METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO"

Transkrypt

1 PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE: analiza merologiczna oru pomiarowego sanowiska adawczego, wzorcowanie oru pomiarowego STRESZCZENIE W referacie przedsawiono sposó przeprowadzania analizy merologicznej orów pomiarowych sanowiska adawczego na przykładzie oru pomiaru momenu arcia w adaniach miniaurowych łożysk ślizgowych WPROWADZENIE Podsawowym wymaganiem, jakie powinno spełniać sanowisko do przeprowadzania adań riologicznych, jes wierne odwarzanie warunków pracy riosysemu (np. czopa z panewką). Orzymane wyniki adań ędą wówczas wiarygodnym źródłem informacji o rzeczywisych zjawiskach zachodzących w adanym węźle. Dokładność i wiarygodność wyznaczania poszczególnych paramerów czy charakerysyk riosysemu zależy z jednej srony od przyjęych meod adań, z drugiej zaś od merologicznych własności wykorzysywanych orów pomiarowych sanowiska adawczego. onieczne jes więc przeprowadzenie wzorcowania wszyskich układów sanowiska adawczego lu dokonanie analizy merologicznej orów pomiarowych sanowiska. Przeprowadzanie analizy merologicznej orów pomiarowych sanowiska adawczego zosanie omówione na przykładzie oru pomiaru momenu arcia sanowiska do adania miniaurowych łożysk ślizgowych pracujących przy zmiennych w czasie warościach prędkości poślizgu i nacisku. W ocenie merologicznych własności oru pomiarowego sanowiska adawczego uwzględniono nasępujące zagadnienia: - udowę oru pomiarowego (udowa poszczególnych loków i ich paramery), - równanie pomiaru (napisane przy założeniu, że or pomiarowy zudowany jes z liniowych loków przewarzania i rakując warość mierzoną jako wynik pomiaru pośredniego [5]), 0

2 - wzorcowanie oru pomiarowego: - meoda wzorcowania [6] - opracowanie wyników wzorcowania [7]; - oliczenie współczynników równania pomiaru [7]; - wyznaczenie łędu pomiaru wielkości mierzonej [7]. Symole oznaczeń łędu względnego, łędu ezwzględnego, czułości i innych paramerów przyjęo zgodnie z lieraurą [4]. WYZNACZANIE ETROLOGICZNYCH WŁASNOŚCI TORÓW POIAROWYCH STANOWISA BADAWCZEGO - TOR POIAROWY OENT TARCIA. OPIS BDOWY TOR POIAROWEGO Na rys.. przedsawiono schema lokowy oru pomiarowego momenu arcia sanowiska do adania miniaurowych łożysk ślizgowych. PT PP Q m TP ε CT W 3 4 A/C m 5 C PC/AT Rys.. Schema lokowy oru pomiaru momenu arcia; PT przewornik momenu arcia, PP przewornik przenoszenia momenu, TP ensomeryczny przewornik momenu, 3 CT cyfrowy mosek ensomeryczny, 4 W wzmacniacz napięcia, 5 A/C przewornik analogowo-cyfrowy, 6 PC/AT kompuer, mierzony momen arcia w łożysku ślizgowym, Q m siła działająca na sprężynę TP, momen działający na sprężynę TP, ε odkszałcenie sprężyny TP, m wyjściowe napięcie z układu CT W, C liczowa reprezenacja zmierzonego napięcia Po zadaniu żądanych warości prędkości poślizgu i nacisku w łożysku ślizgowym (sanowisko do adania miniaurowych łożysk ślizgowych []) ramka, zaierana momenem arcia, oróci się. ulka, umieszczona w ramce, spowoduje odkszałcenie sprężyny płaskiej ensomerycznego przewornika momenu arcia TP. Sygnał z przewornika momenu arcia PT (rys..) przekazywany jes na wyjście cyfrowe moska ensomerycznego CT i dalej na wzmacniacz układu pomiaru momenu arcia W. Sygnał en podawany jes nasępnie na wejście kary pomiarowej A/C (przewornik analogowo-cyfrowy) i zapisywany w pamięci kompuera. 5

3 .. PRZETWORNI OENT TARCIA Przewornik momenu arcia PT, przedsawiony na rys., składa się z przewornika przenoszenia momenu PP i ensomerycznego przewornika momenu TP wykonanego w IiF PW. Czułość przewornika przenoszenia momenu PP [4] dana jes wzorem: PP = / = / a () a łąd wyznaczenia czułości (rakując PP jako wynik pomiaru pośredniego [5]) wynosi: PP PP δ = PP δ + δ () a Podsawiając do wzorów () i () warości: a = 6 mm, = 5 mm oraz przyjęe warości łędów ich wyznaczenia: δ a = 0. mm, δ = 0. mm, czułość przewornika przenoszenia momenu równa jes: PP = 4, zaś łąd jej wyznaczenia wynosi: δ = 0.07 PP a.. CYFROWY OSTE TENSOETRYCZNY ZE WZACNIACZE NAPIĘCIA W orze pomiarowym użyo cyfrowego moska ensomerycznego ypu CT-83 (produkcji Spółdzielni Techno-echanik Gdańsk) z auomaycznym równoważeniem składowej pojemnościowej. osek CT-83 przeznaczony jes do pomiaru relaywnie małych zmian impedancji w rezysywnych i indukcyjnych układach moskowych. Przysosowany jes do współpracy z przewornikami ensomerycznymi, ermorezysancyjnymi oraz indukcyjnymi. Przeznaczony jes do pomiaru wielkości saycznych i dynamicznych w zakresie do 500 Hz. oże pracować jako urządzenie auonomiczne lu jako jednoska funkcjonalna wielopunkowego sysemu pomiarowego. Wzmacniacz napięcia zudowano na azie wzmacniacza operacyjnego. Czułość oraz łąd wyznaczenia czułości układu moska ze wzmacniaczem napięcia, wyznaczone na podsawie przeprowadzonego wzorcowania, wynoszą: δ CT> CT> = V/mN m = V/mN m Całkowiy łąd przewarzania moska ensomerycznego można przyjąć, zgodnie z danymi echnicznymi moska, jako nie przekraczający δ CT = 3 µm/m, co przy zakresie pomiarowym z = 000 µm/m daje łąd względny γ CT = 0.5%. Naomias łąd względny wzmacniacza oszacowano na γ > = 0.%. Zaem łąd względny całego układu CT,> można wyznaczyć ze wzoru [4]: CT > = γct + γ> γ (3) Dla podanych wcześniej warości łędów względnych cyfrowego moska ensomerycznego oraz wzmacniacza napięcia łąd względny ego układu wynosi: γ CT > = 0.8%. aksymalny łąd wskazań cyfrowego moska ensomerycznego ze wzmacniaczem napięcia wynosi: δ CT = γct> > (4) max

4 gdzie = max / CT> (5) mmax jes maksymalnym momenem jaki można przyłożyć na wejście ego układu. Dla: = 0 V maksymalny momen wynosi: = 0/ mn m, mmax co daje maksymalny łąd wskazań układu: δ CT> = 0.8% 0 mn m = 0.08 mn m max.3. PRZETWORNI ANALOGOWO-CYFROWY Przewornik analogowo-cyfrowy sanowi jeden z loków funkcjonalnych modułu konrolno-pomiarowego LC-0-6 firmy Amex. oduł ma posać kary umieszczonej w gnieździe na głównej płycie kompuera. Producen wykorzysał iowy przewornik AD 574A N uzyskując podział zakresu na 4096 działek. Do osługi sanowiska wyrano zakres napięć wejściowych 0 0 V, co dało rozdzielczość pomiarową przewornika wynoszącą.44 mv/dz. Czułość przewornika wynosi A / C = dz/mv lu A / C = V/V, naomias łąd liniowości wraz z łędem przewarzania nie jes większy niż δ A / C = dz =.44 mv..4. OPTER arę zainsalowano w kompuerze klasy IB PC/AT z zegarem 33/6 Hz.. RÓWNANIE POIAR Tor pomiarowy zudowany jes z liniowych loków przewarzania, dlaego eż przyjęo, że mierzony momen arcia ędzie wyznaczony o zależność: = ( ) (6) C O w kórej: [mn m/v] - sała przewarzania oru, C [V] - zmierzone przez kompuer napięcie wyjściowe oru pomiarowego odpowiadające, O [V] - zmierzone przez kompuer napięcie odpowiadające = 0. Trakując jako wynik pomiaru pośredniego można oliczyć łąd wyznaczenia momenu korzysając ze wzoru [5], w kórym: δ - łąd wyznaczenia współczynnika kierunkowego (współczynnika przewarzania), δ - sumaryczny łąd przewarzania C momenu na napięcie, δ - łąd wyznaczenia przesunięcia (napięcia zerowego O O ). δ = δ δ + C O δ + C (7) O Wyznaczenie saycznych własności merologicznych oru pomiarowego ojęło określenie współczynników w równaniu (6) oraz łędu δ (7). 3

