Dla danego czynnika termodynamicznego i dla określonej przemiany ciepło właściwe w ogólności zależy od dwóch niezależnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dla danego czynnika termodynamicznego i dla określonej przemiany ciepło właściwe w ogólności zależy od dwóch niezależnych"

Transkrypt

1 Ciepło włśiwe Nieh zynnik ermodynmizny m sn określony przez emperurę orz iśnienie p. Dl dowolnej elemenrnej przeminy zzynjąej się od ego snu możemy npisć dq [J/kg] ( Równnie ( wiąże pohłninie lub oddwnie iepł podzs przeminy ermodynmiznej ze zminą emperury, niezleżnie od ego, zy nsąpił wymin iepł pomiędzy zynnikiem oozeniem i zy emperur zynnik zmienił się. W szzególnośi pohłonięiu przez zynnik iepł może nie owrzyszyć zmin emperury, m o miejse podzs przeminy izoermiznej. kże zmin emperury zynnik nie musi być związn z dosrzniem iepł, kie zjwisko zhodzi podzs przeminy diermiznej. W równniu ( jes pewnym współzynnikiem proporjonlnośi, kóry możn zdefiniowć odpowiednio przekszłją ( dq J ( kg K nzywmy rzezywisym iepłem włśiwym lub rzezywisą włśiwą pojemnośią ieplną. W ogólnośi iepło włśiwe zleży od rodzju zynnik ermodynmiznego, od rodzju przeminy i od snu zynnik. Rzezywise iepło włśiwe jes o ilość iepł przypdją n jednoskę ilośi subsnji i n jednoskę zminy emperury podzs elemenrnej przeminy ermodynmiznej. W przybliżeniu, dl subsnji o emperurze, jes o ilość iepł porzebn do zminy emperury jednoski ilośi ej subsnji od emperury 0, 5K do emperury 0, 5K. Dl dnego zynnik ermodynmiznego i dl określonej przeminy iepło włśiwe w ogólnośi zleży od dwóh niezleżnyh prmerów snu (, p (3 Podzs ypowyh wysępująyh w ehnie przemin ermodynmiznyh, zminy iśnieni są n yle niewielkie, że możn przyjąć, że iepło włśiwe nie zleży od iśnieni. W wielu przypdkh, przy umirkownyh zminh emperury, możn kże przyjąć, że iepło włśiwe nie zleży od emperury.

2 Ciepło włśiwe subsnji rzezywisyh wyznz się n drodze pomirowej. Wyniki pomirów służą do określeni funkji proksymująyh, njzęśiej w posi 0 (4 0 (4b 0 (4 W dlszym iągu wykłdu złożymy, że iepło włśiwe jes o njwyżej funkją emperury. Poniewż iepło elemenrne przeminy jes równe dq, łkowie iepło pohłonięe lub oddne w przeminie - przez jednoskę subsnji możemy w przybliżeniu oblizyć z q n i i (5 i Dl n przybliżony wzór (5 przehodzi w śisłą zleżność łkową q ( (6 Pomiędzy emperurą w K emperurą w C zhodzi zleżność 73,5 (7 Podswienie (7 do (4b dje w wyniku ( 0 ( 73,5 0 73, 5 0 (8 gdzie 0 0, 5 73 (8b Jeżeli dn jes funkj ( zmis (, o q - możn oblizć z nsępująego równni nlogiznego do równnie (6 q ( (9 gdyż z (7 wynik równość różnizek (0 podswienie (0 do ( dje

3 dq ( q - jes jednoskowym iepłem pohłonięym (oddnym przez zynnik. Ciepło o jes sumą dwóh skłdników q q d q ( f gdzie: q d- - jednoskowe iepło dosrzone z zewnęrznego źródł, q f- - jednoskowe iepło ri Średnie iepło włśiwe Ciepło pohłonięe przez zynnik możn kże oblizć posługują się średnim iepłem włśiwym q ( (3 Z równni (3 orzymujemy definiję średniego iepł włśiwego q (4 Mją dną funkję ( średnie iepło włśiwe oblizmy ze wzoru ( (5 Ciepło pohłonięe podzs ogrzewni od emperury do emperury jes równe różniy iepł pohłonięego przy ogrzewniu od emperury równej zero do emperury orz iepł pohłonięego podzs ogrzewni od emperury równej zero do emperury q (6 Po przekszłenih orzymujemy z (6 0 0 (7 3

4 4 Rys.. Zleżność rzezywisego iepł włśiwego od emperury. Ciepło włśiwe liniowo zleżne od emperury ( (8 ( b (9 b sr (0 Ciepło pohłonięe przez łkowią ilość subsnji

5 Ciepło pohłonięe przez m kg subsnji obliz się nsępująo Q m q m ( ( Dl ilośi subsnji wyrżonej w kmol i um 3 wzór (8 przehodzi odpowiednio w Q nq n( M ( ( Q Vu q Vu Cu ( (3 Porównnie prwyh sron równń (-(3 prowdzi do związków J M M kmolk (4 M J Cu 3 Mv um K u (5 Równni (3 i (5 doyzą ylko gzów doskonłyh i półdoskonłyh. 5

1 Definicja całki podwójnej po prostokącie

1 Definicja całki podwójnej po prostokącie 1 efinij łki podwójnej po prostokąie efinij 1 Podziłem prostokąt = {(x, y) : x b, y d} (inzej: = [, b] [, d]) nzywmy zbiór P złożony z prostokątów 1, 2,..., n które łkowiie go wypełniją i mją prmi rozłązne

Bardziej szczegółowo

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3)

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3) obl_en_wew_enal-2.do Oblizanie energii wewnęrznej i enalii 1. Energia wewnęrzna subsanji rosej Właśiwa energia wewnęrzna, u[j/kg] jes funkją sanu. Sąd dla subsanji rosej jes ona funkją dwóh niezależnyh

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Całki podwójne i potrójne

Całki podwójne i potrójne Miej Grzesik Instytut Mtemtyki Politehniki Poznńskiej Cłki podwójne i potrójne 1. efinij łki podwójnej po prostokąie efinij 1. Podziłem prostokąt = {(x, y) : x b, y d} (inzej: = [, b] [, d]) nzywmy zbiór

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

III.3 Transformacja Lorentza prędkości i przyspieszenia. Efekt Dopplera

III.3 Transformacja Lorentza prędkości i przyspieszenia. Efekt Dopplera r. kd. 5/ 6 III.3 Trnsformj Lorentz prędkośi i przyspieszeni. Efekt Doppler Trnsformj prędkośi Trnsformj przyspieszeni Efekt Doppler Jn Królikowski Fizyk IBC r. kd. 5/ 6 Trnsformj prędkośi Bdmy ruh punktu

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM

RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM ÓWNANIA TYGONOMETYCZNE Z PAAMETEM Do grupy zgdnień eycznyc, w kóryc wysępuje pojęcie preru, nleżą równni rygonoeryczne. ozprywnie równń rygonoerycznyc z prere swrz ożliwość powórzeni i urwleni ożsości

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia: XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej. WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k

Bardziej szczegółowo

Uwagi do rozwiązań zadań domowych - archiwalne

Uwagi do rozwiązań zadań domowych - archiwalne Uwagi do rozwiązań zadań doowyh - arhiwalne ROK AKADEMICKI 07/08 Zad. nr 8 [08.0.8] Przeiana nie była izohorą. Wykładnik oliroy ożna było oblizyć z równania z z Zad. nr 6 [07..9] Końową eeraurę rzeiany

Bardziej szczegółowo

Całki oznaczone. wykład z MATEMATYKI

Całki oznaczone. wykład z MATEMATYKI Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Uogólnienie transformacji Galileusza

Uogólnienie transformacji Galileusza Uogólnienie rnsformji lileusz Krol Szosek Romn Szosek Poliehnik Rzeszowsk Kedr Termodynmiki i Mehniki Płynów Rzeszów Polsk kszosek@prz.edu.pl Poliehnik Rzeszowsk Kedr Meod Ilośiowyh Rzeszów Polsk rszosek@prz.edu.pl

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY

Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY Rys. 9.. Wyrównnie spostrzeżeń zwrunkownyh jednkowo dokłdnyh C. KRAKOWIANY 9.9. Informje wstępne o krkowinh Krkowin jest zespołem liz rozmieszzonyh w prostokątnej teli o k kolumnh i w wierszh, dl którego

Bardziej szczegółowo

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH Politehni Śląs WYDZIŁ CHEMICZNY KTEDR FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNCZNIE STŁEJ RÓWNOWGI KWSOWO ZSDOWEJ W ROZTWORCH WODNYCH Opieun: Miejse ćwizeni: Ktrzyn Kruiewiz Ktedr Fizyohemii i Tehnoii

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

Uogólnienie transformacji Galileusza

Uogólnienie transformacji Galileusza Romn Szosek Poliehnik Rzeszowsk Kedr Meod Ilośiowyh Rzeszów Polsk rszosek@prz.edu.pl Sreszzenie: W rykule wyprowdzon zosł uogólnion rnsformj lileusz. Uzyskn rnsformj jes podswą wyprowdzeni nowej eorii

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

Ćwiczenie II WYZNACZENIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORAZ ROZPUSZCZALNOŚCI SOLI TRUDNOROZPUSZCZALNYCH METODĄ POMIARÓW PRZEWODNICTWA

Ćwiczenie II WYZNACZENIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORAZ ROZPUSZCZALNOŚCI SOLI TRUDNOROZPUSZCZALNYCH METODĄ POMIARÓW PRZEWODNICTWA Ćwizenie II WYZNACZENIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORAZ ROZPUSZCZALNOŚCI SOLI TRUDNOROZPUSZCZALNYCH METODĄ POMIARÓW PRZEWODNICTWA oprownie: Brbr Stypuł Wprowdzenie Celem ćwizeni jest poznnie włśiwośi

Bardziej szczegółowo

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH Sylwester KŁYSZ *, **, nn BIEŃ **, Pweł SZBRCKI ** ** Instytut Techniczny ojsk Lotniczych, rszw * Uniwersytet rmińsko-mzurski, Olsztyn ZSTOSONIE RÓNNI NSGRO DO OPISU KRZYYCH PROPGCYJI PĘKNIĘĆ ZMĘCZENIOYCH

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Poziom podstawowy

FUNKCJA KWADRATOWA. Poziom podstawowy FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Diagram fazowy ciecz-para (6a)

Diagram fazowy ciecz-para (6a) Digrm fzowy iez-pr (6) P=onst X B =onst tylko iez x B =X B Chem. Fiz. TCH II/09 1 Wrunki izoryzne mją większe znzenie prktyzne. Nsz tłok jest niewżki i porusz się ez tri, ztem we wnętrzu ylindr pnuje ły

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Wykªad 8. Pochodna kierunkowa.

Wykªad 8. Pochodna kierunkowa. Wykªd jest prowdzony w opriu o podr znik Anliz mtemtyzn 2. enije, twierdzeni, wzory M. Gewert i Z. Skozyls. Wykªd 8. ohodn kierunkow. enij Nieh funkj f b dzie okre±lon przynjmniej n otozeniu punktu (x

Bardziej szczegółowo

ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM

ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.

Bardziej szczegółowo

Projektowanie układów sterowana. dr inż. Anna Czemplik (C-3/317a) Katedra Automatyki, Mechatroniki i Systemów Sterowania

Projektowanie układów sterowana. dr inż. Anna Czemplik (C-3/317a) Katedra Automatyki, Mechatroniki i Systemów Sterowania Projekownie kłdów serown dr inż. Ann zeplik -/7 edr Aoyki, Mechroniki i Syseów Serowni hp://www.k.pwr.ed.pl/ Wyszkiwrk zjęci, konslcje hp://nn.czeplik.sff.iir.pwr.wroc.pl -> rsy -> Projekownie kłdów serowni

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Entropia i druga zasada termodynamiki

Entropia i druga zasada termodynamiki Entroia-drga zasada- Entroia i drga zasada termodynamiki.9.6 :5: Entroia-drga zasada- Przemiana realizowana w kładzie rzedstawionym na rys. 3.7 jest równowagową rzemianą beztariową. Jest ona wię odwraalna.

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm

Bardziej szczegółowo

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH SSof Polsk, el. (1) 4843, (61) 414151, info@ssof.pl, www.ssof.pl PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Andrzej Sokołowski Akdemi Ekonomiczn w Krkowie, Zkłd Sysyki W oprcowniu ym przedswiono pewną

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

KATEDRA SYSTEMÓW ENERGETYCZNYCH i URZĄDZEŃ OCHRONY ŚRODOWISKA. Bilansowanie układów termodynamicznych według I zasady termodynamiki

KATEDRA SYSTEMÓW ENERGETYCZNYCH i URZĄDZEŃ OCHRONY ŚRODOWISKA. Bilansowanie układów termodynamicznych według I zasady termodynamiki KATEDRA SYSTEÓW ENERGETYCZNYCH i URZĄDZEŃ OCHRONY ŚRODOWISKA Termodynamika LABORATORIU Bilansowanie układów ermodynamiznyh według I zasady ermodynamiki Opraował: dr inż. Jerzy Wojiehowski AGH WIiR KRAKÓW

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 7

Semantyka i Weryfikacja Programów - Laboratorium 7 Semntyk i Weryfikj Progrmów - Lortorium 7 Weryfikj twierdzeń logiznyh Cel. Celem ćwizeni jest zpoznnie się z metodą utomtyznego dowodzeni twierdzeń, tzn. weryfikji, zy dne twierdzenie jest tutologią (twierdzenie

Bardziej szczegółowo

Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B).

Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B). Roztwory rzezywiste (1) Również w tep. 98,15K, le dl CCl 4 () i CH 3 OH (). 15 Τ S 5 H,,4,6,8 1-5 - -15 G - Che. Fiz. TCH II/1 1 Roztwory rzezywiste () Ty rze dl (CH 3 ) CO () i CHCl 3 (). 15 5 Τ S -5,,4

Bardziej szczegółowo

Szkice rozwiązań zadań zawody rejonowe 2019

Szkice rozwiązań zadań zawody rejonowe 2019 XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.

Bardziej szczegółowo

Miara szybkości reakcji chemicznej Rząd reakcji, równanie kinetyczne Kinetyka reakcji prostych - Kinetyka reakcje I rzędu -

Miara szybkości reakcji chemicznej Rząd reakcji, równanie kinetyczne Kinetyka reakcji prostych - Kinetyka reakcje I rzędu - Kiney recji chemicznych 4... Mir szybości recji chemicznej 4... Rząd recji, równnie ineyczne 4..3. Kiney recji prosych - Kiney recje I rzędu - Kiney recje II rzędu - Kiney recje IIII rzędu SZYBKOŚĆ REKCJI

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

SCHEMAT PUNKTOWANIA. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów. Rok szkolny 2012/2013. Etap rejonowy

SCHEMAT PUNKTOWANIA. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów. Rok szkolny 2012/2013. Etap rejonowy SCHEMAT UNKTOWANIA Wojewódzki Konkurs rzedmiotowy z Mtemtyki dl uczniów gimnzjów Rok szkolny 0/03 Etp rejonowy rzy punktowniu zdń otwrtych nleży stosowć nstępujące ogólne reguły: Ocenimy rozwiązni zdń

Bardziej szczegółowo

Wykład z analizy. Tydzień 12 i 13. Całki Wielokrotne

Wykład z analizy. Tydzień 12 i 13. Całki Wielokrotne Wykłd z nlizy Tydzień i. Cłki Wielokrotne.. Wprowdzmy pojęie łki wielokrotnej. Podobnie jk w przypdku łki funkji jednej zmiennej njpierw wprowdzimy intuiyjne, geometryzne pojęie łki, ustlimy wymgne włsnośi,

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

ph ROZTWORÓW WODNYCH

ph ROZTWORÓW WODNYCH ph ROZTWORÓW WODNYCH ph roztworów monyh kwsów i zsd H O H O A α 00 % MeOH Me OH MeOH α 00 % np.: HCl, r, HI, HNO, HClO i HClO NOH, OH, CsOH i ROH [H O [OH MeOH ph - log poh - log MeOH Mone kwsy dwuprotonowe,

Bardziej szczegółowo

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

POMIAR MODUŁU SPRĘŻYSTOŚCI STALI PRZEZ POMIAR WYDŁUŻENIA DRUTU

POMIAR MODUŁU SPRĘŻYSTOŚCI STALI PRZEZ POMIAR WYDŁUŻENIA DRUTU POMIAR MODUŁU SPRĘŻYSTOŚCI STALI PRZEZ POMIAR WYDŁUŻENIA DRUTU I. Cel ćwiczeni: zpoznnie z teorią odksztłceń sprężystych cił stłych orz z prwem Hooke.Wyzncznie modułu sprężystości (modułu Young) metodą

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

ZALEŻNOŚĆ NAPIĘCIA POWIERZCHNIOWEGO ZWILŻANIA OD ZAWARTOŚCI POPIOŁU W ZBIORZE BARDZO DROBNYCH ZIAREN WĘGLOWYCH**

ZALEŻNOŚĆ NAPIĘCIA POWIERZCHNIOWEGO ZWILŻANIA OD ZAWARTOŚCI POPIOŁU W ZBIORZE BARDZO DROBNYCH ZIAREN WĘGLOWYCH** Górnitwo i Geoinżynieri Rok 31 Zeszyt 4 2007 Mrek Lenrtowiz* ZALEŻNOŚĆ NAPIĘCIA POWIERZCHNIOWEGO ZWILŻANIA OD ZAWARTOŚCI POPIOŁU W ZBIORZE BARDZO DROBNYCH ZIAREN WĘGLOWYCH** 1. Wprowdzenie Flotj jest jednym

Bardziej szczegółowo

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że AŁKA NIEOZNAZONA f - fukj określo w rzedzile E. Fukją ierwotą fukji f w rzedzile E zywy fukję F tką, że F N. fukją ierwotą fukji f = + R jest fukj F = + o F +, Zuwży, że fukje F = + + 5 i F = + też są

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MATEMATYCZNY dl uczniów gimnzjów orz oddziłów gimnzjlnych województw mzowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schemty punktowni Z kżde poprwne i pełne rozwiąznie, inne niż przewidzine

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę

Bardziej szczegółowo

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Obliczenia w roztworach

Obliczenia w roztworach Oblizeni z wykorzystniem równowgi w roztworh Oblizeni w roztworh Jkie są skłdniki roztworu? tóre rekje dysojji przebiegją łkowiie (% dysojji)? tóre rekje osiągją stn równowgi? tóre z rekji równowgowyh

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

Projektowanie żelbetowych kominów przemysłowych wieloprzewodowych

Projektowanie żelbetowych kominów przemysłowych wieloprzewodowych Budownitwo i Arhitektur 3 (2008) 71-80 Projektownie żelbetowyh kominów przemysłowyh wieloprzewodowyh Mrt Słowik 1, Młgorzt Dobrowolsk 2, Krzysztof Borzęki 2 1 Ktedr Konstrukji Budowlnyh, Wydził Inżynierii

Bardziej szczegółowo

Oscylator harmoniczny tłumiony drgania wymuszone

Oscylator harmoniczny tłumiony drgania wymuszone Oscylor hroniczny łuiony rgni wyuszone x / Γ x e x Oscylor swoony łuiony Γ x Jeśli Γ

Bardziej szczegółowo

1. Zestaw do oznaczania BZT i ChZT

1. Zestaw do oznaczania BZT i ChZT Sprw Nr RAP.272. 85. 2014 złąznik nr 6.1 do SIWZ PARAMETRY TECHNICZNE PRZEDMIOTU ZAMÓWIENIA Nzw i dres Wykonwy:... Nzw i typ (produent) oferownego urządzeni:... Nzw przedmiotu zmówieni : 1. Zestw do oznzni

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych

Bardziej szczegółowo

Wyznacznik macierzy. - wyznacznik macierzy A

Wyznacznik macierzy. - wyznacznik macierzy A Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn

Bardziej szczegółowo

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Poliechni Biłosoc Wydził Eleryczny Kedr Eleroechnii eoreycznej i Merologii Lbororium z przedmiou POMIRY ELEKRYCZNE WIELKOŚCI NIEELEKRYCZNYCH Kod przedmiou: EZB Ćwiczenie p. NLIZ WIDMOW PRMERÓW DRGŃ MECHNICZNYCH

Bardziej szczegółowo

Metoda superpozycji: Sesja poprawkowa. Wykład 1

Metoda superpozycji: Sesja poprawkowa. Wykład 1 Elektrotehnik wykłd Metod superpozyji: E i 8V, E i V Sesj poprwkow Wykłd Zdni Wykłd e d e d E U U E e d 0.77..087 0.7 0.9 0.9.7... Grup : d pkt, d pkt, dst 8 pkt Termin 0. Symole stosowne n shemth. Zsdy

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

14. Krzywe stożkowe i formy kwadratowe

14. Krzywe stożkowe i formy kwadratowe . Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33

Bardziej szczegółowo

MECHANIKA BUDOWLI 5 UWZGLĘDNIENIE WPŁYWU TEMPERATURY, OSIADANIA PODPÓR I BŁĘDÓW MONTAŻOWYCH W RÓWNANIU PRACY WIRTUALNEJ.

MECHANIKA BUDOWLI 5 UWZGLĘDNIENIE WPŁYWU TEMPERATURY, OSIADANIA PODPÓR I BŁĘDÓW MONTAŻOWYCH W RÓWNANIU PRACY WIRTUALNEJ. WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK O Kopcz, m Łoowski, Wojciec Pwłowski, icł Płokowik, Krzszof Tmper Konsucje nukowe: prof. r. JERZY RKOWSKI Poznń

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadzalne ZADANIE D1 Nazwa zadania: Wyznazanie iepła pierwiastków (azot, ołów) Wyznaz iepło rowania iekłego azotu oraz iepło właśiwe ołowiu (wartość średnią

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU ODELOWNIE INŻYNIERKIE INN 1896-771X 3,. 37-44, Gliwice 6 PORÓWNNIE WYBRNYCH RÓWNŃ KONTYTUTYWNYCH TOPÓW Z PIĘCIĄ KZTŁTU KRZYZTOF BIEREG Ktedr Wyokich Npięć i prtów Elekt., Politechnik Gdńk trezczenie. W

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo