PODATNOŚCIOWE I SZTYWNOŚCIOWE RÓWNANIA KONSTYTUTYWNE LEPKOSPRĘŻYSTOŚCI ŻYWIC

Wielkość: px
Rozpocząć pokaz od strony:

Download "PODATNOŚCIOWE I SZTYWNOŚCIOWE RÓWNANIA KONSTYTUTYWNE LEPKOSPRĘŻYSTOŚCI ŻYWIC"

Transkrypt

1 KOMPOZYTY (OMPOITE) ()7 Marian Klazorny Poliechnika Warzawka, Inyu Mechaniki i Konrukci, ul. Narua 85, -54 Warzawa PODATNOŚIOWE I ZTYWNOŚIOWE RÓWNANIA KONTYTUTYWNE LEPKOPRĘŻYTOŚI ŻYWI Opracowano zmodyfikowany model reologiczny HWKK żywic z uwzględnieniem analiz wyników adań ekperymenalnych. Model en pozwala na ymulacę proceów lepkoprężyych króko-, średnio- i długorwałych w żywicy epokydowe lu polierowe, przy założeniu proceów odwracalnych, pierwzego rzędu, wyępuących w polimerowych kompozyach włókniych. formułowano podanościowe równania konyuywne liniowe lepkoprężyości żywic, w weri poaciowo- -oęościowe (). Zaoowano rzy liniowo niezależne funkce hiorii naprężenia (), do ymulaci odkzałceń poaciowych. Odkzałcenia oęościowe ą ymulowane ako idealnie prężye. Model reologiczny HWKK żywic zoał pozyywnie zweryfikowany dla wyranych programów naprężenia. Zmodyfikowany model HWKK e opiany przez dwie ałe prężyości oraz 6 ałych lepkoprężyości ( wpółczynniki pełzania długorwałego i czay reardaci). Opracowano algorym idenyfikaci (4, 5) ałych lepkoprężyości i wyznaczono e ałe dla żywicy epokydowe Epidian 5 oraz polierowe Polimal 9 (a. ). Wyniki ekperymenalne oraz opymalnie ymulowane pełzanie dla wyrane żywicy pokazano na ryunku. Opracowano analiyczną meodę odwracania podanościowych równań konyuywnych lepkoprężyości żywic. W przedawione meodzie wykorzyue ię przyliżone zywnościowe równania konyuywne lepkoprężyości modelu HWKK (9), kóre ymuluą przeiegi naprężeń dewiaorycznych za pomocą rzech liniowo niezależnych funkci hiorii odkzałcenia. W równaniach zywnościowych wyępuą dwie ałe prężyości (e ame co w równaniach podanościowych) oraz 6 ałych lepkoprężyości, o przerzye inerpreaci fizyczne ( wpółczynniki relakaci długorwałe oraz czay relakaci). Naprężenia akaoryczne ą ymulowane ako idealnie prężye. ałe lepkoprężyości wyępuące w równaniach zywnościowych wyznacza ię analiycznie ()-(5) z warunku zgodności ściłe i przyliżone zywności zepolone poaciowe. Rezulay odwracania podanościowych równań konyuywnych pokazano na ryunku, przedawiaącym w kali półlogarymiczne ściłą i przyliżoną zywność zepoloną poaciową wyrane żywicy. łowa kluczowe: żywice, równania konyuywne podanościowe i zywnościowe, ałe maeriałowe, idenyfikaca ONTITUTIVE OMPLIANE/TINE EQUATION O VIOELATIITY OR REIN A modified rheological model HWKK for rein ha een developed, aking ino conideraion he reul of analyi of he experimenal inveigaion. Thi model make poile o imulae hor-, medium- and long-laing vicoelaic procee in epoxy or polyeer rein, provided ha he procee are reverile and of he fir-rank ype. Thee aumpion are aified for firou polymeric compoie. oniuive compliance equaion of linear vicoelaiciy have een formulaed, in he hear-ulk verion (). The hear (diorional) deformaion are imulaed wih hree linearly independen re-hiory funcion (),. The ulk (voluminal) deformaion are imulaed a ideally elaic. The HWKK rheological model for rein ha een poiively validaed for eleced re programme. The modified HWKK model i decried wih wo conan of elaiciy and 6 conan of vicoelaiciy, i.e. long-laing creep coefficien and reardaion ime. An algorihm for idenificaion of conan of vicoelaiciy ha een developed (4, 5) and hee conan have een eimaed for Epidian 5 epoxy a well a Polimal 9 polyeer rein (Tale ). The experimenal reul and he opimally imulaed creep procee are illuraed in igure for eleced rein. An analyic mehod for reveral of he coniuive compliance equaion of vicoelaiciy ha een developed. The mehod ue he approximae coniuive iffne equaion of vicoelaiciy of he HWKK model (9), which imulae ime hiorie of he deviaoric ree wih hree linearly independen rain-hiory funcion. In he iffne equaion here occur conan of elaiciy (he ame a in he compliance equaion) a well a 6 conan of vicoelaiciy of clear phyical inerpreaion ( long-laing relaxaion coefficien and relaxaion ime). The axiaoric ree are imulaed a ideally elaic. The conan of vicoelaiciy, decriing he iffne equaion, are derived from he condiion of coincidence of he exac and approximae hear complex iffnee ()-(5). The reul of reveral of he coniuive compliance equaion are illuraed in igure, preening he exac and approximae hear complex iffnee for eleced rein. Key word: rein, coniuive compliance/iffne equaion, maerial conan, idenificaion WTĘP Żywica epokydowa i polierowa należą do powzechnie oowanych maryc polimerowych kompozyów włókniych. W prakyce poziomy naprężeń w żywicach nie przekraczaą wówcza % ich wyrzymałości doraźne na rozciąganie. Procey reologiczne w żywicach, m.in. pełzania i relakaci, ą wówcza odwracalne, pierwzego rzędu, ale, ak pokazuą ekpe- prof. dr ha. inż.

2 44 M. Klazorny rymeny, nie daą ię ymulować za pomocą poedyncze funkci worzące w klaie funkci wykładniczych. Modelowaniu żywic w zakreie liniowo lepkoprężyym w weri podanościowe poświęcone ą m.in. prace [-8]. Raonow [] zaoował wyraną funkcę wykładniczą ułamkową ako funkcę hiorii naprężenia normalnego. Tę amą funkcę zaoował Wilczyńki [], wprowadzaąc całkowe przedawienie e funkci oraz niezależną ymulacę lepkoprężyych odkzałceń poaciowych i oęościowych. Je o zw. model HW. Model HW zoał prakycznie zaoowany w pracy [], gdzie do modelowania lepkoprężyego żywicy epokydowe wykorzyano przeiegi pełzania poaciowego i oęościowego worzywa zucznego, podane w monografii [4]. Lepze dopaowanie do wyników ekperymenalnych w zakreie pełzania żywic uzykano dla modelu HWKN [5], opiuącego pełzanie pierwzorzędowe i drugorzędowe żywic. Model mechaniczny HWKN kłada ię z elemenów Hooke a, Wilczyńkiego, Kelvina i Newona; e opiany przez ałe prężyości oraz ałych lepkoprężyości ( wpółczynniki pełzania długorwałego, 4 ułamki, 6 czaów reardaci). Algorym idenyfikaci ałych lepkoprężyości e częściowo nieednoznaczny, zn. można wyznaczyć wiele zeawów warości ałych przy założonym łędzie aprokymaci. Ekperymenalna walidaca modelu HWKN dla wyranych programów naprężenia dała wyniki negaywne. Opracowano zaem koleny model reologiczny HWKK [6], uzykuąc dorą zgodność proceów ymulowanych i ekperymenalnych w próach walidacynych, zarówno dla żywicy epokydowe, ak i polierowe. Model HWKK w weri formułowane w [6] e opiany przez ałe prężyości oraz 7 ałych lepkoprężyości (4 wpółczynniki pełzania długorwałego, czay reardaci). Model uzależnia od ieie dwa wpółczynniki pełzania długorwałego oraz nie wykorzyue ekperymenalnie wierdzonego faku, że odkzałcenia oęościowe maą charaker prężyy [7]. W ninieze pracy opracowano zmodyfikowany model reologiczny HWKK żywic, z uwzględnieniem doychczaowych analiz wyników adań ekperymenalnych. formułowano podanościowe równania konyuywne liniowe lepkoprężyości ego modelu, w weri poaciowo-oęościowe, opiuące izoermiczne procey lepkoprężye króko-, średnio- i długorwałe, odwracalne, pierwzego rzędu. Odkzałcenia poaciowe ą ymulowane przez rzy liniowo niezależne funkce hiorii naprężenia. Odkzałcenia oęościowe ą ymulowane ako idealnie prężye. Odwzorowanie mechaniczne ego modelu kłada ię z elemenów Hooke a, Wilczyńkiego oraz dwóch elemenów Kelvina, połączonych zeregowo. Prolem odwracania podanościowych równań konyuywnych lepkoprężyości żywic ył analizowany m.in. w pracach [, 9, ]. W monografii [] formułowano podanościowe i zywnościowe równania konyuywne odpowiadaące modelom HK, HW, przy założeniu lepkoprężyych odkzałceń poaciowych i oę- - ościowych. W pracy [9] rozważono modele ardzie złożone, HKN, HKK, HWK, z kórych oani (HWK) e przydany do modelowania proceów odwracalnych króko- i średniorwałych w żywicach. W przypadku modeli HKN, HKK podanościowe równania konyuywne odwrócono analiycznie, wykorzyuąc ylko ranformay Laplace a. Odnośnie do modelu HWK wpomniano o możliwości numerycznego odwrócenia równań podanościowych za pomocą odwrone ranformaci Laplace a. Próę numerycznego odwrócenia podanościowego równania konyuywnego poaciowego, opiuącego model HWKN podęo w pracy []. Zaproponowano wyznaczanie ałych lepkoprężyości z warunku dopaowania ranforma Laplace a, odpowiadaących równaniu podanościowemu oraz przyęemu równaniu zywnościowemu. Zaoowano meodę yemaycznego przezukiwania, co w przypadku relaywnie duże liczy zmiennych decyzynych (6) i ardzo rozległych przedziałów przezukiwania prowadzi do algorymu nieefekywnego numerycznie. Ponado, ranformay Laplace a dopaowywano, przymuąc rzeczywie, a nie zepolone, warości parameru ranforma. W ninieze pracy opracowano analiyczną meodę odwracania podanościowych równań konyuywnych lepkoprężyości żywic, opiuących zmodyfikowany model reologiczny HWKK. PODATNOŚIOWE RÓWNANIA KONTYTUTYWNE PRĘŻYTOŚI ŻYWI W modelowaniu żywic, ako maryc polimerowych kompozyów włókniych, powzechnie zakłada ię izoropowość oraz liniowość związków konyuywnych. Podanościowe równania konyuywne prężyości, w formułowaniu kierunkowym, w noaci macierzowe maą znaną poać (m.in. [5]) =, xx yy zz = yz xz xy ym. =, E ν =, E = xx yy zz yz xz xy () gdzie: xyz - karezańki układ wpółrzędnych, - wekor odkzałceń kierunkowych, - wekor naprężeń

3 Podanościowe i zywnościowe równania konyuywne lepkoprężyości żywic 45 kierunkowych, - macierz podaności prężyych, E - moduł Younga, ν - ała Poiona. Podanościowe równania konyuywne prężyości, w weri poaciowo-oęościowe, w noaci macierzowe maą formę [5]: = = I = diag = ( I A), = ( I ) E B =, (,,,,, ), ( ν ) = =, G A = ym. A, = + = A, = A E =, G = B ( + ν ) () gdzie:,,, - dewiaor odkzałceń, dewiaor naprężeń, akaor odkzałceń i akaor naprężeń (w zapiie macierzowym), - podaność prężya poaciowa, - podaność prężya oęościowa, G - moduł Kirchhoffa, B - moduł Helmholza, przy czym = I A + A ( ). PODATNOŚIOWE RÓWNANIA KONTYTUTYWNE LEPKOPRĘŻYTOŚI ŻYWI W WERJI POTAIOWO-OBJĘTOŚIOWEJ Analiza wyników adań ekperymenalnych w zakreie odkzałceń próek rozciąganych ednokierunkowo według wyranych programów naprężenia [5-7] prowadzi do wnioku, że podanościowe równania konyuywne lepkoprężyości żywic, w weri poaciowo-oęościowe, można przyąć w poaci () = () (), () = () () = + ω ( ϑ) ( ) = α ξ α e ξλ( ξ ) dξ, Λ( ξ ) τ ( + ξ ) α α () = α e, () = α e, α =, =,, = dϑ = π ξ () We wzorach () wprowadzono naępuące nazew- nicwo: - zmienna czaowa, - operaor plou, ( ) - podaność czaowa poaciowa, () - funkca wykładnicza ułamkowa Raonowa-Wilczyńkiego z ułamkiem μ =,5, (), () - funkce wykładnicze zwykłe, ω, =,,, - wpółczynniki pełzania długorwałego, τ, =,,, - czay reardaci (różnych rzędów). Inerpreaca wzorów () e naępuąca: Podaność czaowa poaciowa e zdefiniowana przez rzy liniowo niezależne funkce hiorii naprężenia. unkca () wpływa na odkzałcenia króko-, średnio- i długorwałe. unkca () ma wpływ na odkzałcenia średnioi długorwałe. Oania funkca () ma wpływ ylko na odkzałcenia długorwałe. Dewiaor odkzałceń e lepkoprężyy; odpowiada mu model mechaniczny HWKK (układ elemenów Hooke a, Wilczyńkiego, Kelvina, Kelvina, połączonych zeregowo [6]), opiany przez dwie ałe prężyości ( E,ν lu G, B) oraz 6 ałych lepkoprężyości ( ω, τ, =,, ). Akaor odkzałceń e prężyy. Równania () opiuą procey lepkoprężye w żywicach w warunkach izoermicznych (w emperaurze pokoowe), pierwzego rzędu, odwracalne. Podanościowe równania konyuywne lepkoprężyości, opiuące zmodyfikowany model HWKK, można również formułować w weri kierunkowe, ez wprowadzania nowych ałych maeriałowych. IDENTYIKAJA TAŁYH LEPKOPRĘŻYTOŚI ŻYWIY EPOKYDOWEJ I POLIETROWEJ Rozparue ię pełzanie klayczne próek walcowych wykonanych z dane żywicy, rozciąganych ednokierunkowo. Program naprężenia ma poać xx () = = xx H(), xx =,R m, gdzie: x - oś próki, H() - funkca Heaviide a, R m - wyrzymałość naychmiaowa na rozciąganie. Równania opiuące pełzanie dla > maą poać: ϕ ( ) = ( ) + () = (), () = α ξ ω ϕ ϕ e Λ( ξ ) α () = e, =,, = = dξ (4) Z równań macierzowych (4) wynikaą naępuące zależności między pierwzymi kładowymi dewiaorów i akaorów naprężeń i odkzałceń: () = ( ), =, przy czym:

4 46 M. Klazorny [ ] () = () () xx yy [ xx yy ], = xx () = () + (), = xx (5) Przeiegi odkzałceń kierunkowych ( ), ( ) mogą yć ławo zmierzone ekperymenalnie. Badania pełzania próek z żywicy epokydowe (Epidian 5) i polierowe (Polimal 9) przeprowadzono w laach - w Laoraorium Wyrzymałości Maeriałów IMMT WM WAT i zczegółowo opiano w [6]. W ninieze pracy ałe lepkoprężyości wyępuące w równaniach () wyznaczono w rzech eapach. W eapie wyznacza ię ałe ω, τ na podawie pełzania krókorwałego, opianego formułą przyliżoną () [ + ωϕ () ], (, T ). Punky kolokaci wyiera ię quai-równomiernie, w kali logarymiczne, w wymienionym przedziale czau. Z eów wępnych wynika, że dla żywic T = h. Minimalizue ię łąd względny δ między pełzaniem ymulowanym a pełzaniem ekperymenalnym, w punkach kolokaci. Minimalna licza punków kolokaci wynoi n =. W nieliniowym zadaniu opymalizacynym przyęo n = 5, eymuąc ałe ω,τ meodą yemaycznego przezukiwania, w pęli ieracyne. Ieraca polegała na opniowym zawężaniu dwóch przedziałów przezukiwania, z ednoczenym zwiękzaniem dokładności eymaci do warości Δω =,, Δτ =, h. W eapie wyznacza ię ałe ω,τ na podawie pełzania króko- i średniorwałego, opianego formułą przyliżoną () [ + ωϕ () + ωϕ ( ) ], (, T ). Z eów wępnych wynika, że dla adanych żywic T = 5 h. Przyęo n =. ałe ω,τ eymowano analogicznie ak w eapie, przy czym Δω =,, Δτ, h. = xx yy TABELA. Warości ałych maeriałowych prężyości i lepko- prężyości adanych żywic (równania podanościowe) TABLE. Value of maerial conan of elaiciy and vicoelaiciy of he examined rein (compliance equaion) ała maeriałowa Epidian 5 Polimal 9 E, GPa,4 4,8 ν,48,6 ω,9,5 ω,6,4 ω,4,8 τ, h,,69 τ, h 55, 69,8 τ, h W eapie wyznacza ię ałe ω, τ na podawie pełzania króko-, średnio- i długorwałego w przedziale (, T ). Z eów wępnych wynika, że T = 5 h. Przyęo n =. ałe ω, τ eymowano analogicznie ak w eapach i, przy czym Δω =,, Δτ = h. Wyżza dokładność eymaci ałych lepkoprężyości w pozczególnych eapach e nieuzaadniona ze względu na ograniczoną dokładność pomiarów odkzałceń. Wyniki idenyfikaci ałych prężyości i lepkoprężyości adanych żywic zeawiono w aeli. Błędy względne δ odchylenia ymulowane krzywe pełzania poaciowego od warości ekperymenalnych wynioły <,6% dla Epidianu 5 oraz <,8% dla Polimalu 9. Dokładność modelowania lepkoprężyego żywic pokazano na ryunku przykładowo dla żywicy epokydowe. Odkzałcenia wyępuące na ryunku zdefiniowano we wzorach (5). Ry.. Pełzanie klayczne próki z Epidianu 5. ymulowane pełzanie poaciowe i oęościowe na le warości ekperymenalnych. Naprężenie rozciągaące xx = 5,6 MPa ig.. laical creep of he ample made of Epidian 5 epoxy. The imulaed hear and ulk creep ackgrounded wih he experimenal value. Tenioning re xx = 5,6 MPa ZTYWNOŚIOWE RÓWNANIA KONTYTUTYWNE PRĘŻYTOŚI I LEPKOPRĘŻYTOŚI ŻYWI zywnościowe równania konyuywne liniowe prężyości maeriału izoropowego, w weri poaciowo-oęościowe, orzymue ię ławo z równań () : =, = (6) gdzie: = G, = B ą odpowiednio zywnością prężyą poaciową i oęościową. umuąc równania (6), z uwzględnieniem zależności (), orzymue ię zywnościowe równania konyuywne prężyości, w weri kierunkowe:

5 Podanościowe i zywnościowe równania konyuywne lepkoprężyości żywic 47 = = ( ) + = (7) I A A ym. przy czym kierunkowe zywności prężye wyrażaą ię wzorami: = ( B + 4G), = ( B G) (8) Przyliżone zywnościowe równania konyuywne liniowe lepkoprężyości żywic, w weri poaciowo- -oęościowe, opiuące zmodyfikowany model HWKK, przewidue ię w poaci: () = () (), () = () () = κ K ( ϑ) =,,, K = dϑ, β = τ βξ () = β e ξλ( ξ ) dξ, K() r = β β e β K () = β e (9) We wzorach (9) wprowadzono naępuące oznaczenia: () - zywność czaowa poaciowa, K () - funkca wykładnicza ułamkowa Raonowa-Wilczyńkiego z ułamkiem μ =,5; K (), K () - funkce wykładnicze zwykłe, κ, =,,, - wpółczynniki relakaci długorwałe, τ r, =,,, - czay relakaci (różnych rzędów). Inerpreaca wzorów (9) e naępuąca: zywność czaowa poaciowa e zdefiniowana przez rzy liniowo niezależne funkce hiorii odkzałcenia. unkca K () ma wpływ na naprężenia dewiaoryczne króko-, średnio- i długorwałe. unkca K () ma wpływ na naprężenia średnio- i długorwałe. Oania funkca K () ma wpływ ylko na naprężenia długorwałe. Dewiaor enora naprężeń e lepkoprężyy, naomia akaor - prężyy. zywnościowe równania konyuywne ą opiane przez dwie ałe prężyości (G, B) oraz 6 ałych lepkoprężyości κ,, ( τ r =,, ). Przyliżone zywnościowe równania konyuywne lepkoprężyości żywic można również formułować w weri kierunkowe, ez wprowadzania dodakowych ałych maeriałowych. WYZNAZENIE ŚIŁEJ I PRZYBLIŻONEJ ZTYWNOŚI ZEPOLONEJ POTAIOWEJ W celu uzykania przerzyych rozważań w niniezym punkcie pomiamy indek ( ). Do wyznaczenia ściłe podaności zepolone poaciowe oraz przyliżone zywności zepolone poaciowe zaoowano meodykę zliżoną do meodyki opiane w monografii []. Poedyncze równanie w równaniu macierzowym () przepiuemy w poaci G () = () (), () = + ω ( ϑ) = dϑ () Tranformaca Laplace a na równaniu () dae w wyniku równanie algeraiczne ( q) ( q) ( q), ( q) = + ( q) = ω () G = gdzie q e zepolonym paramerem ranformay, naomia: = = () q q q α α α ( q), ( q) =, ( q) ą ranformaami Laplace a funkci hiorii naprężenia. Przechodząc w równaniu () do ualonych proceów harmonicznych z częością p [h ], zn. przymuąc ip ip ( ) = e, ( ) = e, i =,, mamy: () ( ) p (), = + ( ip) = ω () G = przy czym []: ( ip) = + i =, + + p α p p + α α = kładowe,, =,, + p α p p + α α (4) odpowiadaące zwyk- łym funkcom wykładniczym, można znaleźć w []. Po podawieniu wzorów (4) do wzoru () orzymue ię formułę końcową na ściłą podaność zepoloną poaciową:

6 48 M. Klazorny ( ) = ( ) + ( ) ( ) = p p i p, p ω G = ω = + G = (5) Odwrócenie równania () prowadzi do związku () = (), w kórym e ściłą zywnością zepoloną poaciową, określoną przez wzory = = i, = + [ ] + [ ] ( ) p = [ ] + [ ] = (6) Poedyncze równanie w równaniu macierzowym (9) przepiuemy w poaci () = () (), () = G κ K ( ϑ) = dϑ (7) Tranformaca Laplace a na równaniu (7) dae w wyniku równanie algeraiczne ( q) ( q) ( q), ( q) = G κ K ( q) = (8) = gdzie ranformay Laplace a K ( q) wyrażaą ię wzorami analogicznymi ak dla ( q), =,,, przy czym zamia α należy podawić β, =,,. Przechodząc w równaniu (7) do ualonych proceów harmonicznych, orzymue ię: K () (), = G κ K ( ip) = ( ip) = K + ik = zęści rzeczywie i uroone K K (9), wyrażaą ię wzorami analogicznymi ak dla,, =,,, przy czym zamia α należy podawić β, =,,. Końcowe wzory na przyliżoną zywność zepoloną poaciową przymuą formę: ( ) = ( ) ( ) ( ) = p p i p, p G κ K + = G κ K = = WYZNAZENIE TAŁYH MATERIAŁOWYH κ, τ r, =,,, () Dla p > α (procey krókorwałe) wpływ funkci worzących o numerach =, e pomialny; orzymuemy wówcza zredukowany model HW, kóremu odpowiadaą naępuące formuły ściłe na części rzeczywie podaności i zywności zepolone [] [ ω ], = G[ κ K ] = + () G przy czym dla funkci wykładnicze Raonowa-Wilczyńkiego z ułamkiem μ =, 5 mamy ω κ =, + () β = + ω ( ω ) α Dla p = α (procey króko- i średniorwałe) ylko wpływ funkci worzące o numerze = e pomialny; orzymuemy zredukowany model HWK. We wzorach (5) należy pominąć kładniki odpowiadaące = =, naomia wzory () redukuą ię do poaci [ ] G[ κ K α + κ K α ] = G κ K κ K = ( ) ( ) () Jeśli po lewe ronie formuł () wawimy warości ściłe, określone wzorami (6), o orzymamy układ dwóch równań algeraicznych z dwiema niewiadomymi, kórego rozwiązanie ma poać: B A κ = A +, β = α, A = κ K A B B = κ K + G G (4) Dla p = α (procey króko-, średnio- i długorwałe) uwzględniamy pełny model HWKK. Z warunku równości części rzeczywiych ściłe i przyliżone zywności zepolone oraz równości odpowiednich części uroonych orzymue ię układ równań algeraicznych, kórego rozwiązanie ma poać:

