Kurs komputerowy S - Mathematica - cz. 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kurs komputerowy S - Mathematica - cz. 2"

Transkrypt

1 OBLICZENIA SYMBOLICZNE, Karolina MikulskaRuminska Kurs komputerowy S Mathematica cz. zmienna = wartosc Set[zmienna,wartosc] x = 7 7 x = x ^ x = 5 5 x Inaczej.. y = y ^ y y = 5 y 5 5 y = 0 y 0 000

2 KursS_cz.nb x ^ D 75 z 75 z = x ^ 75 Clear@y, yd y = y ^ 5 y5 y = 5 5 y 5 y = 5 5 y zmienna:=wartosc SetDelayed[zmienna,wartosc] v = 5 5 v := v ^ 5

3 KursS_cz.nb v 5 v = 5 5 v zmienna=. Unset[zmienna] Quit a= b = c=7 7 a =. ab a? a Global`a c 7 Unset@cD

4 KursS_cz.nb c c Podstawianie zmiennych: ReplaceAll[] (/.) stosuje regule probujac przeksztalcic kazdy element na wyrazenie. ReplaceRepeated[] (//.) wielokrotnie zastepuje tak dlugo az wyrazenie nie bedzie sie juz zmieniac. k = k ^ k k. k 5 5 k. k k k y = x x x= y 8 x= y

5 KursS_cz.nb x x =. x x y. x y. x 8 x x x =. y =. x ^ y x. x y y x ^ y x. 8x y, y z< z x ^ x y. 8x y, y z, z x< ReplaceRepeated::rrlim : Exiting after x x y scanned 55 times. y y z Funkcje i wielomiany BesselI[n,z], BesselJ[n,z], BesselK[n,z], BesselY[n,z], BernoulliB[n,x],

6 KursS_cz.nb xd, 8x,, <D BesselI@,.0D.590 Plot@BesselJ@, xd, 8x,, <D BernoulliB@, xd x x x ChebyshevT[n, x], ChebyshevU[n,x], HermiteH[n,x], LaguerreL[n,a,x], LegendreP[n,x],

7 KursS_cz.nb xd 5 x 0 x x5 ChebyshevU@5, xd x x x5 HermiteH@5, xd 0 x 0 x x5 LaguerreL@5, p, xd I0 7 p 5 p 85 p 5 p p5 00 x 770 p x 55 p x 70 p x 5 p x 0 00 x 70 p x 0 p x 0 p x 00 x 90 p x 0 p x 5 x 5 p x x5 M LegendreP@5, xd 8 I5 x 70 x x5 M Dzialanie na liczbach Permutations[lista], Permutations[lista,n], Permutations[lista,{n}], Binomial[n,m], Multinomial[n,n,..], FactorInteger[liczba], GCD[l,l], LCM[l,l] Permutations@8x, y, z<d 88x, y, z<, 8x, z, y<, 8y, x, z<, 8y, z, x<, 8z, x, y<, 8z, y, x<< b =. Permutations@8a, b, c<d 88a, b, c<, 8a, c, b<, 8b, a, c<, 8b, c, a<, 8c, a, b<, 8c, b, a<< 7

8 8 KursS_cz.nb b, c<, D 88<, 8a<, 8b<, 8c<, 8a, b<, 8a, c<, 8b, a<, 8b, c<, 8c, a<, 8c, b<< Permutations@8a, b, c<, 8<D 88a, b<, 8a, c<, 8b, a<, 8b, c<, 8c, a<, 8c, b<< Binomial@, D H* n! Hm!HnmL!L *L 5 Multinomial@,, D H* Hnn...L! Hn!n!...L *L 0 FactorInteger@ 00D 88, <, 85, <, 8, << ^ * 5 ^ * ^ 00 Najwiekszy wspolny dzielnik z liczb: GCD@, 8, D GCD@5, 5, 585, 5D 5 Najmniejsza wspolna wilokrotnosc: LCM@,, D

9 KursS_cz.nb Dzialanie na wyrazeniach algebraicznych Numerator[wyr], Denominator[wyr], ExpandNumerator[wyr], ExpandDenominator[wyr], Together[wyr], Apart[wyr] exp = Hx L ^ H xl HH xl Hx L ^ L H xl H xl H xl H xl Numerator@expD H xl H xl Denominator@expD H xl H xl ExpandNumerator@expD 5 x x x H xl H xl ExpandDenominator@expD H xl H xl x 7 x x exp = H x L Hx ^ 9L exp = Hx L Hx L x 9 x x x Suma.. Together@exp expd 5 x x H xl H xl 9

10 0 KursS_cz.nb 5 x x 9 x Hx ^ L Hx L x x Podzia³.. Apart@%D x x x PlotB x x x, 8x,.895,.8<F PlotB x x x, 8x,.895,.8<, PlotStyle RGBColor@0.55, 0., 0.77DF Dzialania na wielomianach Expand[wyr], Factor[wyr], Simplify[wyr], FullSimplify[wyr],

11 KursS_cz.nb Dzialania na wielomianach Expand[wyr], Factor[wyr], Simplify[wyr], FullSimplify[wyr], ExpandAll[wyr], PowerExpand[wyr], TrigExpand[wyr], ComplexExpand[wyr] Hx L ^ H xl Expand@%D 7 7 x 9 x x Factor@%D H xl Expand@%D 8 7 x 9 x x Factor@%D H xl I7 5 x x M Hx ^ x L Hx L x x x Simplify@%D x exp H xl H xl H xl H xl Expand@expD H xl H xl x 5x H xl H xl H xl H xl x H xl H xl

12 KursS_cz.nb x 7 x x x 7 x x h = Sqrt@ x yd xy Expand@hD xy ExpandAll@hD xy PowerExpand@hD x x 5x y Expand@ Sin@ xdd Sin@ xd TrigExpand@%D Cos@xD Sin@xD Sin@xD Simplify@%D Sin@ xd Expand@Cos@x I ydd Cos@x ä yd ComplexExpand@%D Cos@xD Cosh@yD ä Sin@xD Sinh@yD Simplify@%D Cos@x ä yd x x 7 x x x 7 x x

13 KursS_cz.nb? *Expand* System` ButtonExpandable ExpandFileName PowerExpand ComplexExpand ExpandNumerator TensorExpand Expand FunctionExpand TransferFunctionExpand ExpandAll LogicalExpand TrigExpand ExpandDenominator PiecewiseExpand Collect[wiel, zm], Coefficient[wiel,wyr], CoefficientList[wiel,zm], Exponent[wiel,wyr] f = Expand@Hx 5 y 0L ^ * x Hy L ^ D x 8 00 x 0 x 8 x x y 00 x y 80 x y x y x y 050 x y x y 50 x y 900 x y 0 x y 000 x y 50 x y 50 x y5 Collect@f, xd x I8 y y M x I0 80 y 0 y M x I y 050 y 900 y 50 y M x I y y 50 y 000 y 50 y5 M Collect@f, yd x 8 00 x 0 x 8 x I x 00 x 80 x x M y I x 050 x x M y I50 x 900 x 0 x M y I000 x 50 x M y 50 x y5 Coefficient@f, x ^ 5D 0 Coefficient@f, x ^ D 8 y y Coefficient@f, y x ^ D 00

14 KursS_cz.nb x x ^, xd 8,, 0, 0, < CoefficientList@f, xd 90, y y 50 y 000 y 50 y5, y 050 y 900 y 50 y, 0 80 y 0 y, 8 y y = CoefficientList@f, yd x 8 00 x 0 x 8 x, x 00 x 80 x x, x 050 x x, 50 x 900 x 0 x, 000 x 50 x, 50 x= Najwyzsza potega w wyrazeniu Exponent@f, xd Exponent@f, x ^ D PolynomialQuotient[w,w,zm], PolynomialRemainder[w,w,zm] h = x ^ x ^ x 0 h = x ^ x 0 x x x x x pq = PolynomialQuotient@h, h, xd x pr = PolynomialRemainder@h, h, xd 9 9x Operatory logiczne Porownywanie: == (* Equal[] *), < (* Less[] *), <= (* LessEqual[] *), > (* Greater[] *), >= (* GreaterEqual[] *),!= (* Unequal[] *)

15 KursS_cz.nb Operatory logiczne Porownywanie: == (* Equal[] *), < (* Less[] *), <= (* LessEqual[] *), > (* Greater[] *), >= (* GreaterEqual[] *),!= (* Unequal[] *) True False 58 < 78 True 8 <= 8 True 7 ¹ 5 True Unequal@7, 7D True && (* And[] *), (* Or[] *) 5 > && False 5 > ÈÈ True 5