5 W celu wyznaczenia współczynników równania (6) przeprowadzono wzorcowanie oru pomiarowego. 3. ETODA WZORCOWANIA Wzorcowanie polegało na zadawaniu ociążenia (o warościach z zakresu dopuszczalnego dla przewornika) na sprężynę płaską przewornika momenu arcia i rejesrowaniu odpowiadających mu warości napięcia wyjściowego modułu pomiarowego oraz wskazań W m cyfrowego moska ensomerycznego ypu CT-83. Schema układu do wzorcowania oru pomiaru momenu arcia pokazano na rys.. Ociążenie zadawane yło przez zawieszanie odważników echnicznych m na uchwycie sprężyny płaskiej przewornika momenu, przywierdzonym w miejscu działania kulki (przekazania momenu). Warości ociążenia sprężyny przewornika zosały przeliczone na warości momenu arcia. Do rejesracji wyników wzorcowania wykorzysano program kompuerowy TVTry. mc 3 W m CT 4 A/C 5 m mc PC/AT Q m Rys.. Wyznaczanie oru pomiarowego momenu arcia schema - m odważnik, sprężyna płaska, 3 CT,> cyfrowy mosek ensomeryczny ze wzmacniaczem, 4 A/C przewornik analogowo-cyfrowy, 5 kompuer, Q m - siła działająca na sprężynę, mc - warość napięcia wyjściowego modułu pomiarowego, W m wskazanie moska ensomerycznego 3.. OPRACOWANIE WYNIÓW WZORCOWANIA Zarejesrowano wyniki wzorcowania, kóre w posaci ael przedsawiono w pracy []. eodą najmniejszej sumy kwadraów oliczone zosały współczynniki regresji liniowej charakerysyki wzorcowania. Określono akże łędy współczynników wynikające z rozrzuu zarejesrowanych wyników [8]. Charakerysyka wzorcowania dana jes wzorem: mc = + 0 (8) w kórym: mc [V] rejesrowane napięcie, [mn m] zadawany momen, 0 [V] przesunięcie charakerysyki. 4

6 zyskano nasępujące warości współczynników i ich łędów: = V/mN m 0 = 0.6 V δ = V/mN m = 0.0 V Wyniki podano z zawyżoną liczą miejsc znaczących celem wykorzysania w dalszych oliczeniach. Opracowanie danych meodą najmniejszej sumy kwadraów wymagało przyjęcia założenia, że momen zadawany ył ezłędnie. W prakyce założenie o nie jes prawdziwe i należy uwzględnić niepewność zadawanego momenu. omen en dany jes wzorem: δ 0 = = m g (9) Qm w kórym: m - masa zawieszonych odważników, g przyspieszenie ziemskie, długość ramienia działania siły. W akim przypadku względny łąd zadawania momenu można wyznaczyć z zależności: γ Z = γ m + γ g + γ (0) w kórej: γ m - względny łąd zawieszenia masy, γ g - względny łąd warości przyspieszenia ziemskiego, γ - względny łąd długości ramienia. Przyjmując, że łąd przyspieszenia ziemskiego jes pomijalnie mały uzyskuje się Z m γ = γ + γ () Podczas wzorcowania użyo odważników klasy 0. co oznacza, że γ m = 0.00, zaś długość = 5 mm wykonana yła z łędem γ = 0. mm. δ 0. Względny łąd długości ramienia wynosi więc: γ = = = i osaecznie: γ Z = = Błąd zadawanego momenu wynosi: δ Z = γ Z () i jes liniową funkcją momenu. Przy momencie zerowym przyjmuje warość zero. Dlaego powiększa on niepewność wyznaczenia współczynnika kierunkowego. Przyjęo przy ym oznaczenia: = + 3 δ (3) g d 3 = δ (4) Oznaczając graniczne warości współczynnika przez min i max można zapisać: min Z mc d 0 mcd 0 d 3 δ = = = = (5) + δ + δ + γ + γ Z Z Z 5

7 max mcg 0 mcg 0 g + 3 δ = = = = (6) + δ + δ + γ + γ Z Z Z Z 3.. OBLICZENIE WSPÓŁCZYNNIÓW RÓWNANIA POIAR Opracowane wyniki wzorcowania pozwalają oliczyć współczynniki w równaniu (6) pomiaru momenu. Wyznaczając z równania wzorcowania (8) oraz z zależności () orzymujemy równanie: = ( mc 0 ) (7) + Z porównania orzymanego równania (7) z równaniem (6) wynikają nasępujące równości: PP Błędy współczynników wynoszą: = (8) C mc PP = (9) = (0) O 0 δ = δ PP δ + () PP. Podsawiając do wzoru znane waro- oraz δ = δ ze względu na ożsamość O O 0 i ści uzyskuje się: = mn m/v O =0.6 V O δ = mn m/v δ = 0.0 V O 3.3. WYZNACZENIE BŁĘDÓW POIAR OENT Zgodnie ze wzorem (6) i (7) łąd pomiaru momenu arcia dany jes zależnością: ( ) ä + ä + ä ä = C O C () O Ze względu na oecność składnika C łąd zależy od warości mierzonego momenu i rośnie z jego wzrosem. Do oliczenia warości δ porzena jes znajomość wszyskich czynników powyższego równania. Do wyznaczenia pozosał zaem łąd przewarzania δc momenu na napięcie. W celu jego określenia posłużono się informacjami na ema poszczególnych loków oru pomiarowego. Przyjęo, że kolejne łędy przewarzania można odnieść do mierzonego napięcia i geomerycznie zsumować: δ = δpt / + δ C CT, > / A / C / + δ (3) Błąd δ PT zosał uwzględniony w łędzie współczynnika we wzorze (). Poszczególne składniki równania (3) rakowane jako łędy rzysigmowe osiągają warości: 6

8 δ CT, > / δ CT, > / = δct, > CT, > A / C = [(mn m) (V/mN m) (V/V)] = [V] (4) δ / AC / = δa / C A / C δ / AC / =.44 [mv/v] = [V] Wsawiając uzyskane warości do równania (3) orzymujemy: δ C = [V] Błąd pomiaru momenu arcia oliczono dla dwóch skrajnych warości 0 i 0 V. W en sposó sało się możliwe przyliżone rozdzielenie składowych łędu: zależnej i niezależnej od mierzonej warości. zyskano nasępujące wyniki: ä 0 0 ä Dla Dla ( ) ä + ä + ä = C= 0V O C ( ) ä + ä + ä = C= 0V C = 0 V C = 0 V O δ 0 δ 0 C = mn m O O = mn m Przyjmując, że łąd δ dla C = 0 V nie zawiera składowej zależnej od mierzonego momenu arcia, odniesiono różnicę δ δ do zakresu pomiarowego, co pozwoliło na 0 0 oszacowanie ou składowych. Wykonane oliczenia pozwalają swierdzić, że łąd pomiaru momenu arcia w sanowisku mieści się w granicach: ± [mn m] ± 0. % mierzonej warości. (5) LITERATRA. Janowska J.: Analiza merologiczna wyników adań na przykładzie łożysk ślizgowych. onferencja Prolemy Niekonwencjonalnych kładów Łożyskowych, Łódź, 995, aeriały konferencyjne s Janowska J.: Wpływ meody wyznaczania krzywych Sriecka na ich przeieg w adaniach miniaurowych łożysk ślizgowych. Praca dokorska, Warszawa Janowska J.: Wpływ meody adawczej na wyniki wyznaczania charakerysyk arcia miniaurowych łożysk ślizgowych. onferencja Prolemy Niekonwencjonalnych kładów Łożyskowych, Łódź, 997, aeriały konferencyjne s Jaworski J.: aemayczne podsawy merologii, Warszawa, WNT Oalski J.: Podsawy merologii, Warszawa, PWN Piorowski J.: Podsawy merologii, Warszawa, PWN Srzałkowski A., Śliżyński A.: aemayczne meody opracowywania wyników pomiarów, Warszawa, PWN 978 ETROLOGICAL PROPERTIES OF THE EASREENT SYSTE ABSTRACT The mehod of merological analysis of he daa channels in he measuremen sysem in case of measuremen of a fricion orque in small sliding earings Recenzen: Jan Burcan 7

