Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje"

Transkrypt

1 Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1

2 Dokument, regiony, klawisze: Dokument Mathcada realizuje obliczenia i ma postać publikacji; składa się z regionów: (1) tekstów, (2) wzorów, (3) wykresów; Ważniejsze klawisze: ["] - rozpoczyna region tekstowy [:] - przypisuje zmiennej wartość np.: bok:5*cm [.] - poprzedza cz. ułamkową liczby np.: [=] - oznacza wyświetl wartość np.: bok^2= [ ] - spacja - zwiększa zaznaczenie np.: [;] - symbol zakresu np.: i:1;5 oznacza: i ma być ciągiem arytmetycznym od 1 do 5 (co 1) [^] - wstawia wykładnik potęgi [[] - wstawia indeks (numer elementu wektora lub macierzy) 3 Autor Zalecana postać dokumentu Nagłówek (czego dotyczą obliczenia) Dane: Objasnienia danych Obliczenia Wyniki pośrednie Wyniki końcowe Wykres 4 2

3 Podstawowe typy regionów matematycznych Polecenie Składnia: 1) Wyświetlanie wartości wyrażenia 2) Definicja zmiennej lokalnej (nadaje wartość zmiennej) 3) Definicja zmiennej globalnej (nadaje wartość zmiennej) wyrażenie = a więc także: zmienna = zmienna := wyrażenie zmienna wyrażenie 4) Definicja funkcji użytkownika naz_fun(parametry) := wyrażenie 5) Def. zmiennej zakresowej (ciągu arytmetycznego) zmienna := a1, a2; an 6) Def. zm. indeksowanej (elem. wektora lub macierzy) zmienna indeks := wyrażenie 7) Definicja całej macierzy jako zmiennej złożonej zmienna := [ macierz ] 8) Równania i nierówności solve block 5 TYPY i przykłady regionów matematycznych Aby Mathcad mógł realizować obliczenia musi rozpoznawać polecenia jakie mu wydajemy. Dlatego musimy wpisywać tylko dopuszczalne typy regionów matematycznych przedstawione poniżej, a ich budowa mysi być zgodna z regułami Mathcad a 6 3

4 Kolejność regionów: Zmienne w wyrażeniach muszą mieć wartości wyznaczone wcześniej czyli na lewo lub powyżej od bieżącego regionu. wyjątkiem są dane globalne wstawiane symbolem [ ] Jednostki miar: Wartości danych można mnożyć przez symbole jednostek miar Wyniki: Po podwójnym kliknięciu można zmienić precyzję wyniku. Wpisanie innej jednostki miary przy wyniku spowoduje przeliczenie (konwersję) na takie jednostki Zmienne zakresowe (ciągi arytmetyczne) - mogą być używane tylko jako: (1) indeksy elem. macierzy, (2) argumenty funkcji 7 Tworzenie wykresu X-Y: 1) Zdefiniuj funkcję: Y(x):= wyrażenie 2) Określ początek i koniec przedziału: Xp, Xk 3) Wyznacz przyrost Dx tak aby otrzymać np. 50 lub 100 punktów wykresu 4) Wygeneruj ciąg wartości zmiennej niezależnej (x) jako zmienną zakresową 5) Wstaw wykres X-Y z palety symboli i wpisz przy osiach (w środkowych znacznikach) nazwę zmiennej oraz funkcji. 6) Powiększ wykres (ciągnąc za uchwyt) i sformatuj (po podwójnym kliknięciu) 8 4

5 Mathcad - wykład 2 Funkcje standardowe i funkcje użytkownika Indeksy, wektory, macierze, operacje macierzowe Wykresy funkcji dwu zmiennych: z(x,y) Numeryczne rozwiązywanie równań: a) wielomianowych (pierwiastki wielomianu) b) układów równań liniowych (macierzowo) c) układów równań nieliniowych (graficznie i Given... Find) Pochodne i całki Animacje Symboliczne rozwiązywanie równań 9 FUNKCJE 1) Wywoływanie funkcji standardowych. 2) Definiowanie i wywoływanie funkcji użytkownika 10 5