16 KursS_cz.nb Rozwiazywanie rownan Solve[rownanie, zm], Reduce[rownanie,zm] ^ 5 x 0, xd 88x 7<, 8x << x =. Solve@x, xd 88x << o = Solve@x ^ x 5 0, xd 88x 5<, 8x << o@@dd 8x 5< o@@,, DD 5 a =. b =. Solve@a x b 0, xd ::x b a >> Reduce@a x b 0, xd Hb 0 && a 0L ÈÈ a ¹ 0 && x b a

17 KursS_cz.nb Solve[{rownanie, rownanie,...},{zmienna, zmienna,...}] Reduce[{rownanie, rownanie,...},{zmienna, zmienna,...}] x ^ y 0, x y <, 8x, y<d ::x I :x 89 M, y I 89 M, y I 5 89 M>, I 5 89 M>> Reduce@88 x ^ y 0, x y <, 8x, y<d x I 89 M ÈÈ x I 89 M && y H xl Eliminate[{rownanie, rownanie,...}, zmienna] Roots[rownanie_wielomianowe,zmienna] Eliminate@8x y, y z<, yd z x Eliminate@8 x 5 y x, 5 x y z, x y z <, zd x 5 y && 7 y 8 Roots@x ^ x ^ 5 == 0, xd x x x 95 I ä I ä M M I M I ä I ä M M ÈÈ I I Options@RootsD 8Cubics True, Eliminate False, EquatedTo Null, Modulus 0, Multiplicity, Quartics True, Using True< Granice i ciagi Limit[funkcja, zm > wartosc], Sum[wyrazenie,{zm, w_pocz,w_kon}] 95 M 95 M ÈÈ 7

18 8 KursS_cz.nb Granice i ciagi Limit[funkcja, zm > wartosc], Sum[wyrazenie,{zm, w_pocz,w_kon}] Product[wyrazenie, {zm, w_pocz,w_kon}] Limit@ y ^, y D Limit@5 x ^ Hx L, x D Limit@5 x ^ Hx L, x, Direction D Limit@5 x ^ Hx L, x, Direction D Options@LimitD 8Analytic False, Assumptions $Assumptions, Direction Automatic< Suma: Sum@k ^, 8k,, <D Sum@ x, 8x,, <D Sum@ x ^, 8x,.,.<D Sum@ x ^, 8x,, Infinity<D Iloczyn:

19 KursS_cz.nb 9 Product@ x, 8x,, 5<D 0 Product@ x ^, 8x,, Infinity<D 0 Rachunek rozniczkowy i calkowy Pochodna czastkowa: D[funkcja, zm], D[funkcja,zm,zm,...], D[funkcja,{zm,n}] Calka: Integrate[funkcja, zm], Integrate[funkcja,{zm,w_pocz,w_kon}]? *Integrate* System` Integrate D@x ^, xd x D@ x ^, xd x D@E ^ x, xd ãx D@ x, xd x D@HSin@xD ^ Tan@xDL, xd Cos@xD Sin@xD D@x ^ n, xd n xn NIntegrate

20 0 KursS_cz.nb ^ n, 8x, <D H nl H nl H nl n xn D@Cos@xD, xd Sin@xD g = x^ y^ x y D@g, xd D@g, yd x x y y xy x y D@g, x, yd D@g, y, xd Dt pochodna (Derivative) zupelna Dt@ x y x ^, xd x y x Dt@y, xd D@ x y x ^, xd xy Calki s = 5x ss = D@s, xd 5 x 5 Integrate@ss, xd 5x

21 KursS_cz.nb 8x,, 8<D 5 Integrate@ x, xd Log@xD Integrate@Sin@xD, xd Cos@xD Integrate@Cos@xD, 8x, Pi, 0<D Integrate@x ^ x ^ 5 x 0, xd 5 x 0 x x x Integrate@x ^ x ^ 5 x 0, 8x,, <D 9 Transformacje LaplaceTransform[funkcja, t, s], FourierTransform[funkcja,t,w], ZTransform[funkcja,n,z], lt = LaplaceTransform@t ^ Sin@tD, t, sd H 5 xl I8 0 x 5 x M 5 I x 5 x M

22 KursS_cz.nb ^ lt. s t<, 8t,, <D ft = FourierTransform@Exp@ t ^ D Sin@tD, t, wd ä H Cosh@wD Sinh@wDL CoshB H wl F SinhB Plot@8Exp@ t ^ D Sin@tD, Im@ftD. w t<, 8t,, <D zt = ZTransform@ ^ H n L, n, zd 8z z H wl F

23 KursS_cz.nb ^ H n L, zt. z n<, 8n, 5, 5<D Szeregi Series[funkcja,{zm,x0,stopien}], Normal[szereg] sz = Series@Sin@xD, 8x, 0, 0<D x x x5 x7 x9 0 O@xD Normal@szD x x x5 x7 x sz = Series@Sin@xD, 8x, Pi, 7<D x Ix M Ix M Ix M Ix M 0 5 Ix M 70 Ix M OBx n = Normal@szD n = Normal@szD x x x5 x x9 x 880 I xm I xm I xm I xm 5 0 I xm 70 I xm F 8

24 KursS_cz.nb n, n<, 8x,, <D Rownania rozniczkowe DSolve[rown, funkcja, zm], DSolve[{rown,rown,...},{f, f,...},zm] a y@xd, xd ã x C@D 5 a HCos@xD Sin@xDL>> DSolve@8y '@xd Cos@xD, y@0d <, y@xd, xd 88y@xD Sin@xD<<

Kurs komputerowy S - Mathematica - cz. 3 Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}]

Kurs komputerowy S - Mathematica - cz. 3 Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}] OBLICZENIA NUMERYCZNE, Karolina Mikulska-Ruminska Kurs komputerowy S - Mathematica - cz. Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}]? *Sum* System`

Bardziej szczegółowo

Kurs Komputerowy S System Symboliczny Mathematica

Kurs Komputerowy S System Symboliczny Mathematica Kurs Komputerowy S System Symboliczny Mathematica Obliczenia numeryczne Dokladnosc i precyzja Precision[wartosc] SetPrecision[wartosc, precyzja] Accuracy[wartosc] SetAccuracy[wartosc, dokladnosc] MachinePrecision

Bardziej szczegółowo

Mathematica (1) Organizacja Mathematica Notebooks. Style dokumentów

Mathematica (1) Organizacja Mathematica Notebooks. Style dokumentów Mathematica (1) Organizacja Mathematica Notebooks Dokument Mathematica zorganizowany jest w tzw. komórki. KaŜda komórka zawiera materiał określonego rodzaju: tekst, grafikę, dane wejściowe, dane wyjściowe

Bardziej szczegółowo

Zestaw 5. Rozdział 1: Równania algebraiczne, układy równań

Zestaw 5. Rozdział 1: Równania algebraiczne, układy równań Zestaw 5. Rozdział 1: Równania algebraiczne, układy równań Solve - polecenie służące do rozwiązywania równań i układów równań, w tym z parametrem. Wynik zwracany przez polecenie Solve jest listą podstawień:

Bardziej szczegółowo

Równania liniowe i nieliniowe

Równania liniowe i nieliniowe ( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle

Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle na podstawie materiałów wolfram.com Równania różniczkowe: Równanie

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

Zestaw 4. Rozdział 2: Analiza matematyczna

Zestaw 4. Rozdział 2: Analiza matematyczna Zestaw 4. Rozdział 1: Wykresy Do tworzenia wykresów funkcji jednej zmiennej służą następujące funkcje: Plot[f[x],{x,a,b}] - zwykły wykres ParametricPlot[{x[t],y[t]},{t,a,b}] - wykres krzywej danej wzorem

Bardziej szczegółowo

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

Wykład 7 - Inne moduły wspierające obliczenia numeryczne

Wykład 7 - Inne moduły wspierające obliczenia numeryczne Programowanie Wykład 7 - Inne moduły wspierające obliczenia numeryczne Plan wykładu: SymPy Zmienne symboliczne Liczby zespolone Liczby wymierne Obliczenia numeryczne Wyrażenia algebraiczne Wyrażenia wymierne

Bardziej szczegółowo

Zadania kinematyki mechanizmów

Zadania kinematyki mechanizmów Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki

Bardziej szczegółowo

Sin[Pi / 4] Log[2, 1024] Prime[10]

Sin[Pi / 4] Log[2, 1024] Prime[10] In[1]:= (* WSTĘP DO PAKIETU MATHEMATICA *) (* autorzy: Łukasz Płociniczak,Marek Teuerle*) (* Składnia: nazwy funkcji z wielkiej litery a argumenty w kwadratowych nawiasach. Wywołujemy wartość SHIFT+ENTER

Bardziej szczegółowo

Mathematica - podstawy

Mathematica - podstawy Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica

Bardziej szczegółowo

GAL 80 zadań z liczb zespolonych

GAL 80 zadań z liczb zespolonych GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +

Bardziej szczegółowo

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions Matematyka 3 Suma szeregu? Sum i max Sum[f, {i, i max }] evaluates the sum f. Sum[f, {i, i min, i max }] starts with i = i min. Sum[f, {i, i min, i max, di}] uses steps di. Sum[f, {i, {i 1, i 2, }}] uses

Bardziej szczegółowo

Mathematica jest bardzo zaawansowanym narz dziem do tworzenia 2D and 3D grafiki. W pewnym

Mathematica jest bardzo zaawansowanym narz dziem do tworzenia 2D and 3D grafiki. W pewnym . Grafika Mathematica jest bardzo zaawansowanym narz dziem do tworzenia D and D grafiki. W pewnym sensie jest to najprostsza a w innym najbardziej skomplikowana cz tego skryptu. Jest ona prosta bo wszystkie

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568 Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań

Bardziej szczegółowo

Rachunek różniczkowy funkcji dwóch zmiennych

Rachunek różniczkowy funkcji dwóch zmiennych Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

Na podstawie informacji zdobytych na poprzednich zajęciach proszę wykonać następujące zadania:

Na podstawie informacji zdobytych na poprzednich zajęciach proszę wykonać następujące zadania: Informatyka. I. Przypomnienie wiadomości z poprzednich zajęć: Na podstawie informacji zdobytych na poprzednich zajęciach proszę wykonać następujące zadania: 1. Proszę wygenerować wykresy funkcji sinus

Bardziej szczegółowo

Zadanie1. (* parametryzacja okręgu r'= x',y',0 *) xp = R * Cos fp ; yp = R * Sin fp ; vecrp = xp, yp, 0 ; vecr = r * Cos f, r * Sin f, z ;

Zadanie1. (* parametryzacja okręgu r'= x',y',0 *) xp = R * Cos fp ; yp = R * Sin fp ; vecrp = xp, yp, 0 ; vecr = r * Cos f, r * Sin f, z ; Zadanie1 (* parametryzacja okręgu r'= x',y',0 *) Z ogólnego twierdzenia o rozwiązaniach równania Laplace a wynika, że potencjał elektryczny nie może mieć w tym punkcie ekstremum lokalnego. Warto się jednak

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Temat wykładu: Równania różniczkowe Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Zagadnienia 1. Terminologia i oznaczenia 2. Definicje 3. Przykłady Anna Rajfura, Matematyka na kierunku Biologia

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia

Bardziej szczegółowo

Laboratorium 7. Zad. 1 Całkowanie w Matlabie. Zapoznać i wypróbować komendy: Przekazywanie funkcji: sqr x.^2 a = sqr(5)

Laboratorium 7. Zad. 1 Całkowanie w Matlabie. Zapoznać i wypróbować komendy: Przekazywanie funkcji: sqr x.^2 a = sqr(5) Laboratorium 7 Zad. 1 Całkowanie w Matlabie. Zapoznać i wypróbować komendy: Przekazywanie funkcji: sqr = @(x) x.^2 a = sqr(5) help quad function y = myfun(x) y = 1./(x.^3-2*x-5); Q = quad(@myfun,0,2) myfun

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie

Bardziej szczegółowo

Elementy metod numerycznych - zajęcia 11

Elementy metod numerycznych - zajęcia 11 Elementy metod numerycznych - zajęcia 11 Mathematica - Wolfram Alpha 1 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie zwięzłe odpowiedzi na pytania oznaczone symbolem ( x, p) i numerkiem (x),

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Funkcje i Procedury. Wyrazenien

Funkcje i Procedury. Wyrazenien Funkcje i Procedury. Określanie Funkcji. Rozwiązanie skomplikowanych zagadnień czasami jest niemożliwe bez zastosowania własnej funkcji i procedur. Chcemy stworzyć dobre aplikacje? Trzeba umieć stworzyć

Bardziej szczegółowo

Liczby i działania na liczbach

Liczby i działania na liczbach Na tym wykładzie chciałbym przekonać Państwa, że Mathematica może być pomocna w studiowaniu analizy matematycznej. Liczby i działania na liczbach (* liczby całkowite *) Element[-, Integers] należy do zbiór

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

Lista 0 wstęp do matematyki

Lista 0 wstęp do matematyki dr Karol Selwat Matematyka dla studentów kierunku Ochrona Środowiska, 2-2 Lista wstęp do matematyki.. Sprawdź, czy następujące zdania logiczne są tautologiami: p q) p q) p q) p q) p q) q p) d)[p q) p]

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Wykresy i własności funkcji

Wykresy i własności funkcji Wykresy i własności funkcji Zad : (profil matematyczno-fizyczny) a) Wykres funkcji f(x) = x 6x + bx + c przechodzi przez punkt P = (, ), a współczynnik kierunkowy stycznej do wykresu tej funkcji w punkcie

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

16 Jednowymiarowy model Isinga

16 Jednowymiarowy model Isinga 16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin

Bardziej szczegółowo

Mathematica - organizacja. czyli sztuka obliczeń symbolicznych. Możliwości. Mathematica do czego można ją użyć. Możliwości, cd. Mathematica publikacje

Mathematica - organizacja. czyli sztuka obliczeń symbolicznych. Możliwości. Mathematica do czego można ją użyć. Możliwości, cd. Mathematica publikacje czyli sztuka obliczeń symbolicznych Mathematica - organizacja Dokument Mathematica zorganizowany jest w tzw. komórki. Ręczne zerowanie zmiennych Clear[variables] (* czyści wartości zmiennych*) x=. (* to

Bardziej szczegółowo

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5)

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5) 1 Pochodne cząstkowo Pochodną cząstkową funkcji dwóch zmiennych z = f(x, y) względem zmiennej x oznaczamy i definiujemy jako granicę f(x + h, y) f(x, y) lim h 0 h natomiast pochodną cząstkową względem

Bardziej szczegółowo

KURS MATURA ROZSZERZONA część 1

KURS MATURA ROZSZERZONA część 1 KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +

Bardziej szczegółowo

Kryptografia - zastosowanie krzywych eliptycznych

Kryptografia - zastosowanie krzywych eliptycznych Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

SymPy matematyka symboliczna w Pythonie

SymPy matematyka symboliczna w Pythonie SymPy matematyka symboliczna w Pythonie Mateusz Paprocki Continuum Analytics, Inc. 30 listopada 2015 Co to jest matematyka symboliczna? Python operuje na liczbach zmiennoprzecinkowych

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych

Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych Zastosowanie pakietów algebry komputerowej do obliczeń numerycznych i symbolicznych dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 14czerwca2013r. STEPHEN

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log )

ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log ) ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr LICZBY RZECZYWISTE Zad. Wskaż liczby wymierne: 4 9 ; 7; 6; π;, 333...; 3, (); 3 5; ( ) 0 ; 7 9 ; 4, 000000...; 3 7 7 3 ; 3 3 3. Zad. Dane są liczby

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Obliczenia symboliczne w środowisku MATLAB Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

SzeregFouriera-Legendre a

SzeregFouriera-Legendre a SzeregFouriera-Legendre a Szereg Fouriera-Legendre a : n=0 P n (t) f n Współczynniki f n = Pn (t) f (t) dt - Pn (t) 2 dt - = 2 n + Pn 2 - (t) f (t) dt Pn - (t) 2 dt = 2 2 n + Zadanie Policz kwadrat normy

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Procesy stochastyczne 2.

Procesy stochastyczne 2. Procesy stochastyczne 2. Listy zadań 1-3. Autor: dr hab.a. Jurlewicz WPPT Matematyka, studia drugiego stopnia, I rok, rok akad. 211/12 1 Lista 1: Własność braku pamięci. Procesy o przyrostach niezależnych,

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

x y = 2z. + 2y, z 2y df

x y = 2z. + 2y, z 2y df . Funkcje wielu zmiennych i funkcje uwikłane Zadanie.. Obliczyć przybliżoną wartość wyrażenia (, ) (,). Korzystamy z przybliżenia f, y) f, y ) + x x, y ) + y y, y ), gdzie x = x x a y = y y. Przybliżenie

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Informatyka 1. Wyrażenia i instrukcje, złożoność obliczeniowa

Informatyka 1. Wyrażenia i instrukcje, złożoność obliczeniowa Informatyka 1 Wykład III Wyrażenia i instrukcje, złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: składnia wyrażeń, drzewa rozbioru gramatycznego i wyliczenia wartości wyrażeń, operatory

Bardziej szczegółowo

KURS FUNKCJE WIELU ZMIENNYCH

KURS FUNKCJE WIELU ZMIENNYCH KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

n 2 1. lim n 3 sin 2. lim k 2 + n 2 3. lim 8 k n + 2 k + 5 n 2 Oblicz granice n lim n 2 3 π + log(8) x π + log(64) lim sin sin lim

n 2 1. lim n 3 sin 2. lim k 2 + n 2 3. lim 8 k n + 2 k + 5 n 2 Oblicz granice n lim n 2 3 π + log(8) x π + log(64) lim sin sin lim . Oblicz graice. k= k 3 + 3. 3. si k= k + 8 k + k + 5 k= k= k 3 + 3 9 3 π + log(8) 3 k= k 3 + 3 k= k 3 + 3 k= 3 + k 3 Itegrate, {,, } 3 + 8 3 π + log(64) k 3 k= k= si si k + k + k + - LimitSum π 4 k +

Bardziej szczegółowo

Matematyka dla DSFRiU zbiór zadań

Matematyka dla DSFRiU zbiór zadań I Matematyka dla DSFRiU zbiór zadań do użytku wewnętrznego Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i. i= 5 ( ) i i=

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Podstawowe Operacje. Out[3]:= Head[ ] 5

Podstawowe Operacje. Out[3]:= Head[ ] 5 Podstawowe Operacje. Typy liczb. W pakiecie Mathematica mamy do czynienia z czterema typami liczb: 1. Integer liczby całkowite, 2. Rational liczby wymierne. 3. Real liczby rzeczywiste, 4. Complex liczby

Bardziej szczegółowo

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. 1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość

Bardziej szczegółowo

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22 Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki nieoznaczone

Zadania z analizy matematycznej - sem. II Całki nieoznaczone Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna

Bardziej szczegółowo

MATURA Przygotowanie do matury z matematyki

MATURA Przygotowanie do matury z matematyki MATURA 2012 Przygotowanie do matury z matematyki Część II: Wyrażenia algebraiczne Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Funkcja pierwotna, całka oznaczona na podstawie funkcji pierwotnej

Funkcja pierwotna, całka oznaczona na podstawie funkcji pierwotnej MATLAB - całkowanie Funkcja pierwotna, całka oznaczona na podstawie funkcji pierwotnej Do uzyskania funkcji pierwotnej służy polecenie int. Jest wiele możliwości jego użycia. Zobaczmy, kiedy wykonuje się

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne Przetwarzanie i Kompresja Obrazów. geometryczne Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 1 kwietnia

Bardziej szczegółowo

Wprowadzanie wyrazen w Mathematice

Wprowadzanie wyrazen w Mathematice 1 z 52 2006-11-12 14:07 Wprowadzanie wyrazen w Mathematice Greckie litery Greckie litery jako nazwy zmiennych In[1]:= Expand[(α + β)^3] Out[1]= In[2]:= Out[2]= Expand[(\[Alpha] + \[Beta])^3] In[3]:= Out[3]=

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Analiza matematyczna 3

Analiza matematyczna 3 Analiza matematyczna 3 Pochodna funkcji pierwsza pochodna: x'[t] x [t] Derivative[][x][t] x (t) D[x[t], t] x (t) 7. pochodna: Derivative[7][x][t] x (7) (t) D[x[t], {t, 7}] x (7) (t) pochodne funkcji wielu

Bardziej szczegółowo

Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1.

Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1. 1. Czy prawda jest, że a) x R y R y 2 > 1 1+x 2 ; b) y R x R y 2 > 1 1+x 2 ; c) x R y R y 2 > 1 1+x 2 ; d) x R y R y 2 > 1 1+x 2? 2. Czy naste puja ca relacja na zbiorze liczb rzeczywistych jest relacja

Bardziej szczegółowo