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych Ćwiczenie 6 BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERNKOWEGO MiCOM P127 1. Przeznaczenie i zasosowanie przekaźników kierunkowych Przekaźniki kierunkowe, zwane eż kąowymi, przeznaczone

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

WYKORZYSTANIE MULTIMETRÓW CYFROWYCH DO POMIARU SKŁADOWYCH IMPEDANCJI

WYKORZYSTANIE MULTIMETRÓW CYFROWYCH DO POMIARU SKŁADOWYCH IMPEDANCJI 1 WYKORZYSTAIE MULTIMETRÓW CYFROWYCH DO POMIARU 1. CEL ĆWICZEIA: SKŁADOWYCH IMPEDACJI Celem ćwiczenia jest zapoznanie się z możliwościami pomiaru składowych impedancji multimetrem cyfrowym. 2. POMIARY

Bardziej szczegółowo

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Ćwiczenie 56 E. Dudziak POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Cel ćwiczenia: pomiar fluksomerem indukcji maneycznej sałeo pola maneyczneo między nabieunnikami elekromanesu. Zaadnienia: indukcja

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Przetwarzanie analogowocyfrowe

Przetwarzanie analogowocyfrowe Przewarzanie analogowocyfrowe Z. Serweciński 05-03-2011 Przewarzanie u analogowego na cyfrowy Proces przewarzania u analogowego (ciągłego) na cyfrowy składa się z rzech podsawowych operacji: 1. Próbkowanie

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

ZJAWISKO PIEZOELEKTRYCZNE.

ZJAWISKO PIEZOELEKTRYCZNE. ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Badanie transformatora 3-fazowego

Badanie transformatora 3-fazowego adanie ransormaora 3-azowego ) Próba sanu jałowego ransormaora przy = N = cons adania przeprowadza się w układzie połączeń pokazanych na Rys.. Rys.. Schema połączeń do próby sanu jałowego ransormaora.

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Przyrządy i przetworniki pomiarowe

Przyrządy i przetworniki pomiarowe Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Ocena niepewności wyniku pomiaru metodą typu B

Ocena niepewności wyniku pomiaru metodą typu B Laoratorim Metrologii I Politechnika zeszowa Zakład Metrologii i Systemów Pomiarowych Laoratorim Metrologii I Ocena niepewności wynik pomiar metodą typ B Grpa Nr ćwicz. 3... kierownik... 3... 4... Data

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności)

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Różnica bilansowa dla Operaorów Sysemów Dysrybucyjnych na laa 2016-2020 (kórzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Deparamen Rynków Energii Elekrycznej i Ciepła Warszawa 201 Spis

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem 1 Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem Znaczenie symboli: Tab 1 Wyniki i błędy pomiarów Lp X [mm] U

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

VII.5. Eksperyment Michelsona-Morleya.

VII.5. Eksperyment Michelsona-Morleya. Janusz. Kępka Ruch absoluny i względny VII.5. Eksperymen Michelsona-Morleya. Zauważmy że pomiar ruchu absolunego jakiegokolwiek obieku maerialnego z założenia musi odnosić się do prędkości fali świelnej

Bardziej szczegółowo

m 0 + m Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda.

m 0 + m Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda. msg M 1-1 - Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda. Zagadnienia: prawa dynamiki Newtona, równania dynamiczne ruchu, siły tarcia, moment sił, moment bezwładności, opis kinematyczny

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

Wyznaczanie charakterystyk częstotliwościowych

Wyznaczanie charakterystyk częstotliwościowych Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych meod

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem

Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem Ćwiczenie 7 Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem PODSAWY EOREYCZNE PRZEWORNIK ANALOGOWO CYFROWEGO Z DWKRONYM CAŁKOWANIEM. SCHEMA BLOKOWY I ZASADA

Bardziej szczegółowo

Wyznaczanie temperatury i wysokości podstawy chmur

Wyznaczanie temperatury i wysokości podstawy chmur Wyznaczanie emperaury i wysokości podsawy chmur Czas rwania: 10 minu Czas obserwacji: dowolny Wymagane warunki meeorologiczne: pochmurnie lub umiarkowane zachmurzenie Częsoliwość wykonania: 1 raz w ciągu

Bardziej szczegółowo

Podstawy niepewności pomiarowych Ćwiczenia

Podstawy niepewności pomiarowych Ćwiczenia Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe.

