PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH"

Transkrypt

1 SSof Polsk, el. (1) 4843, (61) , PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Andrzej Sokołowski Akdemi Ekonomiczn w Krkowie, Zkłd Sysyki W oprcowniu ym przedswiono pewną grupę podswowych modeli wykorzysywnych przy prognozowniu finnsowych szeregów czsowych orz przykłd nlizy konkrenego szeregu czsowego. Skłdnik losowy obecny we wszyskich zjwiskch ekonomicznych jes reprezenowny przez proces sochsyczny, czyli ciąg zmiennych losowych o jednkowych rozkłdch prwdopodobieńsw, zleżnych od nielosowego prmeru, kóry reprezenuje czs. W lierurze przedmiou i zsosownich spoyk się wiele kls modeli wykorzysywnych do opisu i prognozowni zjwisk finnsowych. Rozsądne przedswienie ich w jednej, krókiej prezencji jes niemożliwe, dlego wybrno ylko (i k dość liczną) pewną grupę modeli określoną przez nsępujące wrunki: zmienn czsow jes zmienną skokową, więc modelowne dne doyczą równoodległych momenów lub okresów czsu, rozprujemy kszłownie się ylko jednej wielkości, czyli mmy do czynieni z jednowymirowymi procesmi sochsycznymi, prezenujemy u ylko modele liniowe, czyli kie, w kórych wielkość zjwisk powiązn jes funkcją liniową z impulsmi losowymi. Modele wyjściowe Biły szum Biły szum o ciąg niezleżnych zmiennych losowych o jednkowych rozkłdch prwdopodobieńsw ze skończonymi wrościmi przecięnymi i wrincjmi. Jeżeli są o rozkłdy normlne z wrością przecięną zero, o mmy do czynieni z gussowskim biłym szumem. Tki proces czyso losowy m wrości funkcji uokorelcji równe zeru dl kżdego opóźnieni. Uzyskne z próby oceny funkcji uokorelcji nie są oczywiście równe zeru, jednk n ogół różnią się od niego niezncznie. Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione 55

2 SSof Polsk, el. (1) 4843, (61) , Liniowy szereg czsowy Szereg czsowy nzywny jes liniowym, jeżeli możn go zpisć w posci r i= = µ + ψ, i i gdzie µ jes wrością przecięną szeregu, biłym szumem, współczynnik ψ =. Srukur dynmiczn szeregu zleży od wrości współczynników ψ i, kóre nzywne są eż wgmi. Modele scjonrne Model uoregresji AR(p) Jeżeli wrość szeregu jes skorelown ze swoją poprzednią wrością, o rozsądnym modelem jes równnie r φ +. = + φ 1 r 1 Jes o model uoregresji rzędu 1, co zpisujemy jko AR(1). W opisie szeregu możemy sięgć głębiej w przeszłość, powiedzmy p jednosek czsu wsecz. Wówczs mmy do czynieni z modelem uoregresji rzędu p, czyli AR(p). r + = φ + φ1r φ pr p. Do idenyfikcji rzędu modelu przydn jes funkcj uokorelcji cząskowej, kór przyjmuje wrości nieisonie różne od zer dl opóźnień większych od p. Przy pomocy kiego modelu prognozę buduje się krok po kroku, poprzez rekurencyjne podswinie wrości. Przy scjonrnych procesch AR(p) prognoz k zmierz do przecięnej wrości procesu, wrincj błędu prognozy zmierz do wrincji procesu. Model średniej ruchomej MA(q) Proces średniej ruchomej jes uogólnieniem biłego szumu, powsjącym poprzez wygłdzenie go pewnego rodzju jednosronną średnią ruchomą o nierównych wgch. Proces MA(q) jes zwsze (słbo) scjonrny. Jeden z możliwych sposobów zpisu kiego modelu o r = c + θ... θ 1 1 Wrość przecięn kiego procesu jes równ c. Do idenyfikcji rzędu procesu wykorzysuje się funkcję uokorelcji, kórej osni wrość isonie większ od zer wskzuje n rząd q. Prognozę przy pomocy modelu MA(q) uzyskuje się n drodze rekurencyjnej, przy czym brdzo szybko zmierz on do wrości przecięnej procesu. q q 56 Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione

3 SSof Polsk, el. (1) 4843, (61) , Model ARMA(p,q) Model en łączy idee modeli średniej ruchomej i uoregresji. Ogólny zpis modelu może być przedswiony jko r = φ p q + φir i + i= 1 i= 1 Θ Do idenyfikcji skłdowych procesu możn wykorzysć rozszerzoną funkcję uokorelcji (EACF). Njpierw wyznczmy modele AR o corz większym rzędzie, dl ich resz liczymy funkcje uokorelcji. Wyniki przedswimy w posci beli dwudzielczej, kórej wiersze odpowidją rzędowi uoregresji, kolumny rzędowi średniej ruchomej. Nieisone uokorelcje, oznczne przez zero, powinny w ej beli uworzyć rójką, kórego lewy górny wierzchołek wskzuje włściwe prmery p orz q. Proces ARMA prognozujemy nlogicznie jk procesy omwine uprzednio, n drodze obliczeń rekurencyjnych. i i Modele niescjonrne Błądzenie przypdkowe Szereg czsowy określny jes minem błądzeni przypdkowego, jeżeli jego przebieg jes generowny nsępującym modelem p = p 1 +, gdzie p jes wrością srową procesu, zś biłym szumem. Jeżeli biły szum m rozkłd symeryczny z wrością przecięną zero, o prwdopodobieńswo ego, że szereg w nsępnej obserwcji pójdzie w górę, jes kie smo, że pójdzie w dół. Błądzenie przypdkowe z dryfem W wielu szeregch finnsowych opisujących kszłownie się logrymów sóp zwrou zuwżono wysępownie dodniej wrości przecięnej, zzwyczj o młej wielkości. Ozncz o, że model odpowiedni dl kiej syucji m posć p µ +. = + p 1 Wielkość µ jes wrością przecięną różnicy ( p p 1) i nzywn jes dryfem. Reprezenuje on n przykłd rend, jki wysępuje w logrymie p. Model ARIMA(p,d,q) Większość ekonomicznych szeregów czsowych o relizcje procesów niescjonrnych. Typową niescjonrnością jes obecność rendu. Możemy go wyeliminowć przez różnicownie. Kroność (sopień, rząd) różnicowni określony jes przez sopień wielominu opisującego rend. W modelu ARIMA en sopień różnicowni oznczony jes przez d. Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione 57

4 SSof Polsk, el. (1) 4843, (61) , Sezonowy model ARIMA(p,d,q)(P,D,Q) Whni okresowe wysępujące w szeregu eż snowią pewien rodzj niescjonrności, w kżdym rzie są skłdnikiem regulrnym, kóry powinien zosć wyeliminowny z szeregu przed próbą oszcowni miesznego modelu uoregresji średniej ruchomej. Whni regulrne eliminuje się poprzez różnicownie sezonowe, wyliczjąc ( y y s ), gdzie s jes okresem (długością) whni regulrnego. Rząd różnicowni sezonowego oznczony jes przez D. Model ARFIMA(p,d,q) Model en jes nzywny modelem z długą pmięcią. Jes uogólnieniem procesu ARIMA poprzez dopuszczenie, by rząd różnicowni d był liczbą niecłkowią. Zzwyczj rozwż się -,5<d<,5. Wrunkowe modele heeroskedsyczne Tego ypu modele są wykorzysywne w ekonomerii do modelowni kszłowni się zmienności (voliliy) sóp zwrou. Zmienność jes mierzon wrunkową wrincją. M znczenie również w szcowniu wrości nrżonej n ryzyko (vlue risk). W modelch jednowymirowych zkłd się, że logrymy sopy zwrou (r ) nie są niezleżne w czsie, choć przyjmuje się wysępownie ylko uokorelcji niskich rzędów. Wrunkowość obecn w ych modelch ozncz, że wrość przecięn i wrincj procesu mogą być wyrżone wzormi µ = E( r F 1 ), σ = V ( r F ) czyli są uwrunkowne informcjmi dosępnymi w momencie (-1). Model ARCH(m) Model en zkłd, że odchyleni od wrości przecięnej sóp zwrou ( ) mogą być objśnione przez funkcję kwdrową ich wrości opóźnionych. Mmy zem σ = σ ε = α + α α m m Przez { ε } oznczmy ciąg niezleżnych zmiennych losowych o jednkowym rozkłdzie z wrością zero i wrincją 1. Njczęściej przyjmuje się u sndrdowy rozkłd normlny lub sndryzowny rozkłd Suden. 58 Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione

5 SSof Polsk, el. (1) 4843, (61) , Model GARCH(m,s) W ym podejściu zkłd się, że przy opisie kszłowni się logrymów sóp zwrou główne równnie procesu może być zpisne jko proces ARMA. Przyjmując, że o logrym sóp zwrou, od kórego odjęo wrość średnią, mmy mx( m, s) σ = σ ε = α + m s α i i + i= 1 j= 1 Złożenie ( α + ) < 1 powoduje, że bezwrunkow wrincj jes skończon, i= 1 i β i wrunkow wrincj σ zmieni się w czsie. Isnieją pewne specjlne wersje omwinego modelu. I k model IGARCH jes odpowiednikiem modelu ARIMA dl niejednorodnej wrincji procesu. Z kolei model GARCH-M (M o skró od in men) opisuje syucje, w kórych poziom sóp zwrou zleży od zmienności, czyli do powyższych równń dochodzi relcj β r = µ + cσ +. Wykłdniczy model EGARCH uwzględni różny wpływ ε, w zleżności od ego, czy relizcj ego procesu jes dodni czy ujemn. Model CHARMA To podejście wykorzysuje losowe współczynniki, kóre kszłują zchownie się wrunkowej wrincji. Model m posć r = µ + = δ + δ δ j σ j. + η, 1 1 m m gdzie { η } jes gussowskim biłym szumem, zś { δ } = {( δ1,..., δ m )'} jes ciągiem wekorów losowych o jednkowych rozkłdch i zerowych wrościch przecięnych. Podobną konsrukcją jes model RCA, czyli model uoregresji z losowymi prmermi. W CHARMA zmienność zleży od opóźnionych wrości, zś w RCA, od opóźnionych wrości r. Model SV Jes o model zmienności sochsycznej (sochsic voliliy), w kórym wykorzysuje się opóźnione logrymy wrincji. Wygodny zpis uzyskujemy poprzez użycie operor m opóźnieni wsecznego B, kórego dziłnie możn opisć jko ( 1 B ) y = y y m. W ej konwencji model SV m posć = σ ε m 1 m ( 1 α B... α B ) ln( σ ) = α + v. Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione 59

6 SSof Polsk, el. (1) 4843, (61) , W ym modelu mmy dw niezleżne skłdniki losowe ε orz v, kóre są procesmi gussowskimi, lecz pierwszy z nich m wrincję 1, drugi wrincję słą, le niekoniecznie równą jedności. Anliz indeksu giełdy w Amserdmie Szereg czsowy obejmuje dne z okres od 6 syczni 1986 roku do końc 1987 roku i zosł udosępniony przez P.H.Frnses i D. vn Dijk, uorów książki Non-liner ime series models in empiricl finnce (Cmbrigde Universiy Press, ) AMSTEOE /6/1986 8/17/1987 3/7/ /5/199 6/15/199 1/4/1994 9/4/1995 4/14/1997 1/7/1986 6/6/1988 1/15/199 8/6/1991 4/5/ /14/1994 6/4/1996 Rys. 1. Wrości indeksu giełdy w Amserdmie AMSTEOE Numery obserwcji Rys.. Drugie różnice indeksu giełdy w Amserdmie 6 Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione

7 SSof Polsk, el. (1) 4843, (61) , Tydzień w ym szeregu rw od poniedziłku do piąku. W przypdku świą, w kórych giełd nie funkcjonuje, przyjęo wrość z dni poprzedniego. Dzięki ym zbiegom szereg chrkeryzuje się regulrnością próbkowni, umożliwijącą nlizę whń okresowych. Jk widć n rysunku 1, w szeregu wysąpił rend wykłdniczy, kóry jednk złmł się przy końcu nlizownego okresu. W celu wyeliminowni ego rendu zsosowno dwukrone różnicownie rzędu pierwszego, orzymując szereg przedswiony n rysunku. Srukurę hrmoniczną ego szeregu możn rozpoznć poprzez nlizę funkcji uokorelcji (rysunek 3). Widzimy, że proces chrkeryzuje się brdzo mocną ujemną uokorelcją rzędu pierwszego, co ozncz, że bezpośrednio po wzrosch nsępują spdki i n odwró. Związki nie ogrniczją się do wpływu dzień po dniu, gdyż również wiele uokorelcji rzędów wyższych od jedności wykzuje isoność sysyczną. Wro zwrócić uwgę n o, iż nwe brdzo młe współczynniki korelcji okzują się isone sysycznie, co jes spowodowne znczną długością szeregu czsowego, kórym dysponujemy. Jednym z dopuszczlnych modeli ARIMA, kóre uzyskno w rkcie nlizy ego szeregu jes ARIMA(9,,), więc model, kóry posid ylko część uoregresyjną. Jeżeli przez y oznczymy drugie różnice oryginlnego szeregu, o oszcowny model możn zpisć jko y =,9318y 1,8638y,777 y 3,7786y 4,6587y 5,5534y,518y,369y,133y Wszyskie prmery są wysoce isone sysycznie, gdyż wszyskie wrości p są mniejsze od,1. 9 Opóźn Kor. S.E 1 -,487,179 -,6, ,63, ,14, ,56, ,7, ,85, ,1, ,91, ,78, ,74, ,4, ,17, ,7, ,45, ,5, ,6, ,11, ,9,178 +,5, ,57,178 -,111,178 96,, 3 +,65, ,, 4 +,8, ,7, 5 -,77, ,3, -1, -,5,,5 1, Q 74,4, 744,5, 756,8, 79,3, 8,, 8,5, 85,3, 85,8, 851,8, 871,1, 888,5, 89,3, 891,3, 891,4, 897,9, 96,, 98,3, 98,7, 98,9, 91,8, 91,1, p Rys. 3. Funkcj uokorelcji drugich różnic szeregu Przedswiony model wysrczjąco dobrze opisuje kszłownie się przecięnego poziomu indeksu giełdy w Amserdmie. Anliz resz pokzuje, że o, co pozosje, jes losowe. Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione 61

8 SSof Polsk, el. (1) 4843, (61) , Funkcj uokorelcji resz, przedswion n rysunku 3, m brdzo młe wrości dl wszyskich widocznych opóźnień, szczególnie dl ich młych wrości. Rozkłd resz, kóry widć n Rysunku 4 m kszł nieco odbiegjący od rozkłdu normlnego. Jes więcej brdzo młych resz, niż o wynik z rozkłdu normlnego co jes zjwiskiem korzysnym. Z kolei pojwiją się brdzo duże (co do modułu) reszy. Jes o związne z niejednorodnością wrincji, kórą możemy zobserwowć n rysunku, gdy zmienność zdecydownie rośnie przy końcu nlizownego okresu. Nleży więc poddć modelowniu heeroskedsyczny skłdnik losowy. W ym celu obliczono kwdry resz modelu ARIMA dl szeregu oryginlnego i dl ych kwdrów poszukiwno dekwnego modelu. Okzł się nim model ARIMA(,,). Oceny prmerów ego modelu zmieszczono w beli 1. Opóźn Kor. S.E 1 -,,179 -,5, ,55, ,4, ,45, ,45, ,15, ,4, ,47, ,73, ,96, ,1, ,, ,43, ,4, ,86, ,84, ,4, ,53,178 +,6, ,48,178 -,39, ,46, ,3, 4 -,8, ,5, 5 -,8,178 8,4, -1, -,5,,5 1, Q 1,57,13 1,1,63 19,47, 4,4,1 3,71, 36,99, 37,7, 39,46, 46,4, 63,14, 9,9, 93,44, 93,46, 99,9, 11,1, 14,3, 146,6, 148,4, 157,4, 168,6, 175,7, 18,4, p Rys. 4. Funkcj uokorelcji resz Liczb resz 6 4 Rys. 5. Rozkłd resz 6 Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione

9 SSof Polsk, el. (1) 4843, (61) , Tbel 1. Oceny prmerów modelu dl wrincji skłdnik reszowego Prmer Ocen Wrość p wyrz wolny 4,48935,178 p(1),3436,15 p,6451, q(1),359,56 q,48877, 1 8 Rys. 6. Prognozy wyznczone z modelu ARIMA(9,,) Rys. 7. Prognoz poziomu odchyleni sndrdowego Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione 63

10 SSof Polsk, el. (1) 4843, (61) , Oszcowne modele mogą zosć wykorzysne do prognozowni. N rysunku 6 przedswiono prognozę uzyskną n podswie modelu ARIMA(9,,) dl oryginlnych wrości indeksu giełdy w Amserdmie. Dl większej przejrzysości rysunek en zwier ylko wrości z końc nlizownego okresu. Z szeregu empirycznego widć, że wrincj mimo wszysko wydje się sbilizowć. Rysunek 7 przedswi prognozy odchyleni sndrdowego wyznczone z modelu ARIMA(,,), kóry doyczy kwdrów resz, nłożone n szereg czsowy wrości resz. Dlego prognoz znjduje się ylko po dodniej sronie wrości szeregu. Nsz model, kóry opisuje kszłownie się wrunkowej niejednorodnej wrincji, jes modelem GARCH(,). 64 Copyrigh SSof Polsk, 3 Kopiownie lub powielnie w jkikolwiek sposób bez zgody SSof Polsk Sp. z o.o. zbronione

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

O PEWNYCH MODELACH DECYZJI FINANSOWYCH

O PEWNYCH MODELACH DECYZJI FINANSOWYCH DECYZJE nr 1 czerwiec 2004 37 O PEWNYCH MODELACH DECYZJI FINANSOWYCH Krzysztof Jjug Akdemi Ekonomiczn we Wrocłwiu Wprowdzenie modele teorii finnsów Teori finnsów, zwn również ekonomią finnsową, jest jednym

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH Ochron przeciwwybuchow Michł Świerżewski WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH 1. Widomości ogólne Zgodnie z postnowienimi rozporządzeni Ministr Sprw Wewnętrznych

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

smoleńska jako nierozwiązywalny konflikt?

smoleńska jako nierozwiązywalny konflikt? D y s k u s j smoleńsk jko nierozwiązywlny konflikt? Wiktor Sorl Michł Bilewicz Mikołj Winiewski Wrszw, 2014 1 Kto nprwdę stł z zmchmi n WTC lub z zbójstwem kżnej Diny? Dlczego epidemi AIDS rozpowszechnił

Bardziej szczegółowo

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość Projekt współfinnsowny przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Złącznik nr do Regulminu przyznwni środków finnsowych n rozwój przedsięiorczości w projekcie Dojrzł przedsięiorczość

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości.

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości. Zmienne: W progrmie operuje się n zmiennych. Ndwnie im wrtości odbyw się poprzez instrukcję podstwieni. Interpretcj tej instrukcji jest nstępując: zmiennej znjdującej się z lewej strony instrukcji podstwieni

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB Mteriły szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA Serwis internetowy BEZPIECZNIEJ CIOP-PIB 1. Wprowdzenie Drgnimi nzywne są procesy, w których chrkterystyczne dl nich wielkości fizyczne

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

symbol dodatkowy element graficzny kolorystyka typografia

symbol dodatkowy element graficzny kolorystyka typografia Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /

Bardziej szczegółowo

POMIARY MAŁYCH CZĘSTOTLIWOŚCI W OBECNOŚCI ZAKŁÓCEŃ

POMIARY MAŁYCH CZĘSTOTLIWOŚCI W OBECNOŚCI ZAKŁÓCEŃ Meriły konferencji nukowo-echnicznej PPM 0 Poliechnik Lubelsk Kedr Auomyki i Merologii POMIARY MAŁYCH CZĘSTOTLIWOŚCI W OBECNOŚCI ZAKŁÓCEŃ W prcy porusz się problemykę pomiru młych częsoliwości w obecności

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

ZADANIA Układy nieliniowe. s 2

ZADANIA Układy nieliniowe. s 2 Przykłd Okrślić punky równowgi podngo ukłdu ZDNI Ukłdy niliniow u f(,5 y Ry. Część niliniow j okrślon z poocą funkcji: f ( Zkłdy, ż wyuzni j zrow: u. Punky równowgi odpowidją yucji, gdy pochodn części

Bardziej szczegółowo

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu.

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu. Osob prowdząc wykłd i ćwiczeni: dr inż. Mrek werwin Instytut terowni i ystemów Informtycznych Uniwersytet Zielonogórski e-mil : M.werwin@issi.uz.zgor.pl tel. (prc) : 68 328 2321, pok. 328 A-2, ul. prof.

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym Kurs e-lerningowy Giełd Ppierów Wrtościowych i rynek kpitłowy V edycj Struktur kpitłu, wrtość rynkow przedsiębiorstw n rynku kpitłowym 2010 SPIS TREŚCI I. Wstęp 3 II. Podstwowy miernik rentowności kpitłu

Bardziej szczegółowo

NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH

NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH Szykoieżne Pojzdy Gąsienicowe (19) nr 1, 2004 Sylwester MARKUSIK Tomsz ŁUKASIK NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH Streszczenie: Połączeni spwne w konstrukcjch stlowych

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r. Typ/orgn wydjący Rozporządzenie/Minister Infrstruktury Tytuł w sprwie szczegółowych wrunków i trybu wydwni zezwoleń n przejzdy pojzdów nienormtywnych Skrócony opis pojzdy nienormtywne Dt wydni 16 grudni

Bardziej szczegółowo

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r.

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r. złącznik nr 3 do uchwły nr V-38-11 Rdy Miejskiej w Andrychowie z dni 24 lutego 2011 r. ROZSTRZYGNIĘCIE O SPOSOBIE ROZPATRZENIA UWAG WNIESIONYCH DO WYŁOŻONEGO DO PUBLICZNEGO WGLĄDU PROJEKTU ZMIANY MIEJSCOWEGO

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Poliechni Biłosoc Wydził Eleryczny Kedr Eleroechnii eoreycznej i Merologii Lbororium z przedmiou POMIRY ELEKRYCZNE WIELKOŚCI NIEELEKRYCZNYCH Kod przedmiou: EZB Ćwiczenie p. NLIZ WIDMOW PRMERÓW DRGŃ MECHNICZNYCH

Bardziej szczegółowo

Gry czasowe. Tadeusz Radzik (Wrocław) (artykuł wspomnieniowy o prof. Stanisławie Trybule)

Gry czasowe. Tadeusz Radzik (Wrocław) (artykuł wspomnieniowy o prof. Stanisławie Trybule) MATEMATYKA STOSOWANA TOM 11/52 2010 Tdeusz Rdzik (Wrocłw) Gry czsowe (rtykuł wspomnieniowy o prof. Stnisłwie Trybule) Streszczenie. Prc jest rtykułem wspomnieniowym o prof. Stnisłwie Trybule. Wprowdz on

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Wprowadzenie do szeregów czasowych i modelu ARIMA

Wprowadzenie do szeregów czasowych i modelu ARIMA Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA. Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

Próba określenia czynników determinujących wyniki ocen wprowadzenia euro przez mieszkańców Unii Europejskiej

Próba określenia czynników determinujących wyniki ocen wprowadzenia euro przez mieszkańców Unii Europejskiej Mieczysłw Kowerski Wyższ Szkoł Zrządzni I Administrcji w Zmościu Ewelin Włodrczyk Wyższ Szkoł Zrządzni I Administrcji w Zmościu Prób określeni czynników determinujących wyniki ocen wprowdzeni euro przez

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Twój przewodnik po nowej serii Optimals

Twój przewodnik po nowej serii Optimals Twój przewodnik po nowej serii Optimls Ideln cer tk, proszę Co niezwykłego kryje w soie now seri Optimls? Co ozncz dl Cieie ideln cer? Czy jej synonimem jest świeżość i włśnie tego szuksz? A może zleży

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Twoje zdrowie -isamopoczucie

Twoje zdrowie -isamopoczucie Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie

Bardziej szczegółowo

RELACJE WARTOŚCI DŁUGOŚCI DROGI HAMOWANIA I DROGI ZATRZYMANIA DLA RÓŻNYCH WARUNKÓW RUCHU SAMOCHODU

RELACJE WARTOŚCI DŁUGOŚCI DROGI HAMOWANIA I DROGI ZATRZYMANIA DLA RÓŻNYCH WARUNKÓW RUCHU SAMOCHODU Zbigiew LOZIA, Pio WOLIŃSI RELACJE WARTOŚCI DŁUGOŚCI DROGI HAMOWANIA I DROGI ZATRZYMANIA DLA RÓŻNYCH WARUNÓW RUCHU SAMOCHODU Seszczeie Pc pzedswi oceę długości dogi mowi i dogi zzymi smocodu (zwej kże

Bardziej szczegółowo

Anna Malarska. statystyczna analiza danych. wspomagana programem SPSS

Anna Malarska. statystyczna analiza danych. wspomagana programem SPSS Ann Mlrsk sttystyczn nliz dnych wspomgn progrmem SPSS SPSS Polsk Krków 2005 Sttystyczn nliz dnych wspomgn progrmem SPSS 1.2 Grficzne formy prezentcji dnych 1.2.1 Wykres słupkowy, histogrm Częstości relizcji

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Księga Znaku. kampanii informacyjno - promocyjnej projektu Warszawski Węzeł Wodno - Rowerowy Pedałuj i Płyń (bike&sail)

Księga Znaku. kampanii informacyjno - promocyjnej projektu Warszawski Węzeł Wodno - Rowerowy Pedałuj i Płyń (bike&sail) Księg Znku kmpnii informcyjno - promocyjnej projektu Wrszwski Węzeł Wodno - Rowerowy Pedłuj i Płyń (bike&sil) Księg Znku A STANDARYZACJA ZNAKU 1 ZNAK KAMPANII - WERSJA PODSTAWOWA I JEJ ODMIANY 1.1 Znk

Bardziej szczegółowo

Prognozowanie krótkoterminowe w procesie planowania zasobów

Prognozowanie krótkoterminowe w procesie planowania zasobów Analiza danych Data mining Sterowanie jakością Analityka przez Internet Prognozowanie krótkoterminowe w procesie planowania zasobów Marzena Imiłkowski,, GE Money Bank Andrzej Sokołowski, StatSoft Polska

Bardziej szczegółowo

NAUKI SPOŁECZNE PODSTAOWOWE POJĘCIA I ZAGADNIENIA. socjalizacja, więzi i role społeczne, strktury grupowe, struktura życia społecznego

NAUKI SPOŁECZNE PODSTAOWOWE POJĘCIA I ZAGADNIENIA. socjalizacja, więzi i role społeczne, strktury grupowe, struktura życia społecznego NAUKI SPOŁECZNE PODSTAOWOWE POJĘCIA I ZAGADNIENIA socjlizcj, więzi i role społeczne, strktury grupowe, struktur życi społecznego Autor: Elżbiet Czekj JEDNOSTKA i SPOŁECZEŃSTWO Człowiek jest istotą społeczną,

Bardziej szczegółowo

KAPITAŁ LUDZKI W MODELACH I TEORII WZROSTU GOSPODARCZEGO

KAPITAŁ LUDZKI W MODELACH I TEORII WZROSTU GOSPODARCZEGO Krzysztof Cicy, Krzysztof Mlg Ktedr Ekonomii Mtemtycznej Akdemi Ekonomiczn w Poznniu KAPITAŁ LUDZKI W MODELACH I TEORII WZROSTU GOSPODARCZEGO. Wprowdzenie Jednym z njistotniejszyc pytń zdwnyc przez ekonomistów

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Akdemi órniczo-hutnicz im. Stnisłw Stszic w Krkowie Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej Ktedr Elektrotechniki i Elektroenergetyki Rozprw Doktorsk Numeryczne lgorytmy

Bardziej szczegółowo

Kryteria dobroci estymacji dla małych obszarów

Kryteria dobroci estymacji dla małych obszarów Jn Prdysz Kryteri dobroci estymcji dl młych obszrów Celem bdń reprezentcyjnych jest uzysknie informcji sttystycznych dl określonego zkresu przedmiotowego, określonej jkości i po określonej cenie. Zczynjąc

Bardziej szczegółowo

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie

Bardziej szczegółowo

w województwie zachodniopomorskim w 2010 r. TURYSTYKA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM W 2010 r.

w województwie zachodniopomorskim w 2010 r. TURYSTYKA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM W 2010 r. Urząd Sttystyczny w Szczecinie Turystyk w województwie zchodniopomorskim w 2010 r. OPRACOWANIA SYGNALNE Szczecin, mj 2011 TURYSTYKA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM W 2010 r. Województwo zchodniopomorskie

Bardziej szczegółowo

Sterowanie wirnikiem łożyskowanym magnetycznie w obróbce powierzchni n-falowych

Sterowanie wirnikiem łożyskowanym magnetycznie w obróbce powierzchni n-falowych Pomiry Automtyk Rootyk /5 Sterownie wirnikiem łożyskownym mgnetycznie w oróce powierzchni n-flowych Zdzisłw Gosiewski Arkdiusz Mystkowski * Przedstwiono wyniki dń n-flowego ruchu nieorcjącego się wirnik

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU Oprcowny n podstwie: 1. Rozporządzeni ministr edukcji nrodowej z dni 10.06.2015 roku w sprwie

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH Krzysztof Górecki Akdemi orsk w Gdyni Klin Detk Pomorsk Wyższ Szkoł Nuk Stosownych w Gdyni ODELOWANIE CHARAKTERYSTYK RDZENI FERROAGNETYCZNYCH Artykuł dotyczy modelowni chrkterystyk rdzeni ferromgnetycznych.

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Modelowanie zagadnień technicznych SKRYPT. Siergiej Fialko

Modelowanie zagadnień technicznych SKRYPT. Siergiej Fialko Modelownie zgdnień technicznych SKRYPT Siergiej Filko Wydził Fizyki, Mtemtyki i Informtyki Politechniki Krkowskiej Krków Siergiej Filko Modelownie zgdnień technicznych. Niniejszy kurs jest poświęcony typowym

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne?

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne? KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI Temt: Do czego służą wyrżeni lgebriczne? Prowdzący: Agnieszk Smborowicz Liczb jednostek lekcyjnych: 1 2 (w zleżności od zespołu) Cele ogólne Utrwlenie widomości

Bardziej szczegółowo

Pomiary parametrów światłowodów WYKŁAD 11 SMK. 1. Wpływ sposobu pobudzania włókna światłowodu na rozkład prowadzonej w nim mocy

Pomiary parametrów światłowodów WYKŁAD 11 SMK. 1. Wpływ sposobu pobudzania włókna światłowodu na rozkład prowadzonej w nim mocy Pomiy pmetów świtłowodów WYKŁAD SMK. Wpływ sposobu pobudzni włókn świtłowodu n ozkłd powdzonej w nim mocy Ilość modów wzbudznych w świtłowodch zleży od pmetów świtłowodu i wykozystywnej długości fli. W

Bardziej szczegółowo

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r.

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Wrszw, dni 22 lutego 2012 r. Pozycj 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

WSTĘP CHARAKTERYSTYKA WZORNICTWA

WSTĘP CHARAKTERYSTYKA WZORNICTWA Annls of Wrsw University of Life Sciences SGGW Forestry nd Wood Technology No 74, 2011: 199-205 (Ann. WULS-SGGW, Forestry nd Wood Technology 74, 2011 Chrkterystyk ozdobnych drewninych posdzek w Muzeum

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Topologia i podzbiory,

Topologia i podzbiory, Jest to tekst związny z odczytem wygłoszonym n XLV Szkole Mtemtyki Poglądowej, Co mi się podo, Jchrnk, sierpień 2010, z który utor otrzymł Medl Filc. Topologi i podziory, czyli histori jednego twierdzeni

Bardziej szczegółowo

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,

Bardziej szczegółowo

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie

Bardziej szczegółowo

REWOLUCJA MOBILNEGO INTERNETU RAPORT EMPIRYCZNE BADANIE MOBILNYCH. Audytel W POLSCE USŁUG DOSTĘPU DO INTERNETU. Warszawa,21.01.2009 r.

REWOLUCJA MOBILNEGO INTERNETU RAPORT EMPIRYCZNE BADANIE MOBILNYCH. Audytel W POLSCE USŁUG DOSTĘPU DO INTERNETU. Warszawa,21.01.2009 r. REWOLUCJA MOBILNEGO INTERNETU W POLSCE RAPORT EMPIRYCZNE BADANIE MOBILNYCH USŁUG DOSTĘPU DO INTERNETU Wrszw,21.01.2009 r. Audytel Dził Bdń i Anliz Audytel S.A. Rport Extel S.A. do uŝytku wewnętrznego Streszczenie

Bardziej szczegółowo