7 Podanościowe i zywnościowe równania konyuywne lepkoprężyości żywic 49 B κ = A +, A A = κ K B = κ K κ K + κ K A β = α B G + G (5) Powyżzą procedurę powarzamy w pęli ieracyne, uwzględniaąc pełny model HWKK również przy wyznaczaniu paramerów κ, β. W k-e ieraci należy przyąć warości κ, β z ieraci (k-). Miarą dopaowania ą względne odchylenia przyliżone zywności zepolone poaciowe () od zywności ściłe (6), oliczane klaycznie, oddzielnie dla części rzeczywiych (δ ) i uroonych (δ ). Przedział zmienności częości p oemue α, α, α, kóre dla analizowanego modelu ą różnych rzędów. Wyniki oliczeń dla żywicy epokydowe (Epidian 5) i polierowe (Polimal 9) zeawiono w aeli. za oliczeń na P nie przekraczał dla dane żywicy. Proce ieracyny e zieżny; warości ałych lepkoprężyości ualaą ię po 6-7 ieracach, z dokładnością do 5 cyfr znaczących. Warości ałych maeriałowych: E, ν, ω, ω, ω, τ, τ, τ, anowiące ziór danych weściowych, podano w aeli. TABELA. Warości ałych maeriałowych prężyości i lepkoprężyości adanych żywic (równania zywnościowe) TABLE. Value of maerial conan of elaiciy and vicoelaiciy of he examined rein (iffne equaion) ała maeriałowa Epidian 5 Polimal 9 G, GPa,,57 B, GPa 6,4 5, κ,6,4 κ,6,45 κ,5, τ r, h,,7 τ r, h 44,7 48, τ r, h 8 5 Ry.. Ściła i przyliżona zywność zepolona poaciowa żywicy epokydowe Epidian 5 ig.. The exac and approximae hear complex iffnee for Epidian 5 epoxy Dopaowanie zywności zepolonych pokazano na ryunku, przykładowo dla żywicy epokydowe, w kali półlogarymiczne. Odchylenia wynozą: δ = =,6%, δ =,5% dla Epidianu 5 oraz δ =,6%, δ =,% dla Polimalu 9. WNIOKI Zmodyfikowany model HWKK pozwala na ymulacę izoermicznych proceów lepkoprężyych króko-, średnio- i długorwałych w żywicach, ako marycach polimerowych kompozyów włókniych. Model en e opiany przez relaywnie małą liczę ałych maeriałowych. Idenyfikaca ałych lepkoprężyych e ednoznaczna. Meoda odwracania podanościowych równań konyuywnych modelu HWKK e analiyczna, ednoznaczna i o wyokie dokładności. LITERATURA [] Raonow J.N., Elemen of vicoelaic mechanic of olid (in Ruian), Nauka Pre, Mocow 977. [] Wilczyńki A.P., Mechanika polimerów w prakyce konrukcyne, WNT, Warzawa 984. [] Wilczyńki A.P., Klazorny M., Deerminaion of complex compliance of firou polymeric compoie, J. ompoie Maerial, 4,, -6. [4] Wilczyńki A.P., Wyrane prolemy adania właności mechanicznych liniowo prężyych ciał ałych, OWPW, Warzawa 968. [5] Klazorny M., Wilczyńki A.P., Wiemerg-Perzyk D., A rheological model of polymeric maerial and idenificaion of i parameer, J. Theoreical & Applied Mechanic, 9,, -. [6] Klazorny M., Gielea R., The HWKK rheological model for rein, J. Theoreical & Applied Mechanic, 4, 4, [7] Klazorny M., Wilczyńki A.P., oniuive modeling of polymeric rein aed on hear and ulk creep, nd European onf. on ompuaional Mechanic EM-, racow, D onf. Proceed., Paper No, -4. [8] Klazorny M., Wilczyńki A.P., Vicoelaic modelling of fire-reinforced rein marix compoie, In. onf. on High Performance rucure & ompoie, eville, -4. [9] Wilczyńki A.P., Tworzenie i oowanie związków konyuywnych lepkoprężyych kompozyów polimerowych, Ma.. zkoły Kompozyów n. Modelowanie i analiza ma-

8 5 M. Klazorny eriałów i elemenów kompozyowych, Wiła, [] Kaniewki J., O możliwościach odwracania pewnych zależności konyuywnych maeriałów lepkoprężyych, Rapor adawczy nr IMiK/ZM//, Inyu Mechaniki i Konrukci PW, Warzawa. Recenzen aniław Mazurkiewicz

Wykorzystanie rozkładu GED do modelowania rozkładu stóp zwrotu spółek sektora transportowego

Wykorzystanie rozkładu GED do modelowania rozkładu stóp zwrotu spółek sektora transportowego PUCZYŃSKI Jan CZYŻYCKI afał Wykorzyanie rozkładu GED do modelowania rozkładu óp zwrou półek ekora ranporowego WSTĘP Jednym z najczęściej prowadzonych badań doyczących rynku kapiałowego ą badania doyczące

Bardziej szczegółowo

Wykład 4: Transformata Laplace a

Wykład 4: Transformata Laplace a Rachunek prawdopodobieńwa MAP164 Wydział Elekroniki, rok akad. 28/9, em. leni Wykładowca: dr hab. A. Jurlewicz Wykład 4: Tranformaa Laplace a Definicja. Niech f() będzie funkcją określoną na R, przy czym

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej Mariusz Markowski, Marian Trafczyński Poliechnika Warszawska Zakład Aparaury Przemysłowe ul. Jachowicza 2/4, 09-402 Płock Harmonogram czyszczenia z osadów sieci wymienników ciepła w rakcie eksploaaci insalaci

Bardziej szczegółowo

MODELOWANIE POLIMEROWYCH KOMPOZYTÓW WŁÓKNISTYCH W ZAKRESIE LEPKOSPRĘŻYSTYM

MODELOWANIE POLIMEROWYCH KOMPOZYTÓW WŁÓKNISTYCH W ZAKRESIE LEPKOSPRĘŻYSTYM KOMPOZYTY (COMPOIT (3 Andrzej P. ilczyńki Marian Klazorny Poliechnika arzawka Inyu Mechaniki i Konrukcji ul. Narua 85-54 arzawa MODLOANI POLIMROYCH KOMPOZYTÓ ŁÓKNITYCH ZAKRI LPKOPRĘŻYTYM Opracowano analiyczną

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

Zbigniew Skup. Podstawy automatyki i sterowania

Zbigniew Skup. Podstawy automatyki i sterowania Zbigniew Skup Podawy auomayki i erowania Warzawa Poliechnika Warzawka Wydział Samochodów i Mazyn Roboczych Kierunek "Edukacja echniczno informayczna" -54 Warzawa, ul. Narbua 84, el () 849 4 7, () 4 8 48

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

ĆWICZENIE NR 6 OZNACZANIE WSKAŹNIKA STABILNOŚCI I TERMOSTABILNOŚCI WODY

ĆWICZENIE NR 6 OZNACZANIE WSKAŹNIKA STABILNOŚCI I TERMOSTABILNOŚCI WODY ĆWCENE NR 6 ONACANE WSKAŹNKA STABLNOŚC TERMOSTABLNOŚC WODY 1. WPROWADENE 1.1. STABLNOŚĆ, KOROYJNOŚĆ AGRESYWNOŚĆ WODY. Sabilność, korozyjność i agreywność wody o wkaźniki ważne przy ocenie przydaności wody

