Przekształcenie Laplace a i jego zastosowania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przekształcenie Laplace a i jego zastosowania"

Transkrypt

1 Przekzałcenie Laplace a i jego zaoowania

2 Funkcje pecjalne i dyrybucje Funkcja koku jednokowego (nazywana również funkcją Heaviide a) ( ) gdy > gdy < ( ) gdy gdy > < ( ) ( )

3 f a e > < e a ( ) f f ( ) A f ( ) f A ( ) ( 3) f + 3

4 f ( ) ( ) ( ) + ( ) ( ) f ( ) ( ) ( ) ( ) ( )

5 f ( ) inπ + inπ( ) ( ) f in π ( ) ( ) ( ) in π

6 E K i() C u() E con Kondenaor nie był naładowany, czyli u() dla <. dla < u E E dla > du gdy i( ) C d gdy? Ładunek zgromadzony na kondenaorze: dla < CE dla > Cu( ) q Skąd ię wziął???

7 W obwodzie rzeczywiym K r i() u( ) E C u() E u E e rc E r i( ) d E i C u d r rc e rc q ( ) i ( τ ) dτ CE e ( ) CE

8 u E e rc d E i C u d r rc e Uwórzmy ciąg { r }, aki, że lim rn n n Orzymamy wówcza ciąg napięć un E e n n E i ciąg prądów du n E rnc in C e ( ) n d r? r C Przyjmijmy E oraz uwórzmy ciąg, C Wówcza n n r n n n ( e n ) ( ) u du in n d n n e

9 n u( ) i( ) n u( ) i( ) i3( ) n 3 u3( ) i4( ) u4( ) n 4 n ( ) δ( )

10 Obliczmy całkę prądu i ( ) ne n ( ) n n n i d ne d nie zależy od n (!!!) n ne d Powinno więc być lim i d δ d n n n i du d n W granicy, gdy n δ? d d ( ) ( )

11 ( ) δ dla ( ) δ d Elemenarna definicja dyrybucji Diraca lim δ d δ d ε ε > ε lim δ d δ d ε ε > + ε + + ( ) δ d gdy δ d < gdy > ( τ ) τ δ( τ ) dτ ( ) d d δ

12 Właność próbkująca i filrująca dyrybucji Diraca Jeżeli f() je ciągła w punkcie, o δ ( ) δ f f δ d ( ) δ d ( ) f f f właność próbkująca właność filrująca δ() ( co) δ() δ() Ogólniej, jeżeli f() je ciągła w punkcie, o δ( ) δ( ) f f δ( ) d δ( ) d f f f

13 Różniczkowanie funkcji nieciągłych f ( ) co f d f ( ) d co d ( ) + co ( ) d d d in + co δ δ in + f ( ) δ( )

14 f ( ) 3 f ( ) 3 4 f ( ) δ( ) 3 4 ( ) 3δ 3 f ( ) 4δ( ) ( ) δ ( ) δ 4

15 Z właności filrującej: Obliczanie całek dyrybucyjnych δ( ) d f f w zczególności, dla δ d ( ) f f Pod warunkiem, że funkcja f () je ciągła w punkcie b a δ f d f gdy a < < b gdy < a lub > b Całka nie je określona gdy a lub b

16 coδ d ln δ d ln co δ ( ) d + e + co δ ( ) d + e ( ) e δ d

17 E K i() C u() E con Kondenaor nie był naładowany, czyli u() dla <. u E CEδ ( ) i C du CE d δ ( τ ) dτ δ( τ ) dτ q i CE CE

18 Splo funkcji, y( ) x dowolne funkcje Sploem funkcji x i y nazywa ię funkcję z( ), określoną jako d d z x y x τ y τ τ x τ y τ τ y x Właności plou: przemienność: łączność: rozdzielność względem dodawania: mnożenie plou przez ałą : x( ) y( ) y( ) x( ) x y w x y w + + x x y x y x y a x y ax y x ay

19 x i y dla < Jeżeli x( ) y( ) < y ( τ ) x ( τ ) x ( τ ) y ( τ ) τ τ y( ) x x τ y τ d τ, <,

20 Przykład e in ( ) x y τ ( ) z x y e inτ τ τ dτ ( τ ) < ( τ ) ( τ ) > ( τ ) τ τ τ z( ) e in τ d τ τ ( ) e ( co in ) ( ) τ + τ e ( co + in ) ( )

21 Splo funkcji i dyrybucji Diraca τ ( ) x ( ) ( τ ) x ( τ ) τ x ( τ ) x ( ) δ δ d ( ) x ( ) ( τ ) x ( τ ) τ x ( τ ) x ( ) τ δ δ d x x δ x τ δ τ dτ

22 Przekzałcenie Laplace a Rozważmy dowolną funkcję (dyrybucję). Tranformaą Laplace a nazywa ię naępujące przekzałcenie całkowe L { } f f e d F ( ) f ( ) f ( ) Gdzie σ + j ω je zepolonym paramerem przekzałcenia, nazywanym zepoloną pulacją. Obzar Γ na płazczyźnie zepolonej nazywa ię obzarem zbieżności ranformay Laplace a, jeżeli dla każdego Γ całka Laplace a je zbieżna. Tranformaa Laplace a inieje jeżeli obzar zbieżności je niepuy. Wymaga o, aby f była funkcją ypu wykładniczego, zn. M ρ > f < M ρ e

23 M ρ > f < M ρ e Warunek en oznacza, że warość bezwzględna funkcji f () nie może ronąć zybciej niż jakakolwiek funkcja wykładnicza Nie ą funkcjami ypu wykładniczego: g f e ( ) f Funkcje akie nie opiują żadnych przebiegów fizycznych f Wzykie funkcje, opiujące przebiegi fizyczne, ą funkcjami ypu wykładniczego, czyli inieją ich ranformay Laplace a

24 Przykłady możliwych obzarów zbieżności ranformay Laplace a funkcji ypu wykładniczego na płazczyźnie. odcięa zbieżności σ Im Im Re Re Γ Γ σ > σ Im Im Re Re Γ Γ σ < σ

25 Odwrone przekzałcenie Laplace a Wzór Riemanna-Mellina L c+j d πj { } F F e f ( ) c j Ze wzoru Riemanna-Mellina orzymuje ię funkcję przyczynową dla <. f Twierdzenie o jednoznaczności przekzałcenia Laplace a Jeżeli f i f dla < o L { } L { } f f f f

26 L f () oryginał F () ranformaa { } L f F F f Souje ię również oznaczenie F ( ) f { } Przykład. δ( ) f F δ e d ( ) δ Uwaga! + { } ( ) L ( ) δ e d δ

27 Przykład. a f e, a R a ( ) a F e e d e d ( a) ' δ u u v' e v e a a ( a) a e + δ e d a a Całka będzie zbieżna, gdy Re{ a} >. Wówcza a a czyli e a ( ) F

28 a f e, a R a { } + + ( a) + pod warunkiem, że ( ) a F e e d e d e, a a Re > a. Wnioek: Jeżeli f () je funkcją (nie zawiera kładników dyrybucyjnych), o jako dolną granicę całkowania można przyjąć zarówno jak i +.

29 Właności przekzałcenia Laplace a Soować będziemy oznaczenia, f F g G. Liniowość + + a f a g a F a G. Przeunięcie w dziedzinie ξ e f F ξ, ξ dowolna liczba (rzeczywia, zepolona, urojona) 3. Różniczkowanie (dyrybucyjne) oryginału d d f f F f ( )

30 4. Całkowanie (dyrybucyjne) oryginału f ( τ ) dτ F ( ) 5. Przeunięcie w dziedzinie ( ) ( ) f F e 6. Różniczkowanie ranformay f d d F ( )

31 7. Skalowanie f a F, a > a a 8. Splo w dziedzinie + ( τ ) ( τ ) d τ f g f g F G 9. Mnożenie funkcji w dziedzinie c+ j f ( ) g ( ) F ( ) G ( ) F G ( ) d πj πj λ λ λ c j

32 Tranformay elemenarnych funkcji e a n ( n ) δ( ) ( ) ( ) ( ) ( )! + a n inω ω + ω ( ) coω + ω

33 Przykład. e e 3 ( ) e f 3 3 e e f 3 3 ( ) + 3 d d + 3 ( + 3 ) + L f ( ) F ( ) ( ) 3 e { } ( + 3) + 3 ( + 3) Inaczej ( ) ( ) 3 ( + ) + ( + 3) ( + 3)

34 Przykład. f ( ) 3( ) ( ) + 4( ) ( ) ( 4) ( 4) ( 4) f { } e + e e e L f ( ) F ( ) 3e + 4e + e 4

35 Przykład 3. in ( ω + θ ) f F coθ inω + inθ coω f F F ω F ( ) L{ f ( ) } F coθ + F inθ F + ω + ω ( ω θ + θ ) co in + ω

36 Tranformaa funkcji okreowej f f kt, k,,..., f dla < f ( ) F ( ) ft ( ) T FT ( ) f f T F F T ( ) ( ) F ( ) F e T T F f f f T T T F FT e ( ) T

37 Przykład f() 3 T T inπ + inπ( ) ( ) f T { T } L F f L f ( ) F ( + e ) π + π ( ) π( + e ) ( )( ) FT { } e + π e

38 R E K R C u() E con. Warunek począkowy u R R + R ( ) E C du + u ( ) E, > d R R { } { } u U, du U ( ) u ( ), { E} L L L d E C U ( ) u( ) + U ( ) R R E U E CR + Cu ( ) + R R R + R E C + C + R R

39 L U ( ) u { }? CR + R R + R R ( ) C + + R RC U E E R + R u E R R R + RC e

40 Obliczanie ranforma odwronych Niech L F ( ) M, L( ), M ( ) wielomiany, L( ) < M ( ) n Ponado n M k Wówcza F() można rozłożyć na ułamki proe gdzie F n k ck L k c F k k k Tranformaa odwrona f F c k { } e k n k Czyli pierwiaki mianownika (bieguny funkcji F()) ą jednokrone k

41 Przykład. F ( + )( + 3) c c c c F ( + )( + 3) c + F ( + ) c3 + 3 F 3 F 3 L { } ( e e ) 3 f F +

42 Przykład. F ( ) ( + + j3)( + j3) Można pozukiwać rozkładu na ułamki proe o poaci F c c c3 + + j3 + j3 + + j3 + j Obliczenia ą żmudne i meoda je mało efekywna. W przypadku, gdy bieguny ranformay ą zepolone będziemy pozukiwać rozkładu o poaci: F c k + k

43 F c k + k c + 4c + 3c + k + k ( ) ( ) Z porównania wpółczynników wielomianów liczników przy jednakowych poęgach orzymujemy naępujący układ równań: c k c k : + 3, : 4 + 9, : 3c 65, c k k 5 F 5 + ω a ω inω ( ) e inω ( ) ω ( a) 5 + a + coω ( ) e coω ( ) ω ( a) ω a ω F ( ) ( ) ( ) 5 e ( co3 in 3 ) f

44 L F ( ), L( ), M ( ) wielomiany, L( ) < M ( ) n M m m k k k αk, M M n α k α k kroność pierwiaka k Rozkład na ułamki proe ma eraz poać F m k kl α l kl ( α l) k l c ( ) k αk l d c k F αk l! d k αk k L c k kl kl l k e c l ( ) ( l )! ( ) m αk m αk ckl l k k ckl l f ( ) L { F ( ) } e ( ) e!! ( l ) k l k l ( l )

45 Przykład 3. F 3 ( + ) + ( + ) ( + ) c c c c c F αk l d ckl k F αk l! d ( α l) ( + ) 3 αk k k k, α 3, l,,3 k 3 l 3 c3 ( + ) F ( ) l c + F d 3 d +! d d l c + F d 3 d + 3! d d

46 F n n ( n )! ( ) ( ) e ( + ) 3 3 e + ( + ) f + + e

47 L F ( ), L( ), M ( ) wielomiany, L( ) M ( ) n M Ograniczymy ię do przypadku Wówcza L( ) L ( ) F ( ) k +, L M M < M k kδ ( ) L M n { } δ L f L F k ( ) + L M Przykład 4. F L + + f F + { } δ e

