Podstawowe Operacje. Out[3]:= Head[ ] 5

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawowe Operacje. Out[3]:= Head[ ] 5"

Transkrypt

1 Podstawowe Operacje. Typy liczb. W pakiecie Mathematica mamy do czynienia z czterema typami liczb: 1. Integer liczby całkowite, 2. Rational liczby wymierne. 3. Real liczby rzeczywiste, 4. Complex liczby zespolone. Aby liczba była interpretowana jako rzeczywista musi ona zawierać kropkę. Na przykład: Zapis liczby 3 (bez kropki) jest odbierane jako liczba całkowita; 3. (z kropką) liczba rzeczywista. Typ danej liczby można sprawdzić za pomocą instrukcji Head: In[1]:= Head[3] Out[1]:= Integer In[2]:= Head[3.] Out[2]:= Real 1 Out[3]:= Head[ ] 5 Out[3]:= rational Oprócz tej instrukcji Mathematica dysponuje kilkoma innymi, za pomocą, których można sprawdzić, jaki typ ma podana liczba (parzysta, nieparzysta, pierwsza itp.). Wszystkie one są rozmieszone w dodatku D3. Liczby wymierne są zapisywane w postaci ułamków nieskracalnych, bo Mathematica jest to system symbolicznych przetworzeń i zawsze stara się przedstawić wyniki w postaci dokładnej. In[4]:= 1/5 1 Out[4]:= 5 Jeśli chcemy wynik w postaci dziesiętnej trzeba w liczniku lub mianowniku pisać kropkę. In[5]:= 1./5 Out[5]:= 0.2 Jeśli podczas obliczeń dużych zagadnień liczby mają typ wymiernej lub całkowitej, wtedy często bywa, że proces obliczenia trwa długo, lub nie ma końca. W takich przypadkach konieczna jest zmiana typów danych na rzeczywiste. W dodatku D1 dano krótki opis instrukcji( oraz przykłady), które konwersują typami. 13

2 Poniżej na konkretnym przykładzie zobaczymy, jakie odgrywają rolę typy liczb podczas obliczeń. Załóżmy, ze chcemy znaleźć pierwiastek równania. 2 x = Cos( Żeby rozwiązać metodą iteracji, trzeba je zapisać w postaci x ) (1) ϕ ( x ) = Cos( x ) (2) i zastosować instrukcję Nest, która zagnieżdża funkcję i ma postać Nest[ ϕ, x 0, n ] - gdzie ϕ jest funkcją postaci (2), x 0 początkowy punkt (grube przybliżenie pierwiastka) a n liczba iteracji(stopień zagnieżdżania). Poniżej podanego przykładu widać różnicę w traktowaniu różnych typów liczb przez Mathematica. Najpierw są określone równanie (1) i wzór (2). In[1]:= f@x_d := x 2 Cos@xD In[2]:= ϕ@x_d := è Cos@xD In[3]:= Nest@ϕ, 1., 5D Out[3]= Tu rozwiązuje się zagadnienie, początkowy punkt jest liczbą rzeczywistą (ona ma kropkę), In[4]:= Nest@ϕ, 1,5D * * Out[4]= ( Cos A ( Cos A&Cos A $Cos A è Tu początkowy punkt jest liczbą całkowitą i Mathematica daje dokładne rozwiązywanie Aby wyjaśnić wpływ typu liczb na czas obliczenia, dodajemy instrukcje Timing. In[5]:= Nest@ϕ, 1., 1000DêêTiming Out[5]= Second, < In[6]:= Nest@ϕ, 1, 1000DêêN êê Timing Out[6]= Second, < Porównując wyniki z linii 5 i 6 widzimy, ze w drugim przypadku potrzeba o wiele więcej czasu. Jeszcze raz zwróćmy uwagę na wyrażenie w linii 6. Instrukcja //N jest konieczna. Rozważmy jak działa Nest w rozpatrywanym przypadku: najpierw otrzymywany jest dokładny pierwiastek(wyobraźmy sobie jak olbrzymiej wielkości jest to wyrażenie. Będzie miało ono postać z linii 4, lecz kilka tysiąckrotne zagnieżdżone), potem dzięki operatorowi //N obliczana 14

3 jest jego wartość liczbowa. Gdybyśmy nie zastosowali tego operatora, Mathematica starałaby się wyświetlić całą postać dokładnego pierwiastka, co faktycznie jest niemożliwe. Definiowanie zmiennych. W bardzo prosty sposób możemy określać zmienne, a mianowicie znak równości (=) przypisuje zmiennej wartość np. x = 4. Od tego momentu zmienna x ma wartość 4. Aby anulować te przypisanie wystarczy napisać In[1]:= x =. Znak kropki anuluje wcześniejsze przypisanie. Zwracamy uwagę na to, że przy takim zapisie komórka wyjściowa nie pojawia się. Jeżeli chcemy nadać pewną wartość wyrażeniu, równaniu czy funkcji możemy to uczynić następująco: wyrażenie/. zmienna wartość. Na przykład: In[2]:= x x 10 /.x a+1 Out[2]:= -10+2(a+1)+(a+1) 3 Zamianę w wyrażeniach również można zrobić za pomocą instrukcji podanych w tabeli. Operacja Replace[wyrażenie, reguła] Replace[wyrażenie, reguła, n] Replace[wyrażenie, reguła, {n}] ReplaceAll[wyrażenie, reguła] Komentarz Przekształca wyrażenie według podanej reguły. Przekształca wyrażenie według podanej reguły od zera do n-tego poziomu. Przekształca wyrażenie według podanej reguły tyłko na n-tym poziomie. Przekształca wyrażenie według podanej reguły (na wszystkich poziomach). Gdzie reguła ma postać: Szablon wartość Polecenie ReplaceAll jest równoważny na instrukcje: Wyrażenie/.szablon wartość UWAGA. Szablon w regułach to dowolne wyrażenie (o szablonach dokładne będzie mowa w rozdziale Szablony). 15

4 Działanie instrukcji, podanych w tabeli pokażmy na przykładach: In[3]:= wyr = 81, x, 1 + 2x+ x 2,x 3 <; In[4]:= ReplaceAll@wyr, x ad Out[4]= 81, a, 1 + 2a+ a 2,a 3 < Tu instrukcja ReplaceAll w wyrażeniu zmienia x wszędzie na a (na wszystkich poziomach) In[5]:= wyr ê. x a Out[5]= 81, a, 1 + 2a+ a 2,a 3 < To samo, co wyżej można zrobić za pomocą podstawki. In[6]:= Replace@wyr, x_ y_ a^b, 1D Out[6]= 81, x, 1 + 2x+ x 2,a b < Tu instrukcja Replace w wyrażeniu zmienia x w powolnej potędze wszędzie na a b (od zera do pierwszego poziomu) In[7]:= ReplaceAll@wyr, x_ y_ a + bd Out[7]= 81, x, 1 + a + b + 2x,a+ b< Tu instrukcja ReplaceAll w wyrażeniu wszędzie znajdzie zmienną x w jakikolwiek potędze i zamienia ją na a+b (na wszystkich poziomach) 16

5 Operacje arytmetyczne. W Mathematica wszystkie tradycyjne operacje arytmetyczne wykonuje się w zwykłej kolejności i są pokazane poniżej w Tabeli 3. Tabela 3 Operacja Z Palety Alternatywa Nazwa operacji x^y x/y y x Power[x,y] Potęgowanie x Divide[x,y] Dzielenie y x*y x y Times[x,y] Mnożenie x+y Plus[x,y] Dodawanie -x Times[-1,x] Odejmowanie Uwaga. Wyrażenie xy oznacza zmienną o nazwie xy. Gdy rozdzielimy je spacją x y będzie to wyrażenie x razy y. Szczegółowy opis funkcji matematycznej jest podany w dodatku D2. Operatory Logiczne i Relacje. Wynikiem dowolnej relacji zawsze jest wartość logiczna: True Prawdziwa False Nieprawdziwa Poniżej w Tabeli 4 są podane wszystkie operacje relacji. Tabela 4 Operacja Z palety Alternatywa Komentarz x==y Equal[x,y] Równość x!=y Unequal[x,y] Nierówność x>y Greater[x,y] Większe x>=y GreaterEqual[x,y] Większe lub równe x<y Less[x,y] Mniejsze x<=y LessEqual[x,y] Mniejsze lub równe x===y SameQ[x,y] Identyczne x=!=y UnsameQ[x,y] Nieidentyczne x=y=z x!=y!=z Wszystkie zmienne równe Wszystkie zmienne różne 17

6 W pakiecie Mathematica łatwo można zapisać dowolnie złożone wyrażenie logicznie. Podczas zapisu wyrażenia trzeba brać pod uwagę pierwszeństwo wykonanych operacji. Z poniższego przykładu widać, że operacja sumowania ma pierwszeństwo nad porównaniem. In[1]:= 7+8 > 11 Out[1]:= True Gdy zmienne nie mają nadanej wartości, Mathematica nie może rozstrzygnąć czy formuła jest prawdziwa czy fałszywa. In[2]:= a==b Out[2]:= a == b to można było zapisać inaczej: In[3]:= wyrażenie = a==b Out[3]:= a == b In[4]:= wyrażenie/. {a 3,b 5} Out[4]:= False lub wstawiamy wyrażenie nowe znaczenia zmiennych a i b. In[5]:= wyrażenie/. {a 11,b 11} Out[5]:= True Mówimy, że wyrażenie jest wyrażeniem logicznym, jeżeli on składa się z logicznych operacji i otrzymuje wartość logiczną. W tabeli 5 są określone operacje logiczne, które spotyka się w Mathematica. Tabela 5 Operacja Z palety Alternatywa Komentarz!p Not[p] Negacja p&&q And[p,q] Koniunkcja p7q Or[p,q] Alternatywa Implies[p,q] Implikacja Xor[p,q] Alternatywa wykluczająca p i q w tabeli 5 są logicznymi wyrażeniami na przykład, jeśli p=7>4 (p ma wartość True) i q=false, wtedy In[ ]:= And[p,q] Out[ ]:= False 18

7 Tworzenie List. Lista w Mathematica jest potężnym obiektem i pozwala zgromadzić elementy różnego rodzaju. Osoby, które zechcą poznać Mathematica głębiej, będą o tym przekonane. Listę tworzy się przez umieszczanie obiektów w nawiasach klamrowych. Obiekty w nawiasach oddziela się przecinkami. Liście można nadać nazwę i w przyszłości będziemy często zaznaczali ją przez ls. Na Rys. 11 pokazano prosty przykład określania listy. Rys. 11 Jak widać z Rys. 11 Mathematica może wydzielić obiekty z listy i operować poszczególnym elemencie. Aby wyciągnąć trzeci element z listy ls, piszemy ls[[3]]. Trzeba zwracać uwagę na to, że indeksy w listach pisze się w podwójnych kwadratowych nawiasach [[ ]]. Kombinacja symboli (* i *) pozwala pisać w komórkach wejściowych komentarze. Inaczej zapisane komentarze w Mathematica jest traktowane jako błąd. W tabeli 6 jest podany krótki opis instrukcji Table i Range. Polecenie Table pozwala stworzyć listę różnych postaci. Table[ x n, {n, 0, 5} ] daje listę ciągu funkcji potęgowych: {1, x, x 2, x 3, x 4, x 5 } 19

8 Tabela 6 Instrukcja Krótki opis instrukcji Table[f,{i max }] Tworzy listę i max długości o elementach f. Table[f,{ i, i max }] Tworzy listę o elementach f, i zmienia się od 1 do i max. Table[f,{ i, i min, i max }] Tworzy listę o elementach f, i zmienia się od i min do i max. Table[f,{ i, i min, i max,di}] Tworzy listę o elementach f, i zmienia się od i min do i max z krokiem di. Table[f,{ i, i min, i max },{ j, j min, j max }] Tworzy wielowymiarową listę o elementach f. Range[x 1, x 2, dx] Tworzy listę liczb od x 1 do x 2 z krokiem dx. Range[n] Tworzy listę liczb naturalnych od 1 do n z krokiem 1. Natomiast za pomocą instrukcji Range można otrzymać dowolny ciąg liczbowy w postaci listy, jednostajnie rosnącą lub malejącą: In[] : = Range [ 2.5,7,1.5] Out [] : = {-2.5, -1., 0.5, 2., 3.5, 5., 6.5} Na elementach listy w Mathematica można zrobić różne manipulacje. W tym celu w pakiecie istnieje dużo różnych funkcji, których krótki opis znajduje się w dodatku D4-D8. 20

9 Macierze i Wektory Instrukcje, za pomocą, których określa się wektory i macierze są podane w tabeli 7. Instrukcja Table[f[i],{I, n}] Array[f,{ i, n }] Table[f[i,j],{ i, n },{ j, m }] Array[f,{ i, n },{ j, m }] IdentityMatrix[n] DiagonalMatrix [ls] Tabela 7 Krótki opis instrukcji Tworzy wektor długości o n elementach f[i], i=1,2,...,n. Tworzy wektor o elementach f[i], i zmienia się od 1 do n. Tworzy macierz o elementach f [i,j]. Tworzy macierz o elementach f [i,j]. Tworzy macierz jednostkową. Tworzy macierz diagonalną, z elementami ls na przekątnej. Wektor w Mathematica reprezentuje się jako lista ujęta w nawiasach klamrowych. Oprócz instrukcji, które są podane w tabeli 7, macierze i wektory można tworzyć za pomocą polecenia Table z tabeli 6. Niżej pokażemy kilka przykładów podania wektora. Tu a jest wektorem i określa się go jako zwykłą listę: In[1] : = a = Table [ i^ 2,{ i,4}] Out [1] : = {1,4,9,16} Taki sam wektor można określić inaczej: 2 In [2]: = s = Table[ b[ i] = i,{ i,4}] ; In[3]: = s Out[3]: = {1,4,9,16} W tym przypadku s jest wektorem (listą) i jego elementy można wyciągnąć dwoma sposobami. In[4] : = s[[3]] Out [4] : = 9 In[5] : = b[3] Out [5] : = 9 21

10 Tu wektor a określa się zastosowaniem instrukcji Array: In[]: = Array[ a,4] Out[]: = { a[1], a[2], a[3], a[4]} To jest lista bez nazwy, ale do elementów tej listy(wektora) można odwołać się nazwą a[i], i=1,2,3,4; Lista, której elementy są listą o stałej długości, jest macierzą. In[1]: = A = {{ a, b},{ c, d}}; In[2]: = A// MatrixForm a b Out[2]: = c d Wyżej instrukcja MatrixForm pokazuje wyrażenie w postaci macierzowej. Jeśli macierz określamy zastosowaniem instrukcji Array In[3]:= m = Array@A, 83, 4<D êê MatrixForm Out[3]//MatrixForm= i A@1, 1D A@1, 2D A@1, 3D A@1, 4D y A@2, 1D A@2, 2D A@2, 3D A@2, 4D k A@3, 1D A@3, 2D A@3, 3D A@3, 4D { wtedy do elementów tej macierzy można odwołać się jako A[i,j], jak również m[[i,j]]. Na przykład: In[4]:= Do@A@i, jd = 4 Hi 1L + j, 8i, 3<, 8j, 4<D In[5]:= m êê MatrixForm Out[5]//MatrixForm= i y k { In[6]:= A@3, 2D Out[6]= 10 In[7]:= m@@3, 2DD Out[7]= 10 Do dowolnego wiersza macierzy można odwołać się wpisując numer wiersza w podwójnych nawiasach kwadratowych po nazwie macierzy: In[7] : = m[[1]]^2 1 Out[7] : = {0,3,8,15} Teraz opiszemy inny sposób tworzenia macierzy. Z menu Input wybieramy opcję Create Table/Matrix/Pallete... W otwartym oknie dialogowym (Rys. 12) 22

11 Rys. 12 w polu Make zaznaczamy Matrix. Następnie wpisujemy liczbę wierszy (Number of rows) i kolumn ( Number of columns). Na koniec klikamy na przycisk OK i powstaje pusta macierz, i y k { po tym należy wypełnić ją odpowiednim sposobem. Aby dodać kolumnę do macierzy stworzonej wyżej opisywanym sposobem, wskazujemy kursorem na odpowiednie miejsce i naciskami na kombinację klawiszy Ò, (Ctrl+Przecinek). Tak samo wstawiamy wiersze, ale wykorzystując następującą kombinację klawiszy Ò (Ctrl+Enter). Instrukcje i operacje matematyczne działające na macierzach są opisane w załączniku D10. 23

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Programy wykorzystywane do obliczeń

Programy wykorzystywane do obliczeń Przykłady: Programy wykorzystywane do obliczeń. Arkusze kalkulacyjne do obliczeń numerycznych: a. LibreOffice CALC (wolny dostęp) b. Microsoft EXCEL (komercyjny). Pakiety typu CAS (ang. Computer Algebra

Bardziej szczegółowo

Podstawowe operacje na macierzach

Podstawowe operacje na macierzach Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Obliczenia w programie MATLAB

Obliczenia w programie MATLAB Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych

Wykorzystanie programów komputerowych do obliczeń matematycznych Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

2. DZIAŁANIA NA WIELOMIANACH

2. DZIAŁANIA NA WIELOMIANACH WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego 1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia

Bardziej szczegółowo

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu.

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu. Część XIX C++ w Każda poznana do tej pory zmienna może przechowywać jedną liczbę. Jeśli zaczniemy pisać bardziej rozbudowane programy, okaże się to niewystarczające. Warto więc poznać zmienne, które mogą

Bardziej szczegółowo

MATLAB - laboratorium nr 1 wektory i macierze

MATLAB - laboratorium nr 1 wektory i macierze MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2 1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Zakłócenia w układach elektroenergetycznych LABORATORIUM

Zakłócenia w układach elektroenergetycznych LABORATORIUM Zakłócenia w układach elektroenergetycznych LABORATORIUM Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy

Bardziej szczegółowo

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

Funkcje i Procedury. Wyrazenien

Funkcje i Procedury. Wyrazenien Funkcje i Procedury. Określanie Funkcji. Rozwiązanie skomplikowanych zagadnień czasami jest niemożliwe bez zastosowania własnej funkcji i procedur. Chcemy stworzyć dobre aplikacje? Trzeba umieć stworzyć

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Wprowadzania liczb. Aby uniknąć wprowadzania ułamka jako daty, należy poprzedzać ułamki cyfrą 0 (zero); np.: wpisać 0 1/2

Wprowadzania liczb. Aby uniknąć wprowadzania ułamka jako daty, należy poprzedzać ułamki cyfrą 0 (zero); np.: wpisać 0 1/2 Wprowadzania liczb Liczby wpisywane w komórce są wartościami stałymi. W Excel'u liczba może zawierać tylko następujące znaki: 0 1 2 3 4 5 6 7 8 9 + - ( ), / $ %. E e Excel ignoruje znaki plus (+) umieszczone

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Kryteria oceniania z matematyki zakres podstawowy Klasa I

Kryteria oceniania z matematyki zakres podstawowy Klasa I Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,

Bardziej szczegółowo

Wstęp do Programowania Lista 1

Wstęp do Programowania Lista 1 Wstęp do Programowania Lista 1 1 Wprowadzenie do środowiska MATLAB Zad. 1 Zapoznaj się z podstawowymi oknami dostępnymi w środowisku MATLAB: Command Window, Current Folder, Workspace i Command History.

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.1 Formuły, funkcje, typy adresowania komórek, proste obliczenia.

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.1 Formuły, funkcje, typy adresowania komórek, proste obliczenia. Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych

Bardziej szczegółowo

JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.

JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. IŚ ćw.8 JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript są zagnieżdżane w dokumentach HTML. Skrypt JavaScript

Bardziej szczegółowo

Ćwiczenie 1. Wprowadzenie do programu Octave

Ćwiczenie 1. Wprowadzenie do programu Octave Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do

Bardziej szczegółowo

Właściwości i metody obiektu Comment Właściwości

Właściwości i metody obiektu Comment Właściwości Właściwości i metody obiektu Comment Właściwości Właściwość Czy można zmieniać Opis Application nie Zwraca nazwę aplikacji, która utworzyła komentarz Author nie Zwraca nazwę osoby, która utworzyła komentarz

Bardziej szczegółowo

Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie

Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie Część X C++ Typ znakowy służy do reprezentacji pojedynczych znaków ASCII, czyli liter, cyfr, znaków przestankowych i innych specjalnych znaków widocznych na naszej klawiaturze (oraz wielu innych, których

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Cw.12 JAVAScript w dokumentach HTML

Cw.12 JAVAScript w dokumentach HTML Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Wprowadzenie do MS Excel

Wprowadzenie do MS Excel Wprowadzenie do MS Excel Czym jest Excel? Excel jest programem umożliwiającym tworzenie tabel, a także obliczanie i analizowanie danych. Należy do typu programów nazywanych arkuszami kalkulacyjnymi. W

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2. Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych

Bardziej szczegółowo

Wyrażenia arytmetyczne

Wyrażenia arytmetyczne Wyrażenia arytmetyczne Do budowania wyrażeń w języku C używa się operatorów jednoargumentowych oraz dwuargumentowych. Podstawowy operator jednoargumentowy to operator zmiany znaku (-), który jest prawostronnie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

Przewodnik dla każdego po: Dla każdego coś miłego Microsoft Excel 2010

Przewodnik dla każdego po: Dla każdego coś miłego Microsoft Excel 2010 Przewodnik dla każdego po: Dla każdego coś miłego Microsoft Excel 2010 Czym jest Excel 2010 Excel jest programem umożliwiającym tworzenie tabel, a także obliczanie i analizowanie danych. Należy do typu

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący

EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 3: Macierze i wykresy Cel: wykonywanie obliczeń na wektorach i macierzach, wykonywanie wykresów Czas wprowadzenia 25 minut,

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu

Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu Programowanie strukturalne Opis ogólny programu w Turbo Pascalu STRUKTURA PROGRAMU W TURBO PASCALU Program nazwa; } nagłówek programu uses nazwy modułów; } blok deklaracji modułów const } blok deklaracji

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Temat (rozumiany jako lekcja) Lekcja organizacyjna I. Działania na liczbach

Bardziej szczegółowo

x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:

x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu: RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma

Bardziej szczegółowo

Projekt 4: Programowanie w logice

Projekt 4: Programowanie w logice Języki Programowania Projekt 4: Programowanie w logice Środowisko ECL i PS e W projekcie wykorzystane będzie środowisko ECL i PS e. Dostępne jest ono pod adresem http://eclipseclp.org/. Po zainstalowaniu

Bardziej szczegółowo

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach?

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Część XVIII C++ Funkcje Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Umiemy już podzielić nasz

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Ćwiczenie 1. Wprowadzenie do programu Octave

Ćwiczenie 1. Wprowadzenie do programu Octave Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

JAVAScript w dokumentach HTML (2)

JAVAScript w dokumentach HTML (2) Informatyka ćw.6 JAVAScript w dokumentach HTML (2) Interakcyjne wprowadzanie danych Jednym ze sposobów jest stosowanie metody prompt dla wbudowanego obiektu window: zmienna= prompt("tekst zachęty, np.

Bardziej szczegółowo

Arkusz kalkulacyjny EXCEL

Arkusz kalkulacyjny EXCEL ARKUSZ KALKULACYJNY EXCEL 1 Arkusz kalkulacyjny EXCEL Aby obrysować tabelę krawędziami należy: 1. Zaznaczyć komórki, które chcemy obrysować. 2. Kursor myszy ustawić na menu FORMAT i raz kliknąć lewym klawiszem

Bardziej szczegółowo

Pakiety Matematyczne - R Zestaw 1.

Pakiety Matematyczne - R Zestaw 1. Pakiety Matematyczne - R Zestaw 1. Zadania z kasynem pochodzą ze strony datacamp.com Instalacja pakietu R Strona główna projektu: http://www.r-project.org/ Instalacja: http://r.meteo.uni.wroc.pl/ (jedno

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)

W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja) Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie

Bardziej szczegółowo

Re +/- Im i lub Re +/- Im j

Re +/- Im i lub Re +/- Im j Rok akademicki 2018/2019, Pracownia nr 5 2/26 Operacje na macierzach Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia niestacjonarne I stopnia Rok akademicki 2018/2019

Bardziej szczegółowo

JAVAScript w dokumentach HTML - przypomnienie

JAVAScript w dokumentach HTML - przypomnienie Programowanie obiektowe ćw.1 JAVAScript w dokumentach HTML - przypomnienie JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript są zagnieżdżane w

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

n, m : int; S, a, b : double. Gdy wartości sumy składowej nie można obliczyć, to przyjąć Sij = 1.03 Dla obliczenia Sij zdefiniować funkcję.

n, m : int; S, a, b : double. Gdy wartości sumy składowej nie można obliczyć, to przyjąć Sij = 1.03 Dla obliczenia Sij zdefiniować funkcję. Zadania-6 1 Opracować program obliczający wartość sumy: S n m ai bj i 1 j 1 ln( bi j a) n, m : int; S, a, b : double Gdy wartości sumy składowej nie można obliczyć, to przyjąć Sij = 103 Dla obliczenia

Bardziej szczegółowo