe na wykonanie platformy 828 NARODOWA STRATEGIA SPÓJNOŚCI il A HALE DLA PRZEMYSŁU Wrszw, 01.04.2014 roku Zpytnie ofertowe n wykonnie pltformy 828 I. ZAMAWIAJACY I WYKONAWCA Zmwijącym jest: 8AMIX Zygmunt Leśnik z siedzibą w Wrszwie

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

Samouczek Metody Elementów Skończonych dla studentów Budownictwa

Samouczek Metody Elementów Skończonych dla studentów Budownictwa Grzegorz Dzierżnowski Mrt Sitek Smouczek Metody Elementów Skończonych dl studentów Budownictw Część I Sttyk konstrukcji prętowych OFICYNA WYDAWNICZA POLITECHNIKI WARSZAWSKIEJ WARSZAWA 2012 Preskrypt n

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Akdemi órniczo-hutnicz im. Stnisłw Stszic w Krkowie Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej Ktedr Elektrotechniki i Elektroenergetyki Rozprw Doktorsk Numeryczne lgorytmy

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA Instytut Technologii Mechanicznej. Maszyny technologiczne laboratorium. Walcowe koła zębate

POLITECHNIKA POZNAŃSKA Instytut Technologii Mechanicznej. Maszyny technologiczne laboratorium. Walcowe koła zębate POLITECHNIKA POZNAŃSKA Instytut Technologii Mechnicznej Mszyny technologiczne lbortoriu Wlcowe koł zębte widoości podstwowe Oprcowł: dr inŝ. Krzyszto Netter www.netter.stre.pl Poznń 2008 KN ver. 6.10.2008

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

http://www.clausius-tower-society.koszalin.pl/index.html

http://www.clausius-tower-society.koszalin.pl/index.html yłd rc zminy objętości czynni roboczego rc techniczn w ułdzie otwrtym n przyłdzie turbiny RównowŜność prcy i ciepł w obiegu zmniętym I zsd termodynmii dl zminy stnu msy ontrolnej Szczególne przypdi I zsdy

Bardziej szczegółowo

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO w roku szkolnym... I. Dne osoowe uczni / słuchcz Nzwisko..... Imion...... Imię ojc i mtki...... PESEL uczni / słuchcz Dt i miejsce urodzeni... II. Adres zmieszkni

Bardziej szczegółowo

Inteligentnych Systemów Sterowania

Inteligentnych Systemów Sterowania Laboratorium Inteligentnych Systemów Sterowania Mariusz Nowak Instytut Informatyki Politechnika Poznańska ver. 200.04-0 Poznań, 2009-200 Spis treści. Układ regulacji automatycznej z regulatorami klasycznymi

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu MATEMATYKA Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych z przedmiotu mtemtyk w PLO nr VI w Opolu Zkres podstwowy WyróŜnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

INSTRUKCJA NR 04 POMIARY I OCENA ŚRODOWISK CIEPLNYCH

INSTRUKCJA NR 04 POMIARY I OCENA ŚRODOWISK CIEPLNYCH LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 04 POMIARY I OCENA ŚRODOWISK CIEPLNYCH 1. Cel insrukci Cele insrukci es określenie wygń doyczących sposobu oceny środowisk

Bardziej szczegółowo

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on:

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on: Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. interwencji ekologicznych CON/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do kndydtów

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO SPECJALNEGO ZASIŁKU OPIEKUŃCZEGO. Dane osoby ubiegającej się o ustalenie prawa do specjalnego zasiłku opiekuńczego.

WNIOSEK O USTALENIE PRAWA DO SPECJALNEGO ZASIŁKU OPIEKUŃCZEGO. Dane osoby ubiegającej się o ustalenie prawa do specjalnego zasiłku opiekuńczego. Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Rodzinnych ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40; e-mil: sr@mopr.bytom.pl WNIOSEK

Bardziej szczegółowo

Metodologia szacowania wartości docelowych dla wskaźników wybranych do realizacji w zakresie EFS w Regionalnym Programie Operacyjnym Województwa

Metodologia szacowania wartości docelowych dla wskaźników wybranych do realizacji w zakresie EFS w Regionalnym Programie Operacyjnym Województwa Metodologi szcowni wrtości docelowych dl wskźników wybrnych do relizcji w zkresie EFS w Regionlnym Progrmie percyjnym Województw Kujwsko-Pomorskiego 2014-2020 Toruń, listopd 2014 1 Spis treści I. CZĘŚĆ

Bardziej szczegółowo