48 Przykład 5. F F L ( + ) ( + ) + ( + ) { } δ δ ( ) e f F + + Przykład 6. F F ( ) ( ) L f F + { } ( δ e in )

49 Niech k Φ i i e, i Φ F Wówcza L L { Φ i ( ) } ϕi ( ) ( ) Φ e i ϕ { i } i ( i ) ( i ) k, i L i M f ( ) L F ( ) Przykład 7. F i ( ) ( ) { } ϕ e + e i i i i e + e ( + 4) e L 4 ( ) ( ) ( ) { } ( e ) e ( ) + e f F

50 Prawa Kirchhoffa w poaci operaorowej I prawo Kirchhoffa W każdym węźle k K a i k k ( ) K zbiór gałęzi incydennych z wybranym węzłem a k L akik ( ) k K al i i I k K { }, L { } k k k k k K a I k k ( ) W każdym węźle obwodu algebraiczna uma ranforma prądów je równa

51 Schema obwodu Operaorowy chema zaępczy i ( ) i ( ) I ( ) I ( ) i3 ( ) I ( ) i ( ) + i ( ) i ( ) I ( ) I ( ) I ( )

52 II prawo Kirchhoffa W każdym oczku k L b u k k ( ) L zbiór gałęzi worzących wybrane oczko b k L bkuk ( ) k L bl u u U k L { }, L { } k k k k k L b U k k ( ) W każdym oczku w obwodzie algebraiczna uma ranforma napięć na gałęziach worzących o oczko je równa

53 Schema obwodu Operaorowy chema zaępczy u ( ) U ( ) u ( ) u 3 ( ) U ( ) U 3 ( ) u4 ( ) U 4 ( ) u ( ) + u ( ) u ( ) + u ( ) U ( ) U ( ) U ( ) U ( )

54 Prawo Ohma Rezyor Schema obwodu Operaorowy chema zaępczy i ( ) I ( ) u i u ( ) Ri Gu U I U ( ) RI GU L { u( ) } L Ri( ) { }

55 Indukor Schema obwodu Operaorowy chema zaępczy I ( ) L LiL ( ) i ( ) u u ( ) il L di d ( ) U ( ) U LI Li L I ( ) i L ( ) L { } { } u L L di d LL{ i( ) } Li ( ) L U ( ) + i L L U ( ) I ( )

56 Kondenaor Schema obwodu Operaorowy chema zaępczy uc ( ) i ( ) I ( ) CuC ( ) u ( ) du i ( ) C d U ( ) ( ) I CU Cu C I ( ) u C ( ) L { i ( )} { } L C du d CL{ u( ) } Cu ( ) C U ( ) u + C C I ( ) U ( )

57 Źródła auonomiczne Schema obwodu Operaorowy chema zaępczy e( ) E ( ) L e ( ) E { } iz ( ) I z ( ) z L { } I i z

58 Przykład. Sany nieualone w obwodach RLC Warunki począkowe: E 6 V con, R Ω, R Ω, L H, C F. u?? L i( ) E R i u E A, C V. R + R R + R

59 Konruujemy operaorowy chema zaępczy LiL ( ) u c C I ( ) E ( ) uc E ( ) + RI ( ) + LI ( ) LiL ( ) + I ( ) + C E u C LiL ( ) E + uc I, U ( ) I ( ) + L + R + C C

60 Po podawieniu danych liczbowych I U Tranformay odwrone ą odpowiednio równe ( + ) i e co in A, ( ) ( ) u 6 4e co V.

61 Przykład. R C I () R C I 3 () e() L R u() E() U () I () L R U() e(), V, R Ω, R Ω, C L H, F. u? + ( ) ( ) e E e + ( ) U E U U ( ) E I ( ) + + U R I I C R C I ( ) U ( ) L I 3 ( ) U ( ) R I + I + I 3

62 U ( ) E + U ( ) + U ( ) R + L R C E ( ) R + U e ( ) C L R R + C U e ( ) ( ) ( ) 3 ( ) u e co in ( ) + e in

63 Funkcje immiancji Dwójnik I U U I Y Z funkcja admiancji dwójnika funkcja impedancji dwójnika Z Y Y Z Funkcje impedancji i admiancji nozą wpólną nazwę funkcji immiancji dwójnika

64 Prawo Ohma w poaci operaorowej U Z I I Y U Rezyor RI ( ), U I GU G R Z Y R G

65 Indukor LI ( ) U L U ( ) I Z Y L L Kondenaor CU ( ) I C I ( ) U Y Z C C

66 Łączenie dwójników Połączenie zeregowe Z Z( ) Z ( ) Z n( ) n Z Z k k Połączenie równoległe Y( ) Y ( ) Y( ) Yn( ) n Y ( ) Y k k

67 Przykład. R 5Ω, L H. Z ( ) L + R + 5, Y ( ). Z L + R + 5 Przykład. R R Ω, C F. C Y ( ) C +, Z ( ). R + Y ( ) C + + R

68 Przykład 3. R R L C Ω, 4 4Ω, H, F. LCR + L + RR C + R + R + + C + CR + + R Z L + R Y + Z

69 Z Z Y Wymierne rzeczywie funkcje zmiennej zepolonej lub F F { } { } F ( ) Im Im Jeżeli dwójnik je zbudowany z elemenów RLC ą o funkcje rzeczywie dodanie { } F ( ) { } Re Re

70 Przykład E 3V con, R Ω, R Ω, 4 L H, C F. u ( )? Warunki począkowe i L u C

71 E U C + Z ( ) E R E Z ( ) + Z ( ) L + R + C + R ( + )( + 3) ( 3 + ) ( ) u 3e e V.

72 Równoważność źródeł Z() E() I z () Y() E Z I z ( ) Y Y I z ( ) Y E Z Z

73 Meoda napięć węzłowych ( ) ( ) ( ) Y U I n n n Y kk (), Y mm () uma admiancji gałęzi połączonych z węzłem k, (m) Y mk (), Y km () uma admiancji gałęzi łączących węzły k i m wzięa ze znakiem minu

74 I n () k I nk () Algebraiczna uma ranforma prądów źródłowych (wydajności prądowych źródeł prądowych) dopływających do węzła k, przy czym prądy dopływające bierzemy ze znakiem plu, a wypływające ze znakiem minu Jeżeli układ zbudowany je ylko z elemenów RLC, e, i z o Y Y, czyli Y Y km mk n n

75 Przykład α i( ) iz in A, R Ω, R Ω, L H, C F, α 5. u? Warunki począkowe: L { } I i z z + i L u C

76 Operaorowy chema zaępczy: I() I z () R L U n ( ) U n ( ) C α I ( ) R U() I ( ) z U n ( ) U n ( ) I z ( ) R L L U n + C U n I L + + R L α α U R n ( ) I U n R

77 + R L L U n( ) Iz( ) α U n( ) C + + R L R L + U n + U n( ( ) ( + ) U ( ) Un ( ) ( )( + 3)( + ) 3 ( + + ) u 5e 7e co 6in V. Obwód nie je BIBO abilny!!!

Temat 4. ( t) ( ) ( ) = ( τ ) ( τ ) τ = ( ) ( ) ( ) ( ) ( ) ( ) ( ) = ( ) Podstawowe własności dystrybucji δ(t) (delta Diraca)

Temat 4. ( t) ( ) ( ) = ( τ ) ( τ ) τ = ( ) ( ) ( ) ( ) ( ) ( ) ( ) = ( ) Podstawowe własności dystrybucji δ(t) (delta Diraca) Tema 4 Opracował: Leław Dereń Kaedra Teorii Sygnałów Inyu Telekomunikacji Teleinformayki i Akuyki Poliechnika Wrocławka Prawa auorkie zarzeżone Podawowe właności dyrybucji δ() (dela Diraca) ( ) δ gdy (

Bardziej szczegółowo

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów Przekzałcenie Laplace a Deinicja i właności, ranormay podawowych ygnałów Tranormaą Laplace a unkcji je unkcja S zmiennej zepolonej, kórą oznacza ię naępująco: L[ ] unkcja S nazywana bywa również unkcją

Bardziej szczegółowo

Wykład 4: Transformata Laplace a

Wykład 4: Transformata Laplace a Rachunek prawdopodobieńwa MAP164 Wydział Elekroniki, rok akad. 28/9, em. leni Wykładowca: dr hab. A. Jurlewicz Wykład 4: Tranformaa Laplace a Definicja. Niech f() będzie funkcją określoną na R, przy czym

Bardziej szczegółowo

{ } = ( ) Przekształcenie Laplace a i jego zastosowania. Rozdział Obliczanie transformat Laplace a i transformat odwrotnych

{ } = ( ) Przekształcenie Laplace a i jego zastosowania. Rozdział Obliczanie transformat Laplace a i transformat odwrotnych Rozdział 8 Przekzałcenie aplace a i jego zaoowania Opracował: eław Dereń Inyu Telekomunikacji Teleinformayki i Akuyki Prawa auorkie zarzeżone 8 Obliczanie ranforma aplace a i ranforma odwronych NajwaŜniejze

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VIII Przekształcenie Laplace a

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VIII Przekształcenie Laplace a 8. Geneza przekzałcenia Laplace a. Wykład VIII Przekzałcenie Laplace a Warunek bezwzględnej całkowalności w przedziale niekończonym, nakładany na oryginały przekzałceń Fouriera, bardzo ogranicza ich klaę.

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej . Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

1 Przekształcenie Laplace a

1 Przekształcenie Laplace a Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

16. CHARAKTERYSTYKI CZASOWE UKŁADÓW SLS

16. CHARAKTERYSTYKI CZASOWE UKŁADÓW SLS OBWODY I SYGNAŁY Wykła 6 : Carakeryyki czaowe ukłaów SS 6. CHAATEYSTYI CZASOWE UŁADÓW SS 6.. SPOT FUNCJI A) DEFINICJA Niec ane bęą wie unkcje () i () całkowalne w każym przeziale (, ),

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320

Bardziej szczegółowo

CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH

CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH CHARAKERYSYKI CZASOWE UKŁADÓW DYNAMICZNYCH Zadani Chararyyi czaow uładów. Odpowidź oową wyznacza ię z wzoru: { } Problm: h L G X Wyznaczyć odpowidz oową i impulową całującgo z inrcją G h L G gdzi: Y X

Bardziej szczegółowo

Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.

Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. Prawa Kirchhoffa Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. k=1,2... I k =0 Suma napięć w oczku jest równa zeru: k u k =0 Elektrotechnika,

Bardziej szczegółowo

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a WYKŁAD r. Elemey rachuku operaorowego Podawą rachuku operaorowego je zw. przekzałceie Laplace a, mające poać przekzałceia całkowego, przyporządkowujące fukcjom pewe owe fukcje, iego argumeu. Mówi ię, że

Bardziej szczegółowo

Przekształcenie Z. Krzysztof Patan

Przekształcenie Z. Krzysztof Patan Przekształcenie Z Krzysztof Patan Wprowadzenie Przekształcenie Laplace a można stosować do sygnałów i systemów czasu ciągłego W przypadku sygnałów czy systemów czasu dyskretnego do wyznaczenia transmitancji

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Temat ćwiczenia: STANY NIEUSTALONE W OBWODACH ELEKTRYCZNYCH Badanie obwodów II-go rzędu - pomiary w obwodzie RLC A.M.D. u C

Temat ćwiczenia: STANY NIEUSTALONE W OBWODACH ELEKTRYCZNYCH Badanie obwodów II-go rzędu - pomiary w obwodzie RLC A.M.D. u C aboraorium eorii Obwodów ABOAOIUM AMD6 ema ćwiczenia: SANY NIEUSAONE W OBWODAH EEKYZNYH Badanie obwodów II-go rzędu - pomiary w obwodzie Obwód II-go rzędu przedawia poniżzy ryunek.. ównanie obwodu di()

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe Przygotowanie do gzaminu Potwierdzającego Kwalifikacje Zawodowe Powtórzenie materiału Opracował: mgr inż. Marcin Wieczorek Obwód elektryczny zespół połączonych ze sobą elementów, umożliwiający zamknięty