6 Pamiętaj, że: Funkcje funkcja zawsze po nazwie ma nawias a w nim argumenty - po tym Mathcad odróżnia funkcje od zmiennych Mathcad daje do dyspozycji bardzo wiele gotowych funkcji wbudowanych (build in function). Oprócz tego użytkownik może definiować dowolne funkcje własne przy pomocy definicji funkcji 11 Wstawianie funkcji z wykazu: Opis funkcji 12 6

7 Definiowanie nowych funkcji: Użytkownik może więc definiować nowe funkcje według schematu: nazwa_funkcji(parametry) := wyrażenie_z_parametrami Przykład: 13 Wektory, macierze i zmienna ORIGIN Zmienna systemowa ORIGIN decyduje o tym czy numerowanie elementów tablic ma rozpoczynać się od ZERA czy od JEDEN Aby uniknąć problemów - zawsze zaczynaj zadania z wektorami czy macierzami od zdefiniowania wartości zmiennej ORIGIN np.: ORIGIN

8 Paleta operacji macierzowych 15 Sposoby definiowania wektora a) jako zm. indeksowana zadana wzorem b) jako zm. indeksowana o wpisanym ciągu dowolnych wartości c) jako macierz kolumnowa d) jako wybrana kolumna macierzy e) przez wczytanie danych z pliku 16 8

9 Definiowanie elementów macierzy w zależności od indeksów. Funkcje macierzowe 17 Wykres 3D - powierzchniowy 18 9

10 Rozwiązywanie równania wielomianowego (znajdowanie miejsc zerowych wielomianu) Dla znalezienia rozwiązań równania W(x)=0 (gdzie W(x) jest wielomianem N-tego stopnia) wystarczy wykonać w Mathcadzie 2 kroki 1) zdefiniować wektor zawierający N+1 współczynników wielomianu - w kolejności od wyrazu wolnego aż do współczynnika przy najwyższej potędze x. 2) użyć funkcji polyroots wstawiając powyższy wektor jako jej argument Wynikiem (wartością) funkcji polyroots będzie wektor szukanych pierwiastków, w tym także zespolonych. 19 Przykład 20 10

11 Macierzowe rozwiązywanie układu równań liniowych (4 kroki): 1) Uporządkuj równania 2) Zdefiniuj macierz współczynników przy niewiadomych 3) Zdefiniuj wektor wyrazów wolnych 4) Wyznacz i wyświetl rozwiązanie jako: 21 Rozwiązywanie układu równań metodą GIVEN... FIND Aby w Mathcadzie rozwiązać dowolny układ równań i nierówności (także nieliniowych) wystarczy wykonać 4 kroki: 1. Nadać wartości startowe wszystkim niewiadomym. 2. Wpisać słowo kluczowe: given 3. Wpisać układ równań i nierówności stosując specjalny "wytłuszczony" znak = 4. Zastosować funcję FIND do znalezienia rozwiązań 22 11

12 Przykład metody GIVEN... FIND - znaleźć analitycznie współrzędne punktu P1 23 Jedno z wielu rozwiązań Metoda Given... Find znajduje tylko jedno z wielu rozwiązań (jeśli jest ich wiele). Aby decydować - które chcemy rozwiązanie należy przede wszystkim odpowiednio ustalać wartości startowe niewiadomych a znacznie mniejszy wpływ mają nierówności 24 12

13 Pochodne i całki Dla wyznaczania wartości pochodnych i całek, mamy operatory na palecie Calculus: Można też otrzymać wzory pochodnych i całek ze wzorów funkcji przy pomocy Przekształceń Symbolicznych: Differentiate oraz Integrate 25 Tworzenie animacji Zmiany parametrów funkcji można przedstawiać w postaci animacji czyli ruchomych wykresów. Animacja to film złożony z poszczególnych ramek - ang.: FRAMES W celu utworzenia animacji trzeba uzależnić jeden z argumentów funkcji od zmiennej FRAME czyli numeru ramki

14 Przykłady ANIMACJI za strony: 27 Symboliczne rozwiązywanie równań - czyli rozwiązania w postaci wzorów 28 14

15 Użycie menu Symbolics kursor ustawić przy zmiennej: 29 Symboliczne rozwiązywanie równań - sposób drugi Aby rozwiązać pojedyncze równanie np. x 2-4=21 można: 1) zapisać równanie z użyciem logicznego = lub [Ctrl] [=] 2) ustawić kursor w równaniu i z paska Symbolic kliknąć solve i nacisnąć ENTER x solve Gdy jest więcej zmiennych to trzeba po solve dać przecinek i wpisać nazwę zmiennej: b b 2 4 a c 2 2 a z 2 a + b z + c solve, z b b 2 4 a c a

16 Symboliczne rozwiązanie układu równań Aby otrzymać nie wyniki liczbowe ale rozwiązanie układu w postaci wzorów trzeba w nowym dokumencie nie wpisywać danych tylko: 1) zacząć od razu od słowa Given, 2) wpisać układ równań (i ewentualnie nierówności) 3) wpisać funkcję Find z niewiadomymi jako argumentami a zamiast = wstawić symbol 31 Przykład Początkowe wartości x, y można pominąć 32 16

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

MathCAD cz.1. Spis treści wykładu:

MathCAD cz.1. Spis treści wykładu: Narzędzia obliczeniowe inżyniera MathCAD cz.1 Opracował: Zbigniew Rudnicki 1 Spis treści wykładu: 1)Narzędzia obliczeniowe inżyniera 2) Mathcad - cechy, struktura dokumentu, kursory,.. 3) Tworzenie regionów

Bardziej szczegółowo

1. WSTĘP. www.mathsoft.com, www.mathcad.com

1. WSTĘP. www.mathsoft.com, www.mathcad.com MATHCAD-W strona. WSTĘP MATHCAD to uniwersalny program do obliczeń matematycznych o bardzo dużych możliwościach. Jest łatwy do opanowania, nie wymaga nauki języka programowania a więc jest idealny dla

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

PODSTAWY MATHCADA. 1. Interfejs graficzny programu. 1.1. Pasek menu

PODSTAWY MATHCADA. 1. Interfejs graficzny programu. 1.1. Pasek menu PODSTAWY MATHCADA PODSTAWY MATHCADA...3 1. Interfejs graficzny programu...3 1.1. Pasek menu...3 1.2. Pasek narzędzi podstawowych...4 1.3. Pasek narzędzi formatujących...4 1.4. Pasek operatorów matematycznych...4

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

Numeryczne rozwiązywanie równań i układów równań

Numeryczne rozwiązywanie równań i układów równań Lekcja Strona z 2 Numeryczne rozwiązywanie równań i układów równań Rozwiązywanie pojedynczego równania - funkcja root Do rozwiązywania jednego równania z jedną niewiadomą służy funkcja root(f(z), z), gdzie:

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

for - instrukcja pętli "dla" umożliwia wielokrotne obliczenie sekwencji wyrażeń s s + k s while z j

for - instrukcja pętli dla umożliwia wielokrotne obliczenie sekwencji wyrażeń s s + k s while z j Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw4.mcd /9 Katedra Inmatyki Stosowanej - Studium Podstaw Inmatyki PAKIET MathCad - Część IV. PROGRAMOWANIE MathCad posiada możliwości tworzenia prostych podprogramów,

Bardziej szczegółowo

Wprowadzenie do programu MATHCAD

Wprowadzenie do programu MATHCAD Wprowadzenie do programu MATHCAD Zaletami programu MathCad, w porównaniu do innych programów służących do obliczeń matematycznych, takich jak Matlab, Mathematica, są proste i intuicyjne zasady pracy z

Bardziej szczegółowo

MathCAD cz.1. Spis treści wykładu:

MathCAD cz.1. Spis treści wykładu: Narzędzia obliczeniowe inżyniera MathCAD cz.1 Opracował: Zbigniew Rudnicki 1 Spis treści wykładu: 1) Narzędzia obliczeniowe inżyniera 2) Mathcad - cechy, struktura dokumentu, kursory,.. 3) Tworzenie regionów

Bardziej szczegółowo

MATHCAD Obliczenia symboliczne

MATHCAD Obliczenia symboliczne MATHCAD 000 - Obliczenia symboliczne Przekształcenia algebraiczne UWAGA: Obliczenia symboliczne można wywoływać na dwa różne sposoby: poprzez menu Symbolics poprzez przyciski paska narzędziowego Symbolic

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy 1 Podstawowym przeznaczeniem arkusza kalkulacyjnego jest najczęściej opracowanie danych liczbowych i prezentowanie ich formie graficznej. Ale formuła arkusza kalkulacyjnego jest na tyle elastyczna, że

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia: ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia

Bardziej szczegółowo

Równania liniowe i nieliniowe

Równania liniowe i nieliniowe ( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Zadanie 8. Dołączanie obiektów

Zadanie 8. Dołączanie obiektów Zadanie 8. Dołączanie obiektów Edytor Word umożliwia dołączanie do dokumentów różnych obiektów. Mogą to być gotowe obiekty graficzne z galerii klipów, równania, obrazy ze skanera lub aparatu cyfrowego.

Bardziej szczegółowo

WPROWADZENIE DO ŚRODOWISKA SCILAB

WPROWADZENIE DO ŚRODOWISKA SCILAB Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.

Bardziej szczegółowo

CZĘŚĆ III. OBLICZENIA I WYKRESY BEZ PROGRAMOWANIA...9

CZĘŚĆ III. OBLICZENIA I WYKRESY BEZ PROGRAMOWANIA...9 SPIS TREŚCI 3 SPIS TREŚCI CZĘŚĆ III. OBLICZENIA I WYKRESY BEZ PROGRAMOWANIA...9 13. ARKUSZE KALKULACYJNE...11 13.1. Wprowadzenie...11 13.2. Elementy ekranu Excel'a...12 13.3. Kursory w Excel'u i Calc'u...13

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Podstawy MATLABA, cd.

Podstawy MATLABA, cd. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie

Bardziej szczegółowo

Wykresy. Lekcja 10. Strona 1 z 11

Wykresy. Lekcja 10. Strona 1 z 11 Lekcja Strona z Wykresy Wykresy tworzymy:. Z menu Insert Graph i następnie wybieramy rodzaj wykresu jaki chcemy utworzyć;. Z menu paska narzędziowego "Graph Toolbar" wybierając przycisk z odpowiednim wykresem;

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Przykład 1 -->s="hello World!" s = Hello World! -->disp(s) Hello World!

Przykład 1 -->s=hello World! s = Hello World! -->disp(s) Hello World! Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów:

W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów: dr Urszula Konieczna-Spychała Instytut Matematyki i Fizyki UTP imif.utp.edu.pl Literatura: M. Lassak, Matematyka dla studiów technicznych. M. Gewert, Z. Skoczylas, Analiza matematyczna 1. M. Gewert, Z.

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Dodatkowo klasa powinna mieć destruktor zwalniający pamięć.

Dodatkowo klasa powinna mieć destruktor zwalniający pamięć. Zadanie 1. Utworzyć klasę reprezentującą liczby wymierne. Obiekty klasy powinny przechowywać licznik i mianownik rozłożone na czynniki pierwsze. Klasa powinna mieć zdefiniowane operatory czterech podstawowych

Bardziej szczegółowo

Dodawanie grafiki i obiektów

Dodawanie grafiki i obiektów Dodawanie grafiki i obiektów Word nie jest edytorem obiektów graficznych, ale oferuje kilka opcji, dzięki którym można dokonywać niewielkich zmian w rysunku. W Wordzie możesz zmieniać rozmiar obiektu graficznego,

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Edycja wyrażeń, definiowanie zmiennych i funkcji

Edycja wyrażeń, definiowanie zmiennych i funkcji Strona z Edycja wyrażeń, definiowanie zmiennych i funkcji Kursory Krzyżyk - - pozwala umiejscowić równanie, wykres lub pole tekstowe na stronie. Punkt wstawienia - - "pionowa kreska" - używany do edycji

Bardziej szczegółowo

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka

Bardziej szczegółowo

zna wykresy i własności niektórych funkcji, np. y = x, y =

zna wykresy i własności niektórych funkcji, np. y = x, y = Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia Temat 23 : Poznajemy podstawy pracy w programie Excel. 1. Arkusz kalkulacyjny to: program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników, utworzony (w

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów. Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

MS Excel. Podstawowe wiadomości

MS Excel. Podstawowe wiadomości MS Excel Podstawowe wiadomości Do czego służy arkusz kalkulacyjny? Arkusz kalkulacyjny wykorzystywany jest tam gdzie wykonywana jest olbrzymia ilość żmudnych, powtarzających się według określonego schematu

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki

Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 22.05.2013 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony www.mathematica.pl

Bardziej szczegółowo

Wykresy. Informatyka Arkusz kalkulacyjny Excel dla WINDOWS. Excel. cz.4. Wykresy. Wykresy. Wykresy. Wykresy

Wykresy. Informatyka Arkusz kalkulacyjny Excel dla WINDOWS. Excel. cz.4. Wykresy. Wykresy. Wykresy. Wykresy Zespół Szkół Agrotechnicznych i Ogólnokształcących im.józefa Piłsudskiego w śywcu Excel Informatyka Arkusz kalkulacyjny Excel dla WINDOWS cz.4 Najlepszym sposobem prezentacji danych jest prezentacja graficzna.

Bardziej szczegółowo

Zadania rachunkowe z termokinetyki w programie Maxima

Zadania rachunkowe z termokinetyki w programie Maxima Zadania rachunkowe z termokinetyki w programie Maxima pliku, polecenia do wpisywania w programie Maxima zapisane są czcionką typu: zmienna_w_maximie: 10; inny przykład f(x):=x+2*x+5; Problem 1 komorze

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne 16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 1 Całkowanie numeryczne 16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 2 Plan zajęć 1. Całkowanie przybliżone funkcji

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi

Bardziej szczegółowo

MATHCAD OBSŁUGA PROGRAMU

MATHCAD OBSŁUGA PROGRAMU MATHCAD PODSTAWOWE INFORMACJE (OBSŁUGA PROGRAMU) WPROWADZENIE DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 1. INFORMACJE OGÓLNE Mathcad umożliwia rozwiązywanie zagadnień z

Bardziej szczegółowo

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

MATHCAD Rozwiązywanie równań, optymalizacja, wykresy 3D

MATHCAD Rozwiązywanie równań, optymalizacja, wykresy 3D MATHCAD 000 - Rozwiązywanie równań, optymalizacja, wykresy 3D Wprowadzenie Jak zauważyliśmy w poprzednich ćwiczeniach Mathcad dysponuje dość silnym "solverem" symbo- licznym. Tym niemniej przy rozwiązywaniu

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

Technologia Informacyjna. Arkusz kalkulacyjny

Technologia Informacyjna. Arkusz kalkulacyjny Technologia Informacyjna Arkusz kalkulacyjny Arkusz kalkulacyjny Arkusz kalkulacyjny - program komputerowy służący do wykonywania obliczeń i wizualizacji otrzymanych wyników. Microsoft Excel Quattro Pro

Bardziej szczegółowo

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.

Bardziej szczegółowo

WyŜsza Szkoła Zarządzania Ochroną Pracy MS EXCEL CZ.2

WyŜsza Szkoła Zarządzania Ochroną Pracy MS EXCEL CZ.2 - 1 - MS EXCEL CZ.2 FUNKCJE Program Excel zawiera ok. 200 funkcji, będących predefiniowanymi formułami, słuŝącymi do wykonywania określonych obliczeń. KaŜda funkcja składa się z nazwy funkcji, która określa

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych

SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

4.Arkusz kalkulacyjny Calc

4.Arkusz kalkulacyjny Calc 4.Arkusz kalkulacyjny Calc 4.1. Okno programu Calc Arkusz kalkulacyjny Calc jest zawarty w bezpłatnym pakiecie OpenOffice.org 2.4. Można go uruchomić, podobnie jak inne aplikacje tego środowiska, wybierając

Bardziej szczegółowo

Logarytmy. Historia. Definicja

Logarytmy. Historia. Definicja Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi

Bardziej szczegółowo

Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1

Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1 Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1 Katarzyna Nawrot Spis treści: 1. Podstawowe pojęcia a. Arkusz kalkulacyjny b. Komórka c. Zakres komórek d. Formuła e. Pasek formuły

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

1. Wstawianie macierzy

1. Wstawianie macierzy 1. Wstawianie macierzy Aby otworzyć edytor równań: Wstaw Obiekt Formuła Aby utworzyć macierz najpierw wybieramy Nawiasy i kilkamy w potrzebny nawias (zmieniający rozmiar). Następnie w oknie formuły zamiast

Bardziej szczegółowo

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi . Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

Arkusz kalkulacyjny EXCEL

Arkusz kalkulacyjny EXCEL ARKUSZ KALKULACYJNY EXCEL 1 Arkusz kalkulacyjny EXCEL Aby obrysować tabelę krawędziami należy: 1. Zaznaczyć komórki, które chcemy obrysować. 2. Kursor myszy ustawić na menu FORMAT i raz kliknąć lewym klawiszem

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

MATHCAD 2000 ściąga do ćwiczeń z podstaw informatyki

MATHCAD 2000 ściąga do ćwiczeń z podstaw informatyki MATHCAD 000 ściąga do ćwiczeń z podstaw informatyki 1. Wprowadzenie Mathcad 000 to profesjonalny program matematyczny służący do rozwiązywania różnego typu zagadnień inżynierskich. Umożliwia prowadzenie

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Podstawowe operacje na macierzach

Podstawowe operacje na macierzach Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Cw.12 JAVAScript w dokumentach HTML

Cw.12 JAVAScript w dokumentach HTML Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała

Usługi Informatyczne SZANSA - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Excel w obliczeniach naukowych i inżynierskich. Wydanie II.

Excel w obliczeniach naukowych i inżynierskich. Wydanie II. Excel w obliczeniach naukowych i inżynierskich. Wydanie II. Autor: Maciej Gonet Sprawdź, jak Excel może pomóc Ci w skomplikowanych obliczeniach! Jak za pomocą arkusza rozwiązywać zaawansowane zadania matematyczne?

Bardziej szczegółowo

W oknie tym wybieramy pożądany podział sekcji, strony, kolumny. Naciśnięcie powoduje pojawienie się następującego okna:

W oknie tym wybieramy pożądany podział sekcji, strony, kolumny. Naciśnięcie powoduje pojawienie się następującego okna: - 1 - WSTAW Aby uruchomić menu programu należy Wskazać myszką podmenu Wstaw a następnie nacisnąć lewy przycisk myszki lub Wcisnąć klawisz (wejście do menu), następnie klawiszami kursorowymi (w prawo

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo