Mathematica - organizacja. czyli sztuka obliczeń symbolicznych. Możliwości. Mathematica do czego można ją użyć. Możliwości, cd. Mathematica publikacje

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mathematica - organizacja. czyli sztuka obliczeń symbolicznych. Możliwości. Mathematica do czego można ją użyć. Możliwości, cd. Mathematica publikacje"

Transkrypt

1 czyli sztuka obliczeń symbolicznych Mathematica - organizacja Dokument Mathematica zorganizowany jest w tzw. komórki. Ręczne zerowanie zmiennych Clear[variables] (* czyści wartości zmiennych*) x=. (* to samo co Clear*) Remove[ Global`* ] (* usuwa wszystkie zmienne*) Clear[ Global`* ] Mathematica do czego można ją użyć Zastosowania: o nauki przyrodnicze o matematyka o nauczanie o inżynieria o infomatyka, itd Ponad 100 wyspecjalizowanych, komercyjnych pakietów i ponad 200 książek o Mathematice i jej zastosowaniach Mathematica publikacje o strona główna. o Wbudowana dokumentacja Mathematica (wszystko napisane w układzie notatnika) o Możliwości Działania arytmetyczne Operacje na liczbach całkowitych, rzeczywistych i zespolonych z dużą precyzją Bardzo dużo wbudowanych funkcji i stałych Algebra Rozwinięcia w szereg, upraszczanie, rozwiązywanie układu równań liniowych Operacje na wektorach, macierzach i tensorach Analiza matematyczna Granice, całkowanie i różniczkowanie, szeregi, rozwiązywanie układu równań różniczkowych, itd. Analiza numeryczna: Znajdowanie pierwiastków równań, całkowanie numeryczne, dopasowywanie krzywych, itd. Możliwości, cd. GRAFIKA - wykresy 2D, 3D, konturowe, parametryczne, animacje, itd. Programowanie Wbudowany interpreter języka programowania (zbliżony do C) z kompilatorem o Projekty demonstracyjne można znaleźć na: o Czasopismo programu Mathematica Mathematica - organizacja Pracujemy w dokumencie zwanym Notatnik Jak uzyskać dostęp? Dokument Mathematica zorganizowany jest w tzw. komórki. SHIFT+ENTER wykonanie obliczeń ENTER nowa linia Z. Postawa, "Podstawy Informatyki II" Strona: 1 z 9

2 Z. Postawa, "Podstawy Informatyki II" Strona: 2 z 9 Podstawowe zasady o Program rozróżnia małe i duże litery o Polecenia, nazwy wbudowanych funkcji i stałych zaczynają się od dużej litery np. Sin[] o Użyj małych liter, aby zadeklarować swoje funkcje i stałe o Argumenty są zamykane w nawiasach prostokątnych [] o Nawiasy klamrowe {} są używane do grupowania elementów, oraz do oznaczania zakresów parametrów funkcji. o Nawiasy () są zarezerwowane do grupowania operacji. o Nazwy wszystkich funkcji dla obliczeń numerycznych zaczynają się od litery N np. NSin[] o Komentarz (* komentarz *) Podstawowe operacje o Dodawanie + o Odejmowanie - o Mnożenie * o Dzielenie / o Podnoszenie do potęgi Uwaga: Mnożenie można reprezentować przez spacje: x y oznacza x * y ^ Wbudowane funkcje - przykłady Abs[x] -wartość bezwzględna liczby x In[1]:= Abs[ -15 ] Out[1]= 15 Sqrt[x] pierwiastek z x In[2]:= N[ Sqrt[2], 20] Out[2] = Log[x] logarytm naturalny z x Log[n,x] logarytm z x przy podstawie n Exp[x] e do potęgi x Sin[x] sinus z x (radiany) Sin [x Degree] sinus z x (stopnie) ArcSin[x] funkcja odwrotna do sinus z x (radiany) Wbudowane funkcje - przykłady Sinh[x] - sinus hiperboliczny z x ArcSinh [x] odwrotna do sinusa hiperbolicznego z x! silnia!! podwójna silnia Prime[k] k-ta liczba pierwsza Mod[x,y] reszta z dzielenia x przez y MAX[x1,x2,x3..] wartość maksymalna Operacje na liczbach całkowitych -> liczba całkowita Operacje na liczbach mieszanych -> liczba rzeczywista lub zespolona Operacje przypisania zmiennych In[1]:= x = 0.5 Out[1]=0.5 In[2]:= x= x*x Out[2]=x 2 Wynik poprzedniej operacji In[3] = % * 5 Out[3] = 5 x 2 Wynik operacji numer In[1] In[4] = %1 * 5 Out[4]=2.5 Wbudowane funkcje liczby zespolone In[1]:= z=20+7 I Out[1]= i Re[z] -część rzeczywista z z Out[2] = 20 Im[z] część urojona z z Out[3] = 7 Abs[z] moduł z z -sqrt(re 2 +im 2 ) Out[3] = Sqrt[449] Abs[z]//N Out[4] = Arg[z]//N ϕ Im[z] Out[5] = ϕ Arg[z] Out[6] = Atan[---] Re[z] 20 Conjugate[z] liczba sprzężona do z Out[7] = 20 7 i Dokładność obliczeń N[operacja, precyzja] In[1]:= N[100!] Out[1]= * In[2]:= 100!//N inny zapis In[2]:= N[100!,157] Out[2]= * Algebra Mathematic a rozumie zapis algebraiczny i może na nim wykonywać operacje symboliczne In[1]:= z=(x + y)^2 Out[1]=(x + y) 2 In[2]:= Expand[z] rozwiniecie na wielomiany Out[2]=x 2 +2xy + y 2 In[3]:= Factor[%] zwiniecie do postaci potęgowej Out[3]=(x + y) 2 In[4]:= Simplify[%2] zwiniecie do najprostszej postaci Out[4]=(x + y) 2

3 Z. Postawa, "Podstawy Informatyki II" Strona: 3 z 9 Rozwiązywanie równania = jest znakiem przypisania wartości == jest znakiem oznaczającym równanie In[1]:= x^2 + 2x+1 == 0 Out[1]=1 + 2 x + x 2 == 0 Solve[równanie, zmienna] - rozwiązuje równanie względem zmiennej zmienna In[2]:= Solve [%,x] Out[2]={{x -> -1}, {x -> -1}} In[3]:= %1./x->-1 Out[3]=True Rozwiązywanie układu równań Solve[{ rów1== liczba1, rów2 == liczba2,. }, {x, y,.}] - rozwiązuje układ równań względem zmiennych x,y,.. Definiowanie wyrażeń In[1]:= row1= x^2 + 2x==-1 Out[1]= 2 x + x 2 == -1 In[2]:= Solve[row1] Out[2]={{x -> -1}, {x -> -1}} In[3]:=row1:= x^2 + 2x==-1 Przypisuje dopiero w momencie wykonania operacji In[1]:= x^2 + 2x-1/.x->2 Out[1]= 7 Operator zastąpienia /. In[1]:= Solve[{x+2*y ==1, x y==2},{x,y}] Out[1]= Liczbowe rozwiązywanie układu równań NSolve[{ rów1== liczba1, rów2 == liczba2,. }, {x, y,.}] - rozwiązuje układ równań względem zmiennych x,y,.. In[1]:= NSolve[{x+2*y ==1, x y==2}, {x,y}] Out[1]= {{x -> , y -> }} Definiowanie funkcji nazwafunkcji[argument_]: = wyrażenie In[1]:= fun[x_]:=x^2 + 2x-1 In[2]:= fun[4] Out[2]= 23 In[3]=ff[x_,y_]:=x*y In[4]=ff[1.,2.] Out[4]=2. Znajdowanie pierwiastków równania FindRoot[ rów1, {x,x0}] szuka pierwiastków równania rów1 względem zmiennej x, przy wartości zgadywanej x0 In[1]:= FindRoot [x^2 + 2x==-1, {x,0}] Out[1]= {x -> -1.} FindRoot[{ rów1, rów2,. }, {{x,x0}, {y,y0},.}] Suma i iloczyn wyrażeń szeregu Sum[ wyrażenie_ciągu, {l, lmin, lmax,lstep}] Product[ wyrażenie_ciągu, {l, lmin, lmax,lstep}] In[1]:= Sum[1/x,{x,1,10,2}] 563 Out[1]= In[2]:= Product[1/x,{x,1,10,2}] 1 Out[1]= In[3]:=%//N Out[3]=

4 Z. Postawa, "Podstawy Informatyki II" Strona: 4 z 9 Suma i iloczyn wyrażeń ciągu - nieskończoność Infinity stała zastrzeżona do oznaczenia In[1]:= m:={{1,2},{2,1}} Operacje na macierzach In[1]:= Sum[1/x^2,{x,1,Infinity}] Pi Out[1]= In[2]:= %//N Out[3]= In[2]:= Transpose[m] <- transponowanie macierzy Out[3]= {{1, 2}, {2, 1}} In[4]:= Det[m] Out[4]= -3 In[5]:=Inverse[m] Out[5]= <- wyznacznik macierzy =1*1-2*3=-3 <- odwrotność macierzy Wektory v:={x,y,..} wektor v o współrzędnych x,y,.. In[1]:= v1:={1,1,1} In[2]:=v2:={1,2,3} In[3]:=v1+v2 Out[3]={2, 3, 4} + = Iloczyn skalarny -. In[4]:= v1 v2 Out[3]=6 =1*1+2*2+3*1= Iloczyn wektorowy Cross[] In[5]:=Cross[v1,v2] Out[5]={1, -2, 1} = Znalezienie wartości własnych macierzy Aby znaleźć wartości własne macierzy należy rozwiązać równanie charakterystyczne In[1]:= m:={{1,2,1},{2,1,1},{1,1,1}} In[2]:=wartwl:=m-x*IdentityMattrix[3] In[3]:= wyz=det[wartwl] <- wyznacznik macierzy Out[3]= x + 3 x 2 -x 3 In[4]:=NSolve[wyz==0, x] Out[4]= {{x -> -1.}, {x -> }, {x -> }} Macierze m:={{a11,a12},{a21,a22}} In[1]:= m:={{1,0},{0,1}} In[2]:=m2:={{2,1},{0,0}} In[3]=MatrixForm[m] <- aby przedstawić wynik w postaci macierzowej Out[3]= //MatrixForm= IdentityMatrix[n] <- macierz jednostkowa o rozmiarze n x n In[4]:= IdentityMatrix[2] Out[4] ={{1, 0}, {0, 1}} Operacje na macierzach lub Wartości własne In[1]:= m:={{1,2,1},{2,1,1},{1,1,1}} In[2]:=Eigenvalues[N[m]] Out[2]= { , -1., } In[3]:=Eigenvectors [N[m]] Wektory własne Out[3]= {{ , , },{ , ,0.},{ , , }} Analiza matematyczna In[1]:= m:={{1,0},{0,1}} In[2]:=m2:={{2,1},{0,0}} In[3]:= m+m2 <- suma macierzy Out[3]= {{3, 1}, {0, 1}} In[4]:= m-m2 <- różnica macierzy Out[4]= {{-1, -1}, {0, 1}} In[5]:=m.m2 <- iloczyn macierzy Out[5]= {{2, 1}, {0, 0}} + = + = o Wyznaczanie granic ciągów o Różniczkowanie o Całkowanie o Rozwiązywanie równań różniczkowych

5 Z. Postawa, "Podstawy Informatyki II" Strona: 5 z 9 In[1]:= Limit[ Sin[x]/x, x->0] Out[1]= 1 Granice funkcji Limit[ funkcja, x-> x0] granica funkcji przy x dążącym do x0 Można szukać granic przy x In[4]:= Limit[Exp[x]/(x^100),x->Infinity] Out[4] =Infinity In[3]:= f:= Sin[x]*Tan[x] Całkowanie nieoznaczone Użycie zmiennych In[4]:=Integrate[f, x] Out[4]=-Log[Cos[x/2] - Sin[x/2]] + Log[Cos[x/2] + Sin[x/2]] - Sin[x] In[3]:= f1[x_] = Sin[x]*Tan[x] In[4]:=Integrate[f[x], x] Out[4]=-Log[Cos[x/2] - Sin[x/2]] + Log[Cos[x/2] + Sin[x/2]] - Sin[x] In[1]:= D[ Log[x],x] 1 Out[1]= ---- x Różniczkowanie D[ funkcja, zmienna] pochodna funkcji po zmiennej zmienna D[ funkcja, {zmienna,n}] n-ta pochodna funkcji po zmiennej zmienna In[2]:= D[ Log[x],{x,2}] Out[1]= -x -2 ESCintESC Całkowanie nieoznaczone ESCddESC d CTRL+_ dolna granica CTRL+% górna granica Zapis naturalny ESCintESCSin[x]*Tan[x]ESCddESC Różniczkowanie cząstkowe D[ funkcja, {zmienna1,n},{zmienna2,m}] n-ta i m-ta pochodna funkcji po zmiennej zmienna1 i zmienna2 Całkowanie nieoznaczone wielokrotne Integrate[funkcja, zmienna1, zmienna2] całka nieoznaczona z funkcji po zmiennych zmienna1 i zmienna2 In[1]:= D[ x*sin[y],{x,1},{y,2}] Out[1]= -Sin[y] Zapis uproszczony In[1]:= Integrate[ Exp[xy]/x, x,y] Out[1]= Exp[xy] y Log[x] In[1]:= D[ x*sin[y],x,{y,2}] Out[1]= -Sin[y] In[1]:= Integrate[ 1/x,x] Out[1]= Log[x] Całkowanie nieoznaczone Integrate[funkcja, zmienna] całka nieoznaczona z funkcji po zmiennej zmienna In[2]:= Integrate[Sin[x]*Tan[x], x] Out[2]= -Log[Cos[x/2] - Sin[x/2]] + Log[Cos[x/2] + Sin[x/2]] - Sin[x] Całkowanie oznaczone Integrate[funkcja, {zmienna1,początek,koniec}] całka oznaczona z funkcji po zmienej zmienna w zakresie od z1 do z2 In[1]:= Integrate[ Exp[-x]/x, {x,1., Infinity}] Out[1]=

6 Z. Postawa, "Podstawy Informatyki II" Strona: 6 z 9 Całkowanie oznaczone wielokrotne Integrate[funkcja, {x,x1,x2}, {y,y1,y2}] całka oznaczona z funkcji po zmienych x i y w zakresie od x1 do x2 oraz od y1 do y2 In[1]:= Integrate[ Sin[x+y], {x,0., Pi/2},{y,0.,Pi/2}] Out[1]= 2. Rozwiązywanie równań różniczkowych Równanie różniczkowe 2-go rzędu In[1]:=eq1 = {z''[t] == -9.81}; initial = {z[0] == 0, z'[0] == 10}; ndsol = DSolve[Join[eq1, initial], z[t], t] Out[1]= {z[t] -> 10 t t^2}} In[2]=tmax=Solve[ndsol==0]; In[3]=tmax = NSolve[z[t] == 0 /. ndsol, t] Out[3]={{t -> 0.}, {t -> }} Szeregi Series [funkcja, {x,x0,rząd}] rozwija funkcję w szereg wokół punktu x0 do rzędu rząd In[1]:= Series[ Exp[-x], {x,0, 4}] x x x 5 Out[1]= 1 - x O[x] Wykresy o Wykres dwuwymiarowy liniowy o Wykres dwuwymiarowy punktowy o Wykres trójwymiarowy o Wykres konturowy o Wykres pola wektorowego o Wykres parametryczny Rozwiązywanie równań różniczkowych DSolve[funkcja, y[x],x] analityczne rozwiązywanie równanie różniczkowego dla y[x], gdzie x jest zmienna niezależną Równanie różniczkowe 1-go rzędu In[1]:=Plot [x^2,{x,-1,1}] Wykres dwuwymiarowy Plot[funkcja, {x,x0,x1},opcje] rysuje wykres funkcji w zakresie od x1 do x2. Opcje pozwalają na modyfikacje stylu In[1]:=eq:=y [x]-2 y[x]==0 In[2]:=DSolve[eq,y[x],x] 2 x Out[1]= {{y[x] -> E C[1]}} In[1]:=eq:={y [x]== y[x]}; inital={y[0]==2} In[2]:=rozw = DSolve[Join[eq, initial], y[x], x] Out[2]= Plot[Evaluate[y[x] /. rozw], {x, 0, 1}, AxesLabel -> {"x", "y"}] Logarytmiczny wykres dwuwymiarowy LogPlot[funkcja, {x,x0,x1}] oś y jest logarytmiczna LogLinearPlot[funkcja, {x,x0,x1}] oś x jest logarytmiczna LogLogPlot[funkcja, {x,x0,x1}] osie x i y są logarytmiczne In[158]:=LogPlot [Exp[x],{x,0,10}, LabelStyle -> {15}]

7 Z. Postawa, "Podstawy Informatyki II" Strona: 7 z 9 Wykres dwuwymiarowy opcje Plot[funkcja, {x,x0,x1}, PlotRange->{x2, x3}] ] PlotRange zakres osi y AxesLabel->{"x", x^2"} opis osi x i y PlotLabel > Przebieg próbny" nazwa wykresu PlotStyle->{RGBColor[1,0,1]} kolor linii wykresu- styl linii wykresu LabelStyle->{15} rozmiar tekstu opisów osi Wykres punktowy II ListPlot[{y0,y1..},Opcje] rysuje wykres kolejnych punktów {y0,y1,...} In[1]:=ListPlot[ { 2.5, 3.7, -1.2, 7.0, 9.1, -2.3}, PlotJoined->True ] Wykres dwuwymiarowy wielu funkcji Plot[{f1,f2}, {x,x0,x1},opcje] rysuje wykres funkcji f1 i f2 w zakresie od x1 do x2 In[117]:=Plot[{x^2, x}, {x, -1, 1}, PlotStyle -> {{Red, Thickness[0.002]}, {Green, Dashing[{0.03, 0.03}],Thick}}, PlotLabel - > "Test", Frame -> True, AxesLabel -> {"Signal [au]", Superscript["mc", "2"]}] Wykres trójwymiarowy Plot3D[funkcja3D, {x,x0,x1},{y,y0,y1},opcje] rysuje wykres funkcji w zakresie x od x1 do x2 i y od y1 do y2 In[24]:=Plot3D[Sin[x] Sin[y], {x,-pi,pi}, {y,-pi,pi}, AxesLabel -> {x,y,z}, Mesh->All, PlotPoints->40] Polecenie Show Show[w1,w2] nakłada na siebie wcześniej utworzone wykresy w1 i w2 In[1]:=w1:=Plot[x^2, {x, -1, 1}]; w2 := Plot[x, {x, -1, 1}] In[2]:=Show[w1, w2] Wykres konturowy ContourPlot[funkcja, {x,x0,x1},{y,y0,y1},opcje] rysuje wykres konturowy funkcji w zakresie od x0 do x1 i od y0 do y1 In[84]:=ContourPlot[Cos[x]*Cos[y], {x, -Pi, Pi}, {y, -Pi, Pi}, ContourLabels -> True] Wykres punktowy ListPlot[{x0,y0},{x1,y1},..] rysuje wykres punktów x,y In[5]:=ListPlot[{{-5, -3}, {-3, 2}, {0.5, 6.3), {2.5, 1.4}, {5, 3}}, PlotJoined -> True] Wykres pola wektorowego VectorFieldPlot[funkcja, {x,x0,x1},{y,y0,y1},opcje] rysuje wykres wektorowy funkcji w zakresie od x0 do x1 i y0 do y1 Needs["VectorFieldPlots`"] In[1]:=V:={x, y}/(x^2 + y^2)^(3/2) In[2]:=VectorFieldPlot[v, {x, -5, 5}, {y, -5, 5}]

8 Z. Postawa, "Podstawy Informatyki II" Strona: 8 z 9 Wykres parametryczny ParametrivPlot[x[t],y[t],{t,t0,t1} ] rysuje wykres parametryczny funkcji x[t] i y[t] w zakresie od t0 do t1 In[30]:=ParametricPlot[{Cos[t]*t, Sin[t]*t}, {t, 0, 50}] Dopasowywanie krzywych In[1]:=dane:=ReadList["e:\dane.dat", {Number, Number}] In[2]:=Fit[ dane, {x^2, x^1, 1}, x] Out[2]:= x x^2 In[3]:=NonlinearFit[dane1, a*x^2 + b*x + c, x, {{a, 0.5}, {b, -0.5}, {c, 1.5}}] Out[3]:= x x^2 Operacje na zbiorach SetDirectory["Nazwa kartoteki"] ustawienie nazwy kartoteki głównej, np. kartoteki ze zbiorem Zmienna=Import["Nazwa zbioru"] importuje dane Export["dane.dat","zmienna ] zapisuje dane ze zmiennej zmienna do zbioru o nazwie dane.dat <<["dane.dat","zmienna ] ładuje jeden element ze zbioru o nazwie dane.dat do zmiennej zmienna Delete["dane.dat"] usuwa zbiór nazwie dane.dat Operacje na zbiorach In[1]:=SetDirectory["e:/"] Out[1]=e:/ In[2]:=dane:=Import["dane.dat"] In[3]:=wykres = ListPlot[dane] y v θ x Rzut ukośny x=v cos In[1]:=Remove["Global`*"] In[2]:= y:=v*sin[α]*t-9.81*t*t/2.; x:= v*sin[α]*t In[3]:= Solve[D[y,t] 0,t]; In[4]:= tmax:=n[2.*t//.%] In[5]:= zasieg=x//.t tmax Out[5]:= { v 2 Cos[α] Sin[α]} In[6]:= wysokosc=y//.t tmax/2 Out[6]:= { v 2 Sin[α] 2 } y Operacje na zbiorach ReadList["Nazwa zbioru", "format"] ustawienie nazwy kartoteki ze zbiorem WriteList["Nazwa zbioru", "format"] ustawienie nazwy kartoteki ze zbiorem In[1]:=dane:=ReadList["e:\dane.dat", {Number, Number}] In[2]:=dane:=Import["dane.dat"] In[3]:=wykres = ListPlot[dane] Rzut ukośny, cd In[7]:= Solve[D[zasieg,α] 0,α] Out[7]:= {{α },{α },{α }, {α }} In[8]:= αmax=n[α//.%][[3]] In[9]:= α=αmax/pi*180. Out[9]:= 45 In[10]:= zasieg Out[10]:={ v 2 }

9 Z. Postawa, "Podstawy Informatyki II" Strona: 9 z 9 Pole elektryczne jednorodnie naładowanej płaszczyzny θ d l θ r In[1]:=Remove["Global`*"] In[2]:= de:=1/(4*pi*ε0)*σ*ds*cos[θ]/l^2 In[3]:= l:=d/cos[θ] In[4]:= ds:=2*pi*r*dr*dφ In[5]:= dφ:=1/(2 Pi) In[6]:= r:=d*tan[θ]; dr:=d[r,θ] In[7]:= E calk =Integrate[dE,{θ,0,Pi},{φ,0,2 Pi}] de dϕ de Out[2]:= σ/ε 0 Rozpraszanie ( A sin θ ) ) 1/ 2 cosθ1 ± 1 E1 E0 1 A m2 =, gdzie A = + m1 In[1]:= e0:=100; m2=108 (*Srebro *); m1=40 (*Argon *); In[2]:= A:=m2/m1 In[3]:= e1[θ _]:=e0 ((Cos[θ Degree]+Sqrt[A^2-Sin[θ Degree]^2])/(1+A))^2 In[4]:= Plot[Evaluate[e1[x]],{x, 0, 90},AxesLabel {"Angle (degrees)","kinetic energy (ev)"}] Manipulate - interakcja Manipulate[wyr, {x,x0,x1}] pozwala na interaktywną zmianę parametrów zmiennej x w wyrażeniu wyr, w zakresie of x0 do x1 In[1]:=Manipulate[ Plot[e0*(((Cos[x] - Sqrt[a1^2 - Sin[x]^2])/(1 + a1))^2), {x, 0 Degree, 90 Degree}, AxesLabel -> {"Angle (rad)", "Kinetic energy (ev)"}], {a1, 1, 10}] Programowanie w Mathematice To już we własnym zakresie lub na ćwiczeniach

Sin[Pi / 4] Log[2, 1024] Prime[10]

Sin[Pi / 4] Log[2, 1024] Prime[10] In[1]:= (* WSTĘP DO PAKIETU MATHEMATICA *) (* autorzy: Łukasz Płociniczak,Marek Teuerle*) (* Składnia: nazwy funkcji z wielkiej litery a argumenty w kwadratowych nawiasach. Wywołujemy wartość SHIFT+ENTER

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

WPROWADZENIE DO ŚRODOWISKA SCILAB

WPROWADZENIE DO ŚRODOWISKA SCILAB Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.

Bardziej szczegółowo

Równania liniowe i nieliniowe

Równania liniowe i nieliniowe ( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."

Bardziej szczegółowo

Algebra Symboliczna. Wykład I. Andrzej Odrzywolek. Instytut Fizyki, Zakład Teorii Względności i Astrofizyki

Algebra Symboliczna. Wykład I. Andrzej Odrzywolek. Instytut Fizyki, Zakład Teorii Względności i Astrofizyki Algebra Symboliczna Wykład I Andrzej Odrzywolek Instytut Fizyki, Zakład Teorii Względności i Astrofizyki 03.10.2007, środa, 13:15 Dane kontaktowe dr Andrzej Odrzywołek pokój 447, IV piętro E-mail: odrzywolek@th.if.uj.edu.pl

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. 1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość

Bardziej szczegółowo

Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki

Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 22.05.2013 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony www.mathematica.pl

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów. Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY

Bardziej szczegółowo

Mathematica - podstawy

Mathematica - podstawy Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Materiały pomocnicze dla studentów do wykładów Opracował (-li): 1 Prof dr hab Edward Smaga dr Anna Gryglaszewska 3 mgr Marta Kornafel 4 mgr Fryderyk Falniowski 5 mgr Paweł Prysak Materiały przygotowane

Bardziej szczegółowo

Modyfikacja układu współrzędnych VIEW

Modyfikacja układu współrzędnych VIEW WinPlot Wprowadzenie Winplot jest graficznym narzędziem napisanym przez Richarda Parrisa, nauczyciela w Phillips Exeter Academy w Exeter, New Hampshire. Program jest bezpłatny, najnowszą wersję moŝna pobrać

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia: ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Na podstawie informacji zdobytych na poprzednich zajęciach proszę wykonać następujące zadania:

Na podstawie informacji zdobytych na poprzednich zajęciach proszę wykonać następujące zadania: Informatyka. I. Przypomnienie wiadomości z poprzednich zajęć: Na podstawie informacji zdobytych na poprzednich zajęciach proszę wykonać następujące zadania: 1. Proszę wygenerować wykresy funkcji sinus

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

Opis przedmiotu: Matematyka I

Opis przedmiotu: Matematyka I 24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność

Bardziej szczegółowo

Podstawowe operacje na macierzach

Podstawowe operacje na macierzach Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.

Bardziej szczegółowo

x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.

x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x. Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Poradnik encyklopedyczny

Poradnik encyklopedyczny I.N.Bronsztejn K.A.Siemiendiajew Poradnik encyklopedyczny Tłumaczyli Stefan Czarnecki, Robert Bartoszyński Wydanie dziesiąte Wydawnictwo Naukowe PWN Warszawa 1995 SPIS RZECZY Przedmowa 5 Oznaczenia matematyczne

Bardziej szczegółowo

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Nazwa przedmiotu MATEMATYKA I Kod CH 1.1 Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S Sposób zaliczenia E Katedra Centrum Nauczania Matematyki i Kształcenia na

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

IV etap edukacyjny. Cele kształcenia wymagania ogólne

IV etap edukacyjny. Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych,

Bardziej szczegółowo

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.NIK102 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab

Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 1 Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 2 Plan zajęć 1. Wprowadzenie 2. Wykresy 2-D 3. Wykresy 3-D 4. Rysowanie figur geometrycznych

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p,

1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p, PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium Wykonał: Sala 125 Łukasz Konopacki 155796 Grupa: poniedziałek/p, 16.10 18.10 Prowadzący: Dr.inż.Ewa Szlachcic Termin oddania sprawozdania: Ocena: Matlab - firmy

Bardziej szczegółowo

Spis treści. Przedmowa do wydania piątego

Spis treści. Przedmowa do wydania piątego Zadania z matematyki wyższej. Cz. 1, [Logika, równania liniowe, wektory, proste i płaszczyzny, ciągi, szeregi, rachunek różniczkowy, funkcje uwikłane, krzywe i powierzchnie] / Roman Leitner, Wojciech Matuszewski,

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Matematyczne metody fizyki 1 Rok akademicki: 2013/2014 Kod: JFT-1-103-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: - Poziom studiów:

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M dr hab. inż. Stanisław Cudziło, prof. WAT Dziekan Wydziału Nowych Technologii i Chemii Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: MATEMATYKA Wersja anglojęzyczna:

Bardziej szczegółowo

Zakres materiału obowiązujący do próbnej matury z matematyki

Zakres materiału obowiązujący do próbnej matury z matematyki ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli

Bardziej szczegółowo

Matlab MATrix LABoratory Mathworks Inc.

Matlab MATrix LABoratory Mathworks Inc. Małgorzata Jakubowska Matlab MATrix LABoratory Mathworks Inc. MATLAB pakiet oprogramowania matematycznego firmy MathWorks Inc. (www.mathworks.com) rozwijany od roku 1984 język programowania i środowisko

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:

Bardziej szczegółowo

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19 Matematyka dla kierunków ekonomicznych : przykłady i zadania wraz z repetytorium ze szkoły średniej / Henryk Gurgul, Marcin Suder. wyd. 6 uzup. i popr., uwzględniające podstawowy program matematyki również

Bardziej szczegółowo

JAVAScript w dokumentach HTML (1)

JAVAScript w dokumentach HTML (1) JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript mogą być zagnieżdżane w dokumentach HTML. Instrukcje JavaScript

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Załącznik nr 2 do SIWZ Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Zakres materiału Z-1; sem. 1 1. Funkcje jednej zmiennej i ich własności: a) Wartość bezwzględna definicja, rozwiązywanie równań

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

ARKUSZ KALKULACYJNY MICROSOFT EXCEL

ARKUSZ KALKULACYJNY MICROSOFT EXCEL Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TS1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY MICROSOFT EXCEL

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

1 Działania na macierzach

1 Działania na macierzach 1 Działania na macierzach Dodawanie macierzy Dodawać można tylko macierze o tych samych wymiarach i robi to się następująco: [ 1 3 4 5 6 ] + [ 0 3 1 3 7 8 ] = [1 + 0 + 3 3 + 1 4 3 5 + 7 6 + 8 ] = [1 5

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Cw.12 JAVAScript w dokumentach HTML

Cw.12 JAVAScript w dokumentach HTML Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać (pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2013/2014 4. Forma kształcenia: studia pierwszego

Bardziej szczegółowo

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1 Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Podstawowy obowiązkowy Rodzaj zajęć: wykład, ćwiczenia Inżynieria Materiałowa Poziom studiów: studia I stopnia MATEMATYKA MATHEMATICS Forma studiów: studia

Bardziej szczegółowo

zajęcia 2 Definiowanie wektorów:

zajęcia 2 Definiowanie wektorów: zajęcia 2 Plan zajęć: definiowanie wektorów instrukcja warunkowa if wykresy Definiowanie wektorów: Co do definicji wektora: Koń jaki jest, każdy widzi Definiowanie wektora w Octave v1=[3,2,4] lub: v1=[3

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Przykład 1 -->s="hello World!" s = Hello World! -->disp(s) Hello World!

Przykład 1 -->s=hello World! s = Hello World! -->disp(s) Hello World! Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Adres komórki-nazwa kolumny i nazwa wiersza, na przecięciu których znajduje się komórka. B3- adres aktywnej komórki

Adres komórki-nazwa kolumny i nazwa wiersza, na przecięciu których znajduje się komórka. B3- adres aktywnej komórki Rok akademicki 2014/2015, Pracownia nr 7 2/19 Adresowanie komórek Technologie informacyjne Adres komórki-nazwa kolumny i nazwa wiersza, na przecięciu których znajduje się komórka Politechnika Białostocka

Bardziej szczegółowo

MATHCAD Obliczenia symboliczne

MATHCAD Obliczenia symboliczne MATHCAD 000 - Obliczenia symboliczne Przekształcenia algebraiczne UWAGA: Obliczenia symboliczne można wywoływać na dwa różne sposoby: poprzez menu Symbolics poprzez przyciski paska narzędziowego Symbolic

Bardziej szczegółowo