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD Pior Jankowski Akademia Morska w Gdyni IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD W arykule przedsawiono możliwości (oraz ograniczenia) środowiska Mahcad do analizy

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I

Bardziej szczegółowo

Koncepcja zastosowania metody CBR oraz algorytmów genetycznych w systemie obsługującym windykację ubezpieczeniową

Koncepcja zastosowania metody CBR oraz algorytmów genetycznych w systemie obsługującym windykację ubezpieczeniową Rozdział monografii: 'Bazy Danych: truktury, Algorytmy, Metody', Kozielki., Małyiak B., Kaprowki P., Mrozek D. (red.), WKŁ 2006 Rozdział 40 Koncepca zatoowania metody CBR oraz algorytmów genetycznych w

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Rachunek Prawdopodobieństwa istatystyka W4 Rozkład normalny Parametry rozkładu zmienne losowe Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny - standaryzaca

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

Wyznaczanie temperatury i wysokości podstawy chmur

Wyznaczanie temperatury i wysokości podstawy chmur Wyznaczanie emperaury i wysokości podsawy chmur Czas rwania: 10 minu Czas obserwacji: dowolny Wymagane warunki meeorologiczne: pochmurnie lub umiarkowane zachmurzenie Częsoliwość wykonania: 1 raz w ciągu

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: 55OF D KO OF Szczecin: www.of.zc.pl L OLMPADA FZYZNA (005/006). Stopień, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wymołek; Fizyka w Szkole nr 3, 006. Autor: Nazwa zadania:

Bardziej szczegółowo

Kinematyka opisanie ruchu

Kinematyka opisanie ruchu Kinemayka opianie ruchu. Co o je ruch? Ruch je zjawikiem powzechnym. Poruzają ię gwiazdy i planey, poruza ię woda i powierze, zwierzęa i rośliny. Poruzaz ię Ty. Poruzają ię najmniejze cząki maerii. Słowem

Bardziej szczegółowo

WŁAŚCIWOŚCI TRAKCYJNE UNIWERSALNEGO CIĄGNIKA ROLNICZEGO W TRANSPORCIE DROGOWYM

WŁAŚCIWOŚCI TRAKCYJNE UNIWERSALNEGO CIĄGNIKA ROLNICZEGO W TRANSPORCIE DROGOWYM УДК 631 1 р. ŁAŚCIOŚCI TRAKCYJE UIERSALEGO CIĄGIKA ROLICZEGO TRASPORCIE DROGOYM Ziniew Kiernici Paweł Żelazo Poliechnia Luela, Pola Soe racion araeer o ar racor ued or ranor wor on olid urace have een

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y G C S D Z P I 2 7 1 0 1 12 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a ( u d o s t p n i e n i e ) a g r e g a t u p r» d o t w

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI Dr inż. Danuta MIEDZIŃSKA, email: dmiedzinska@wat.edu.pl Dr inż. Robert PANOWICZ, email: Panowicz@wat.edu.pl Wojskowa Akademia Techniczna, Katedra Mechaniki i Informatyki Stosowanej MODELOWANIE WARSTWY

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

Zastosowanie danych o różnej częstotliwości w prognozowaniu makroekonomicznym

Zastosowanie danych o różnej częstotliwości w prognozowaniu makroekonomicznym Lech Kujawki * Zaoowanie danych o różnej częoliwości w prognozowaniu makroekonomicznym Węp Doępność online do obzernych baz danych makroekonomicznych rodzi nauralną chęć wykorzyania zawarych w niej danych.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r

Bardziej szczegółowo

G d y n i a W y k o n a n i e p r a c p i e l g n a c y j- n o r e n o w a c y j n y c h n a o b i e k t a c h s p o r t o w y c h G C S o r a z d o s t a w a n a s i o n t r a w, n a w o z u i w i r u

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA

INŻYNIERIA MATERIAŁOWA POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW INŻYNIERIA MATERIAŁOWA INŻYNIERIA POLIMERÓW Właściwości tworzyw polimerowych przy rozciąganiu. Streszczenie: Celem ćwiczenia jest przeprowadzenie

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Estymacja parametrów, przedziały ufności etc

Estymacja parametrów, przedziały ufności etc Estymacja parametrów, przedziały ufności etc Liniowa MNK przypomnienie Wariancja parametrów Postulat Bayesa: rozkłady p-stwa dla parametrów Przypadek nieliniowy Przedziały ufności Rozkłady chi-kwadrat,

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 02 02 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f Z a b e z p i e c z e n i e m a s o w e j i m p r e z y s p o r t

Bardziej szczegółowo

2. Równania nieliniowe i ich uk lady

2. Równania nieliniowe i ich uk lady Metoda Newtona stycznych dla równania f(x) 0: x n+ x n f(x n) f (x n ) Chcemy rozwia ι zać uk lad N równań dla N niewiadomych f (x,x,,x N ) 0 f (x,x,,x N ) 0, f N (x,x,,x N ) 0 krócej: Czy jest jakaś analogia?

Bardziej szczegółowo

POZYCJONOWANIE I NADĄŻANIE MINIROBOTA MOBILNEGO M.R.K

POZYCJONOWANIE I NADĄŻANIE MINIROBOTA MOBILNEGO M.R.K MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 97-104, Gliwice 2009 POZYCJONOWANIE I NADĄŻANIE MINIROBOTA MOBILNEGO M.R.K MARIUSZ GIERGIEL, PIOTR MAŁKA Kaedra Roboyki i Mecharoniki, Akademia Górniczo-Hunicza

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

u l. W i d o k 8 t e l. 2 2 6 9 0 6 9 6 9

u l. W i d o k 8 t e l. 2 2 6 9 0 6 9 6 9 T A D E U S Z R O L K E J U T R O B Ę D Z I E L E P I E J T o m o r r o w W i l l B e B e t t e r K a w i a r n i a F a f i k, K r a k ó w, 1 9 9 2 F a f i k C a f e, C r a c o w, 1 9 9 2 W ł a c i c i

Bardziej szczegółowo

Mikrosilniki synchroniczne

Mikrosilniki synchroniczne Mikoilniki ynchoniczne Specyfika eoii: R >0 z uwagi na ounkowo dużą waość ezyancji ojana nie wolno jej pomijać w analizie zjawik mikomazyny ynchonicznej. Zwykle wykozyywane ą óżne odzaje momeny ynchonicznego:

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

ROZRUCH SILNIKA GŁĘBOKOśŁOBKOWEGO W UKŁADZIE ŁAGODNEGO ROZRUCHU ASPEKT ENERGETYCZNY

ROZRUCH SILNIKA GŁĘBOKOśŁOBKOWEGO W UKŁADZIE ŁAGODNEGO ROZRUCHU ASPEKT ENERGETYCZNY Zezyy Polemowe Mazyny Elekyczne N 81/9 17 Jan Móz Poliechnika Rzezowka, Rzezów ROZRUCH ILNIKA GŁĘBOKOśŁOBKOEGO UKŁAZIE ŁAGONEGO ROZRUCHU APEKT ENERGETYCZNY TART-UP OF THE EEP-BAR MOTOR ITH THE UE OF THE

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM 1. Wprowadzenie do zajęć. Równania Lagrange'a II rodzaju Ćwiczenie wykonywane na podstawie rozdziału 3 [1] 2. Drgania swobodne

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY Ć w i c z e n i e 30 BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD EMPERAURY 30.1 Wtęp teoretyczny 30.1.1. Prędkość dźwięku. Do bardzo rozpowzechnionych proceów makrokopowych należą ruchy określone wpólną nazwą

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

OCENA PRZYDATNOŚCI MODELU EKONOMETRYCZNEGO DO BADANIA ZMIAN DYNAMIKI GOSPODARKI WOJEWÓDZTWA ŚLĄSKIEGO

OCENA PRZYDATNOŚCI MODELU EKONOMETRYCZNEGO DO BADANIA ZMIAN DYNAMIKI GOSPODARKI WOJEWÓDZTWA ŚLĄSKIEGO Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 220 2015 Uniwersytet Ekonomiczny w Katowicach Wydział Zarządzania Katedra Ekonometrii ozef.biolik@ue.katowice.pl

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

SKUTECZNOŚĆ ROZDZIELANIA MIESZANINY ZIARNIAKÓW ZBÓŻ I ORZESZKÓW GRYKI W TRYJERZE Z WGŁĘBIENIAMI KIESZONKOWYMI

SKUTECZNOŚĆ ROZDZIELANIA MIESZANINY ZIARNIAKÓW ZBÓŻ I ORZESZKÓW GRYKI W TRYJERZE Z WGŁĘBIENIAMI KIESZONKOWYMI Inżynieria Rolnicza 6(115)/009 SKUTECZNOŚĆ ROZDZIELANIA MIESZANINY ZIARNIAKÓW ZBÓŻ I ORZESZKÓW GRYKI W TRYJERZE Z WGŁĘBIENIAMI KIESZONKOWYMI Zdziław Kaliniewicz Katedra Mazyn Roboczych i Proceów Separacji,

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

9. OBWODY ROZGAŁĘZIONE - METODY I TWIERDZENIA

9. OBWODY ROZGAŁĘZIONE - METODY I TWIERDZENIA 9. OBWODY ROZGAŁĘZONE - METODY TWERDZENA Podobnie ak w przypadku obwodów prądu stałego analiza złożonych obwodów prądu sinusoidalnie zmiennego opiera się o tworzenie ich schematów zastępczych. Zestawiane

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Studenckie Koło Geoinformatyków. Instytut Geodezji Wydział Nauk Technicznych Dolnośląska Szkoła Wyższa we Wrocławiu. Sprawozdanie

Studenckie Koło Geoinformatyków. Instytut Geodezji Wydział Nauk Technicznych Dolnośląska Szkoła Wyższa we Wrocławiu. Sprawozdanie tudenckie Koło Geoinformatyków Intytut Geodezji Wydział Nauk Technicznych Dolnośląka zkoła Wyżza we Wrocławiu prawozdanie z obozu naukoweo w Międzyórzu w dniach -6 kwietnia 3 r Międzyórze 3 Plan obozu

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Właściwości reologiczne

Właściwości reologiczne Ćwiczenie nr 4 Właściwości reologiczne 4.1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z pojęciem reologii oraz właściwości reologicznych a także testami reologicznymi. 4.2. Wstęp teoretyczny:

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

2 0 0 M P a o r a z = 0, 4.

2 0 0 M P a o r a z = 0, 4. M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z

Bardziej szczegółowo