Przetworniki analogowo-cyfrowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI INSTYTUT MASZYN I UZĄDZEŃ ENEGETYCZNYCH LABOATOIUM ELEKTYCZNE Przeworniki analogowo-cyfrowe. (E 11) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK Jan M. KELNER, Cezary ZIÓŁKOWSKI Wojskowa Akademia Techniczna, Wydział Elekroniki, Insyu Telekomunikacji doi:1.15199/48.15.3.14 Zasosowanie echnologii SDF do lokalizowania źródeł emisji BPSK i QPSK Sreszczenie.

Bardziej szczegółowo

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

2. Pomiar drgań maszyny

2. Pomiar drgań maszyny 2. Pomiar drgań maszyny Stanowisko laboratoryjne tworzą: zestaw akcelerometrów, przedwzmacniaczy i wzmacniaczy pomiarowych z oprzyrządowaniem (komputery osobiste wyposażone w karty pomiarowe), dwa wzorcowe

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 25.01.2003 r.

Matematyka ubezpieczeń życiowych 25.01.2003 r. Maemayka ubezpieczeń życiowych 25.01.2003 r. 1.. Dany jes wiek całkowiy x. Nasępujące prawdopodobieńswa przeżycia: g= 2p x + 1/3, h= 2p x + 1/ 2, j= 2p x + 3/4 obliczono sosując inerpolację zakładającą,

Bardziej szczegółowo

TRANZYSTOROWO-REZYSTANCYJNY UKŁAD KOMPENSACJI WPŁYWU TEMPERATURY WOLNYCH KOŃCÓW TERMOPARY

TRANZYSTOROWO-REZYSTANCYJNY UKŁAD KOMPENSACJI WPŁYWU TEMPERATURY WOLNYCH KOŃCÓW TERMOPARY Oleksandra HOTRA Oksana BOYKO TRANZYSTOROWO-REZYSTANCYJNY UKŁAD KOMPENSACJI WPŁYWU TEMPERATURY WOLNYCH KOŃCÓW TERMOPARY STRESZCZENIE Przedsawiono układ kompensacji emperaury wolnych końców ermopary z wykorzysaniem

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków

Bardziej szczegółowo

System zielonych inwestycji (GIS Green Investment Scheme)

System zielonych inwestycji (GIS Green Investment Scheme) PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie lub uniknięcie emisji dwulenku węgla

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

POMIARY TEMPERATURY I

POMIARY TEMPERATURY I Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1) 1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu

Bardziej szczegółowo

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. Cel ćwiczenia Celem ćwiczenia jes poznanie właściwości przyrządów i przeworników pomiarowych związanych ze sanami przejściowymi powsającymi po

Bardziej szczegółowo

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie.

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie. Mając do dyspozycji 20 kartek papieru o gramaturze 80 g/m 2 i wymiarach 297mm na 210mm (format A4), 2 spinacze biurowe o masie 0,36 g każdy, nitkę, probówkę, taśmę klejącą, nożyczki, zbadaj, czy maksymalna

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Temat ćwiczenia: Ćwiczenie nr 1 BADANIE MONOLITYCZNEGO WZAMACNIACZA MOCY MAŁEJ CZĘSTOTLIWOŚĆI 1. 2. 3. 4. Imię i Nazwisko

Bardziej szczegółowo

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD Pior Jankowski Akademia Morska w Gdyni IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD W arykule przedsawiono możliwości (oraz ograniczenia) środowiska Mahcad do analizy

Bardziej szczegółowo

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem.

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem Tab Wyniki i błędy pomiarów U [V] U [V] f [Hz] U [V] δ U

Bardziej szczegółowo

Politechnika Wrocławska Instytut Telekomunikacji, Teleinformatyki i Akustyki. Klucze analogowe. Wrocław 2010

Politechnika Wrocławska Instytut Telekomunikacji, Teleinformatyki i Akustyki. Klucze analogowe. Wrocław 2010 Poliechnika Wrocławska nsyu elekomunikacji, eleinformayki i Akusyki Klucze analogowe Wrocław 200 Poliechnika Wrocławska nsyu elekomunikacji, eleinformayki i Akusyki Pojęcia podsawowe Podsawą realizacji

Bardziej szczegółowo

WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE

WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Poznanie podstawowych pojęć z zakresu metrologii: wartość działki elementarnej, długość działki elementarnej, wzorzec,

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY

Bardziej szczegółowo