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera. 7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Wykład 7 Transformata aplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Prowadzący: dr inż. Tomasz Sikorski Instytut Podstaw lektrotechniki i lektrotechnologii

Bardziej szczegółowo

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q,

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q, Maemayka finanowa i ubezpieczeniowa - 3 Przepływy pienięŝne 1 Warość akualna i przyzła przepływów dykrenych i ciągłych Oprocenowanie - dykonowanie ciągłe ze zmienną opą (iłą). 1. Sopy przedziałami ałe

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 6 Transformata Laplace a Funkcje specjalne Przekształcenia całkowe W wielu zastosowaniach dużą rolę odgrywają tzw. przekształcenia całkowe

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH

PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH WŁADYSŁAW KIERAT Oliver Heaviside w latach 1893-1899 opublikował trzytomową monografię: Elektromagnetic Theory,

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Do podr.: Metody analizy obwodów lin. ATR 2003 Strona 1 z 5. Przykład rozwiązania zadania kontrolnego nr 1 (wariant 57)

Do podr.: Metody analizy obwodów lin. ATR 2003 Strona 1 z 5. Przykład rozwiązania zadania kontrolnego nr 1 (wariant 57) o podr.: Metody analizy obwodów lin. T Strona z Przykład rozwiązania zadania kontrolnego nr (wariant 7) Zgodnie z tabelą Z- dla wariantu nr 7 b 6, c 7, d 9, f, g. Schemat odpowiedniego obwodu (w postaci

Bardziej szczegółowo

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT

Bardziej szczegółowo

Temat ćwiczenia: STANY NIEUSTALONE W OBWODACH ELEKTRYCZNYCH Wprowadzenie A.M.D.

Temat ćwiczenia: STANY NIEUSTALONE W OBWODACH ELEKTRYCZNYCH Wprowadzenie A.M.D. aboraorium Elekroechniki i elekroniki ABORAORIUM AMD6 ema ćwiczenia: SANY NIEUSAONE W OBWODAH EEKRYZNYH Wprowadzenie Przejście od jednego anu pracy układu elekrycznego złożonego z elemenów R,, do innego

Bardziej szczegółowo

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych Pracownia Automatyki i lektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWCZN Analiza obwodów liniowych przy wymuszeniach stałych. CL ĆWCZNA Celem ćwiczenia jest praktyczno-analityczna ocena złożonych

Bardziej szczegółowo

STAŁY PRĄD ELEKTRYCZNY

STAŁY PRĄD ELEKTRYCZNY STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura

Bardziej szczegółowo

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa Lekcja 9. Pierwsze i drugie prawo Kirchhoffa 1. I prawo Kirchhoffa Pierwsze prawo Kirchhoffa mówi, że dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru. i 0 Symbol α odpowiada

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrotechnika Skrypt Podstawy elektrotechniki

Elektrotechnika Skrypt Podstawy elektrotechniki UNIWERSYTET PEDAGOGICZNY Wydział Matematyczno-Fizyczno-Techniczny Instytut Techniki Edukacja Techniczno-Informatyczna Elektrotechnika Skrypt Podstawy elektrotechniki Kraków 2015 Marcin Kapłan 1 Spis treści:

Bardziej szczegółowo

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH OBWOD SGNAŁ 9. METOD SECOWE (ALGORTMCZNE) ANALZ OBWODÓW LNOWCH 9.. WPROWADZENE ANALZA OBWODÓW Jeżeli przy badaniu obwodu elektrycznego dane są parametry elementów i schemat obwodu, a poszukiwane są napięcia

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek:

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek: Dr inż. Agnieszka Wardzińska 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Konsultacje: Poniedziałek : 8.00-9.30 Czwartek: 8.00-9.30 Impedancja elementów dla prądów przemiennych

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Teoria. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Teoria. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych. Definicja. Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny. Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI. Zakład Teorii Obwodów ANALOGOWA. Zbigniew Świętach dr inż.

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI. Zakład Teorii Obwodów ANALOGOWA. Zbigniew Świętach dr inż. POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI Zakład Teorii Obwodów TECHNIKA ANALOGOWA Zbigniew Świętach dr inż. Czwórniki - program wykładu Koncepcja czwórnika Równania czwórnika, parametry własne czwórnika

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład ósmy 21 marca 2019 Z ostatniego wykładu Dywergencja pola, Twierdzenie Gaussa Prawo Gaussa

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego PROTOKÓŁ POMAROWY LABORATORUM OBWODÓW SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 3 Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat BADANA

Bardziej szczegółowo

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine

Bardziej szczegółowo

Funkcje. Część druga. Zbigniew Koza. Wydział Fizyki i Astronomii

Funkcje. Część druga. Zbigniew Koza. Wydział Fizyki i Astronomii Funkcje Część druga Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 GRANICA I CIĄGŁOŚĆ FUNKCJI Granica funkcji Funkcja f: R A R ma w punkcie x 0 granicę g wtedy i tylko wtedy gdy dla każdego ciągu

Bardziej szczegółowo

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1.1 Podstawowe definicje Def. Funkcję F nazywamy funkcją pierwotną funkcji f, określonej w przedziale otwartym P (skończonym

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Metody analizy obwodów w stanie ustalonym

Metody analizy obwodów w stanie ustalonym Metody analizy obwodów w stanie ustalonym Stan ustalony Stanem ustalonym obwodu nazywać będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Obwody rozgałęzione. Prawa Kirchhoffa

Obwody rozgałęzione. Prawa Kirchhoffa Obwody rozgałęzione. Prawa Kirchhoffa Węzeł Oczko - * - * * 4-4 * 4 Pierwsze prawo Kirchhoffa. Suma natęŝeń prądów wchodzących do węzła sieci elektrycznej jest równa sumie natęŝeń prądów wychodzących z

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Przetwarzanie sygnałów dyskretnych

Przetwarzanie sygnałów dyskretnych Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Ćw. 8 Weryfikacja praw Kirchhoffa

Ćw. 8 Weryfikacja praw Kirchhoffa Ćw. 8 Weryfikacja praw Kirchhoffa. Cel ćwiczenia Wyznaczenie całkowitej rezystancji rezystorów połączonych równolegle oraz szeregowo, poprzez pomiar prądu i napięcia. Weryfikacja praw Kirchhoffa. 2. Zagadnienia

Bardziej szczegółowo

Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej

Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej Elektronika cyfrowa Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej Część notatek z wykładu znajduje się na: http://zefir.if.uj.edu.pl/planeta/wyklad_elektronika/ 1 Pracownia

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h Metody rozwiązywania obwodów elektrycznych ozwiązaniem obwodu elektrycznego - określa się wyznaczenie wartości wszystkich prądów płynących w rozpatrywanym obwodzie bądź wartości wszystkich napięć panujących

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT

Bardziej szczegółowo

ĆWICZENIE 6 OBWODY NIELINIOWE PRĄDU STAŁEGO Podstawy teoretyczne ćwiczenia

ĆWICZENIE 6 OBWODY NIELINIOWE PRĄDU STAŁEGO Podstawy teoretyczne ćwiczenia ĆWCZENE 6 OBWODY NELNOWE RĄD STAŁEGO Cel ćwiczenia: poznanie podstawowych zjawisk zachodzących w nieliniowych obwodach elektrycznych oraz pomiar parametrów charakteryzujących te zjawiska. 6.1. odstawy

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Analiza zespolona Complex Analysis Matematyka Poziom kwalifikacji: II stopnia

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 8 marca 0 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa,. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Pojęcia podstawowe 1

Pojęcia podstawowe 1 Tomasz Lubera Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach

V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach 1. Niezależność wielomianów, funkcji wykładniczych i trygonometrycznych W paragrafie tym podamy pewien lemat 1 potrzebny w

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych

Bardziej szczegółowo

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k Wykład 7: Szeregi liczbowe i potęgowe. Definicja 1. Niech (a n ) - ustalony ciąg liczbowy. Określamy nowy ciąg: S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. S n =. Ciąg sum częściowych (S n ) nazywamy

Bardziej szczegółowo