MECHANIKA BUDOWLI 5 UWZGLĘDNIENIE WPŁYWU TEMPERATURY, OSIADANIA PODPÓR I BŁĘDÓW MONTAŻOWYCH W RÓWNANIU PRACY WIRTUALNEJ.

Wielkość: px
Rozpocząć pokaz od strony:

Download "MECHANIKA BUDOWLI 5 UWZGLĘDNIENIE WPŁYWU TEMPERATURY, OSIADANIA PODPÓR I BŁĘDÓW MONTAŻOWYCH W RÓWNANIU PRACY WIRTUALNEJ."

Transkrypt

1 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK O Kopcz, m Łoowski, Wojciec Pwłowski, icł Płokowik, Krzszof Tmper Konsucje nukowe: prof. r. JERZY RKOWSKI Poznń / ECHNIK BUDOWLI 5 UWZGLĘDNIENIE WPŁYWU TEPERTURY, OSIDNI PODPÓR I BŁĘDÓW ONTŻOWYCH W RÓWNNIU PRCY WIRTULNEJ... Króko o poporc sprężsc. Po nzwą popór sprężsc rozumiem kie, kóre przemieszczją się po wpłwem wsępującc w nic rekcji wpros proporcjonnie o ic wrości. Oo w przkł popór sprężsc (rs..): Rs.. i Przkł: Rs.. Poiecnik Poznńsk W przpku popor pierwszej (rs..) po wpłwem rekcji R sprężn uenie skróceniuzoserwujem osinie popor. Dru zś popor (rs..) o popor pon n oró-m rzem zoserwujem oró popor wwołn wsępującm w niej momenem poporowm. Sprężn z rs.. może ć moeem prę poporoweo. Złóżm, że w nszej poporze (rs..) po wpłwem ziłni sił normnej N, prę o łuości począkowej uenie skróceniu o. Zonie z prwem Hook możem zpisć, że: (.) N E z powższeo związku orzmujem proporcjonną zeżność mięz siłą ziłjącą n prę jeo skróceniem (ąź włużeniem): Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

2 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK f N f zie: E [] [] N m (.) u inczej: N N (.) Κ Κ zie: f m prz czm: Κ -o zw. szwność popor-jes o wrość sił jką neż przłożć o popor zmienić jej łuość o jenoskowe włużenie. f -o zw. poność popor-jes o wrość wrżon w jenoskc łuości, kór snowi wnik ziłni sił jenoskowej... Wpłw emperur. Dowon ukł może oznć okszłceni po wpłwem ziłni okreśonej emperur. Jeżei wszskie włókn oznją eo smeo orzni mówim o zw. orzniu równomiernm jeśi zś emperurą zróżnicowną o zw. orzniu nierównomiernm. Złóżm, że mmprę o przekroju jk n rsunku (rs..) pon ziłniu po oniej emperur, prz czm emperurę w włóknc onc oznczć ęziem przez, emperurę prz włóknc órnc przez. Rs.. Zonie z zsą superpozcji zsąpiiśm poe emperur wom pomi, z czeo pierwsz okreś nm -emperurę w śroku ciężkości przekroju. Wznczm ją: przekrojów niesmercznc : zonie z wierzeniem Tes mm: Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

3 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK ( ) ( ) czi : u inczej: ( ) (.4) przekrojów smercznc : ( ) (.5) Zsnówm się erz jki efek równomierne orznie. Prz włókn one jk i órne oznją jenkoweo włużeni (ąź skróceni), wrcjąc zem o równni prc wirunej w kórm jenm z członów jes cłk : s N ε (.6) (prz czm przez ε rozumiem okszłcenie wwołne emperurą) iuwzęnijąc o, że: ( ) s s s s m ) ( (.7) zie: Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

4 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK 4 : s -o łuość począkow ocink prę -współcznnik rozszerzności ermicznej m -różnic emperur oecnej i emperur monżu ( UWG! w szej części rozwżń oznczn jes on przez ) ε ( s) s (.) o po uwzęnieniu powższc zeżności (.7 i.) nsz cłk (.6) przjmuje posć: (.9) N s i wrż wpłw równomierneo orzni. > Nomis prz orzewniu prę emperurą zróżnicowną (u ns ), ojzie o włużeni włókien onc prz jenoczesnm skróceniu órnc, czeo wnikiem ęzie powsnie krzwizn (rs..4). W równniu prc wirunej mm: (. χ s ) Rs..4 m rzem jenk, krzwizn nie jes wwołn ziłniem momenu, ecz różnicą emperur. Jeżei zem przez: -oznczm łuość włókien onc - łuość włókien órnc, o zminę ic łuości możem wrzić związkmi: s ) (.) ( Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

5 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK 5 s ( ) (.) przjmując jenocześnie że, o zmin ką i: (.) o po uwzęnieniu powższc zeżności (.,.) orzmujem: s (.4) zie: nsz cłk (.) przjmuje posć: (.5 s ) i wrż wpłw nierównomierneo orzni... Równnie prc wirunej. Zpiszem erz równnie prc wirunej uwzęnijąc wszskie wpłw (kże e powższe z punku. i.). Jeżei przez P rozumiem sił skupione, p -rozkł sił, v() -przemieszczenie pionowe o równnie prc przjmuje posć: p( ) v( ) P δi R K (.6 K ) p p s N s zie: s EI s i N E R j R j f j B n j K n 4 4 n s ℵ Tp T G s R K -o rekcje wirune w poporc o wmuszenic kinemcznc Rj -rekcje wirune w poporc sprężsc Rj -rekcje w poporc sprężsc wwołne ociążeniem rzeczwism Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

6 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK 6 K -znne przemieszczeni (osinie popór) -człon uwzęnijąc zw. łę monżowe. Jes o sum po n-punkc, w kórc owe łę wsępują. oą ć one spowoowne mł preczją wkonni poszczeónc eemenów konsrukcji, u ic złm zmonowniem. Przpuśćm np., że w owonej krownic zmonowiśm z króki prę. Jeżei n o wrość wiekości B n okreśjącej łą monżow, o nsz ioczn n wrżć ęzie prcę, jką wkon sił w m pręcie n ocinku równm łuości o jką ow prę jes z króki. Wiekością okreśjącą łą monżow może ć kże ką: w przpku nie uzskni w nm punkcie zneo ką (czi kieo jki ccieiśm uzskć). We nsz ioczn wrżć ęzie prcę momenu n kącie równm różnic ką rzeczwiseo i zneo..sposób WERESZCZEGIN-OHR OBLICZNI CŁEK Zuwżm, że w równniu (.6) wsępują cłki z iocznu wóc funkcji p (np. ). W przpku, oie są ciąłe, jen z nic jes iniow w okreśonm przezie, o cłkę z ic iocznu możn oiczć w pros sposó, korzsjąc z wkresów c funkcji. Słuszne jes wierzenie: Jeśi w pewnm przezie okreśone są wie różne funkcje ciąłe, z kórc co njmniej jen jes iniow, o cłk z ic iocznu równ jes Ω iocznowi po wkresu funkcji krzwoiniowej przez rzęną wkresu inioweo wsępującą po śrokiem ciężkości wkresu krzwoinioweo. Niec F() η jes funkcją krzwoiniową, zś η () iniową. Wówczs: η η η η F( ) η( ) Ω η (.) Dowó: Rs.. Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

7 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK 7 zonie z w.(.) możem zpisć: F ( ) η( ) Ω η η e: η η ( X ) η są po poswieniu o wzoru (.) orzmujem: F ( ) η F ( ) η η η (.) (.) F( ) η F ( ) η η η η Ω η Ω S { Ω Ωη η η η η Ω η η η Ω η S - o momen sczn po Ω wzęem punk. c.n. Wróćm o przkłu z wcześniejszeo wkłu, zie oicziśm przemieszczenie pionowe punku eki jk n poniższm rsunku (rs..). u Orzmiśm, że (przemieszczenie) wnosi: u E I η ożn je wznczć w zncznie prossz sposó! Wkreśm wkres momenów nszej eki prz ociążeniu równm (rs..)orz prz ociążeniu siłą wiruną równą (rs..). Jeżei η C o rzęn funkcji iniowej opowijąc położeniu śrok ciężkości C po wkresu Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

8 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK krzwoinioweo-, o szukne przemieszczenie wnosi: 4 Rs.. u E I (.5) 4 E I Ω ηc zie: 4. Orzmiśm więc, wnik ienczn z wnikiem okonwiśm cłkowni(.4)... Po powierzcni fiur. śroki ciężkości fiur(rs..) : Rs.. Śroek ciężkości )rójką, )prosoką, c)po wkresu )po wkresu krzwoinioweo n po powierzcni -wkres prosoiniowe Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

9 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK 9 Fiurę rpezową ziei się zzwczj n opowieni prosoką i rójką, wzęnie- w rójką(rs..4): Rs..4 p, rui, Zkłjąc, iż pierwsz wkres o o zonie z wierzeniem(.) możem zpisć, że: (.6) p s c c Neż kże pmięć o uwzęnieniu znku!(prz przkł poniżej rs..5). Rs..5 -wkres krzwoiniowe Prz wkresie smercznm jk n rsunku(rs..6) poe wkresu wnosi: (.7) f zie: f Rs..5 (.) Zsnówm się, ie wnosi poe wkresów krzwoiniowc prz położenic jk n rsunku poniżej(rs..6): Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

10 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK (.9) e: cos po poswieniu z : 4 4 (. ) Poe wnosi zem: f (.) D ociążeni jk n rsunku ) (rs..6): Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper Rs..6

11 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK Po wkorzsniu rzec równń równowi: B,, wiem, że: V B H V zem: H V H V e: cos cos i więc po poswieniu orzmujem:: ( ) ( ) mm: ( ) ( ) ( ) ( ) 4 4 ( ) (.) Poe wnosi zem: f (.) D rzecieo ociążeni (rs..6c): V cos cos równnie momenów m zem posć: Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

12 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK mm: 4 (.4 ) 4 Poe wnosi zem: (.5) f Ccąc zś wznczć poe wkresu jk n rsunku (rs..7) korzsm z zs superpozcji zpisując je jko sumę wóc pó: proi i rójką (rs..7). Sprwźm n prosm przkłzie cz nsze złożenie je4s rzeczwiście słuszne. Nsz ek (rs..7) ociążon jes ociążeniem ciąłm i z jenej sron uwierzon zem: Rs..7 Po wkorzsniu rzec równń równowi wiem, że: 4kNm H kn V kn (.) 5 4 ( 5 4) poe 5 4 Jeżei zś o po rójką om poe proi (rus..7) o orzmm: rójk?ró proi ( 4) c.n.. (.) Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

13 WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK Poiecnik Poznńsk Kopcz, Łoowski, Pwłowski, Płokowik, Tmper

Ł Ł Ą Ą Ą ż ń ż ń ż ń Ż Ż Ś ń Ż ń ć Ł Ą ń Ż Ś ń ć ń ć ń Ż ć ć ń ń ń ż ć ń ŁĄ ż ć ć ć ć ń Ż Ź ć ć ć ń ż ŁĄ Ł ż Ł Ąż ń ć ż ŚĆ ż Ł ń Ć Ś Ę ń ń ż ź Ż ń ć Ę ń ć ż ć ć ń ń Ć ć ż Ż ć ć ć ćż Ż ć Ż Ę Ż Ż Ść Ż ż

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM

RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM ÓWNANIA TYGONOMETYCZNE Z PAAMETEM Do grupy zgdnień eycznyc, w kóryc wysępuje pojęcie preru, nleżą równni rygonoeryczne. ozprywnie równń rygonoerycznyc z prere swrz ożliwość powórzeni i urwleni ożsości

Bardziej szczegółowo

ż ć ż ń ń ć ść ń ść ść ż ć ż ć ść ś ź ś ń ż ść ż ć ś ż ż Ź ć Ę Ę ć ń ć ż ń ć ż ć ść Ź ż ć ż ść ń ż ść ż Ź ć ż ść Ę ść ć ś Ę ż ż ć ś ń ć ż ć ć ść ś ś ń ć ż ść ś ż ć ż ść ć ś Ę ć ż ć ć ś ż ź ć ść ś ć ć ż

Bardziej szczegółowo

Zastosowania całki oznaczonej

Zastosowania całki oznaczonej Przkłd 9 Nie kd funkcj okrelon i ogrniczon n [, b] jes cłkowln n [, b], np funkcj Dirichle nie jes cłkowln n przedzile [, ], gd f ( ), gd liczb wmiern odcink [,] liczb niewmiern odcink [,] Gdbm dl kdego

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

ń ż ń ń ź ć ż ń ż ń ć ć ń ć ń ć ć Ź ń ć Ź ć ń ń ć ż ń ż ćź Ę ż ń ń ć ć ć ż ż ń ń Ę ć ć ń ż Ś Ś Ó Ź ń Ó ź Ś Ź Ę ż ń ż ź Ś ż ż ń ć ń ż ż ń Ż Ń Ź ż ż ć ć ż ć ń ż ż ń ń ń ć ń ż ć ź ć ń Ś Ę Ę ż Ę ń Ź ń Ó ż

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm

Bardziej szczegółowo

Ł ń ż Ó Ę ń ż Ą Ż Ż Ż ń ż ż ń ć ż Ł ć ć ć ż Ż ż Ó ż Ż ń ż ć ż ć Ż ż Ż ć ż ć ć Ż ń ż Ó ż ć Ż ć Ó ż ć ż Ó ń ż ź ń Ź ć ż ć ż Ż Ź ż Ł ż ż Ł ń Ą ż Ó ćż ż Ż ń ż ć ż ć Ż ż ć Ż ć Ż ć ż Ó Ó ż ć ć Ń ć ż ć ć ż ń

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.

Bardziej szczegółowo

Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy

Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy Zadania do rozdziału 6 Zad.6.. Wprowadzić równanie ruchu drgań wahadła matematcznego. Obicz okres wahadła matematcznego o długości =0 m. Wahadło matematczne jest to punkt materian (np. w postaci kuki K

Bardziej szczegółowo

Dynamika punktu materialnego. Ciało o znanych właściwościach Otoczenie Warunki początkowe (prędkość) Jaki będzie ruch ciała? masa ciężar ilość materii

Dynamika punktu materialnego. Ciało o znanych właściwościach Otoczenie Warunki początkowe (prędkość) Jaki będzie ruch ciała? masa ciężar ilość materii Dnik punku eilnego iło o nnch łściościch Oocenie Wunki pocąkoe pękość Jki ęie uch cił? s cięż ilość eii sił Sił nie jes poen o uni cił uchu le o jego in. 564-64 64-77 IZYKA - 6 W-5 hp://.if.p.lo.pl/ogn.oloski/

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7 Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw

Bardziej szczegółowo

G d y n i a W y k o n a n i e p r a c p i e l g n a c y j- n o r e n o w a c y j n y c h n a o b i e k t a c h s p o r t o w y c h G C S o r a z d o s t a w a n a s i o n t r a w, n a w o z u i w i r u

Bardziej szczegółowo

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła

Bardziej szczegółowo

Zadanie 5. Kratownica statycznie wyznaczalna.

Zadanie 5. Kratownica statycznie wyznaczalna. dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;

Bardziej szczegółowo

Politechnika Poznańska 2006 Ćwiczenie nr2

Politechnika Poznańska 2006 Ćwiczenie nr2 Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej. Poliechnika Poznańska 006 Ćwiczenie nr. Dla układu przedsawionego na rysunku naleŝy przyjąć przekroje pręów ak,

Bardziej szczegółowo

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r

Bardziej szczegółowo

Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak

Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak DNIE UKŁDÓW LOKD UTOMTYCZNYCH uor: Zigniew Tuzimek Oprcownie wersji elekronicznej: Tomsz Wdowik 1. Cel i zkres ćwiczeni Celem ćwiczeni jes zpoznnie sudenów z udową orz dziłniem zezpieczeń i lokd sosownych

Bardziej szczegółowo

3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty.

3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty. 3 Kinemk uchu jednosjnego zmiennego jednosjnie zmiennego zu Wbó i opcownie zdń 3-3: Bb Kościelsk zdń 33-35: szd J Bczński 3 Zleżność dogi pzebej pzez punk meiln od czsu możn opisć ównniem: () A B C 3 gdzie

Bardziej szczegółowo

2 0 0 M P a o r a z = 0, 4.

2 0 0 M P a o r a z = 0, 4. M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z

Bardziej szczegółowo

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia.

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia. Przkłd 6.. Płski stn nprężeni. Płski stn odksztłeni. ZADANIE. Dl dnego płskiego stnu nprężeni [MP] znleźć skłdowe stnu nprężeni w ukłdzie osi oróonh względem osi o kąt α0 orz nprężeni i kierunki główne.

Bardziej szczegółowo

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH SSof Polsk, el. (1) 4843, (61) 414151, info@ssof.pl, www.ssof.pl PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Andrzej Sokołowski Akdemi Ekonomiczn w Krkowie, Zkłd Sysyki W oprcowniu ym przedswiono pewną

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

Ł ś Ą ść ś ś ć Ń Ę Ś Ę ś ś ś ż ż Ż ś Ś ż ś Ą Ń ś Ę ś ś ż ś Ń Ź ś Ż ś ż ś ść Ź ż ś Ą ś ż Ś ś ś ś Ź ż ż Ę ż ść ś ż Ń ć ż ż ść ś ż Ź Ź ż Ź ś ź ś ś ż ź ż ś ć ż Ź ś ż Ę ś Ś ż ś ż ż ść Ą ć Ź ż ż ć ś ś ż ż ż

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

Ą Ę ŁĘ Ł Ą ń Ł ć Ż ż Ł ń ż ń Ó ń Ż ć Ł ń ć ż Ż Ż ż ż ż ń ć ń ń ń Ą Ś Ż Ż Ż ż ż ć ż Ą Ś Ś Ż ż Ś ż Ś ż ż ż Ż ż ń Ł ż Ż ń ż ń Ą Ś ń ż ń ń Ł ń ż Ż ń ń ć ż Ś ń ń ń Ś ż ż ń ń ń ń Ż ń ń Ł ń ń ż ń ń ń ż Ł ń Ż

Bardziej szczegółowo

Ó Ń Ć ź Ś Ć Ć Ą Ć Ś Ó Ł Ś ź ź Ż ź ź Ę Ę Ę Ś Ó Ś Ą Ś Ł Ł Ę Ę Ę Ę Ć Ć Ś Ś Ę Ą Ę Ł Ę ź Ż Ę Ł Ę Ś Ó Ś Ł Ł ź Ę Ą Ą Ę Ś Ę Ą ź Ą ź ź Ś Ł Ł Ć Ć Ć Ś Ę Ć Ś Ę Ć Ć Ć Ć Ś Ę Ę Ć Ł Ę Ś Ó Ó Ę Ą Ę Ę Ć Ś Ś Ę Ą Ą Ł Ę Ę Ł

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Ł Ą ąż ż Ł ś ś Ą Ń Ę ąż ć ę ą ą ą ę ó ś ą ń ę ę ó ę ą ę ś ó ę ó ż ś ę ś ó ś ą ę ą ą ą ń ą Ś ż ś ść ść ć ą ą ą ś ę ż ęć ó ć ą ę ź ż ą ę ś ę ż ę ó ż ś ó ś ś ó ó ę óź ó ą ś ć ż ę ó ą ę ż ą Ąą ść ó ć ó ó ć

Bardziej szczegółowo

Ę Ś Ó Ę Ę ź Ś Ą Ą ż ŁĘŻ Ą Ą Ą Ą Ą Ś ż ć ż Ę Ż ż ć ż Ą Ś Ż Ż Ę ż Ź ć ż Ź ź ż ć Ź ć ż Ź Ó ćż ż ż Ż Ź ż ć ć ć Ń ź ć ż Ź ż Ź Ż Ą Ż Ó Ż ż ż Ż ć ż ż ż ż Ż Ę Ó ż ć ż ż ż ż Ń ć Ż ż ć Ź ż ż ź ż ź Ź ź Ź ć ż ż ź

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n

Bardziej szczegółowo

Ń ź Ń ź Ń ź Ń ź ź Ń Ń Ń Ń ź Ą ź Ń ź Ó Ą ć Ń ć Ń ć ć ć ć ć ź ź ć Ń Ń ć ć Ę Ą ź Ę Ń ć ź Ń ź Ł Ń ć Ń Ą ć Ń ć ć ź Ń ćń Ś ź ź ź ć Ń ź ź Ń Ń Ę Ń ź Ń ź Ń Ą ć ź ć ć Ę ć ź ć Ą ć ź ć Ń ć ć ź ć Ń Ń Ń Ę ć Ą Ą ź Ń

Bardziej szczegółowo

Ą ń Ś ź ń ć ż Ę Ń Ą ć ń ń ż ń ź ź ź Ż ń ź ń Ą ń ż Ł ż Ę Ż ć ż ń Ę ć ż ż ń Ę ż ń ń Ą ż ń Ąć Ę ń Ę Ł Ą Ż ż Ę Ę ń Ż ż Ż Ę Ę Ę Ę Ę ć ż ż ż ć ćń ż ź Ę ń ż ć Ę ż ż Ę ź Ę ń ż Ę Ę ń Ę Ę ń ć Ż ć ż Ą Ę Ę ź ń ż ń

Bardziej szczegółowo

ŚĆ ŁĄ Ś Ć Ć Ś ŁĄ Ł Ż Ł Ś Ż Ł Ę Ł Ż Ł Ł Ś Ś Ś Ł Ś Ł Ś Ś Ć Ś Ś ć Ś Ś Ś Ś ć Ś Ż ć Ć Ć Ś Ś Ż Ś Ż Ś Ś ć Ś Ś Ć Ś Ć Ż Ś ż Ś ż Ż Ś Ż Ś Ż Ł Ś Ś Ł Ś Ą Ę Ą Ż ż ć ć ć Ą ż ć Ś Ś Ś Ś Ż ż ć ć ć Ę Ś ż ć Ś ć Ś Ś ć Ś Ś

Bardziej szczegółowo

Ę Ę Ś ć Ł ć ż ż ż ż ż Ł Ł Ą Ń ż ć ź ż ć ć ż Ł Ę Ś ż ż ż Ł Ś ż ż ż Ś ż ż ż Ł Ł ż ż ż ć Ś Ę Ę Ś Ś Ę ć Ś Ł Ł ć ć ć ć ć ć ć Ł ć Ł Ę ć Ę ć Ę Ś Ł Ł ć ć ć ż ć ć ź ż Ł Ą Ą Ą Ę Ą Ś Ę Ś Ł Ś ć ŁĄ Ź Ę Ł Ś Ń Ę ć

Bardziej szczegółowo

Ą Ą ż ż ś ż ż ż ć ś ż ść ś ś ż ć ść ż ż ć ś ś ż ż ć ś ś ś ż ś ć ć Ę ś Ł ś ś Ń Ń ż ż Ń ść ż ść ż Ą ź ż ść Ń ś ż ś Ł ść ż ść ś ż ś ż Ó Ś ż ż ż ż ć ść ś ż ż ć ść ś ś ż ść ż ż ść ś ż ż ź ś ść ż ś ś ś ć Ł Ą

Bardziej szczegółowo

Ń ź ź Ń Ó ŁĄ Ó Ę Ł Ł Ó Ł Ę Ę Ł Ę ź Ó ź Ę Ę Ę Ę Ę Ą Ą Ł Ź Ę Ę Ę Ę Ę Ę ź Ł Ś Ś Ę Ł Ę Ę Ę ŚĆ Ą Ś Ś Ó Ę Ń Ę Ę Ł Ę Ł Ć Ż Ę Ć ź Ó Ę Ę Ę Ę Ó Ę Ś Ń Ą Ę Ą Ę Ł Ę Ó Ń Ą Ł Ć Ę Ę Ł Ę Ó Ą Ó Ę Ó Ę Ę Ę Ę Ą Ó Ź ź Ć Ó ź

Bardziej szczegółowo

ń Ż ń ź ć ć ń ć ć ć ć ź ć ń ń ć ń ć ć ć ć ź ć ń Ż ć Ż ć ć ć ć ń ć ń ć ń ć ń ć ć ń ń ć ń ć ń ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż Ż Ż ć ć ć ć ń ć ć ć ć ć ć ć Ż ć ć ć ź ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć

Bardziej szczegółowo

ź ŁĄ ó ś ó ś ó ó ó ś ó ó ó ó ó ś ó ó ó ó ó ó ó ó ó ó ś ó ó ó ó Ż Ż ó ó ó ó ó ó ó ó ó ó ó ń ó ó ó ć ó ó ó ś ó ó ó ó ó ó ó ó ó ś ó ś Ł ś ó ó ó ó ó Ż Ż ć ó ó ś ó ó ó ó ó ó ś ó ó ó ó Ę Ż ó ś ó ó ó ó ó ś ś

Bardziej szczegółowo

ź ź ź Ę Ę ź ź ź ź Ź ć ć ć ć ć ć Ź Ł ć ć Ż ć Ż ć Ę Ł Ż Ń ć ć ć Ż ć ć ć ć ć ć Ę ć Ę Ł ć ć ć ć ć ć ć ć ć Ż ć ć ć ć ć Ż Ń ź ć Ł ć ć ć ć ć ź ź ć ć ć Ł ć ć ć Ż ć ć Ż ź ć ć ć Ż ć ć ć ć Ń ć Ę ć Ż Ł ć Ń ć ć ć Ź

Bardziej szczegółowo

ą Ą Ę Ś Ł ź ź ą ń ń ą ć ą Ę ą ą ą ą ć ą ć ą ą Ź ć Ż Ł Łą ń ń ą ą ą ą Ę ą ą ń Ź Ń ą ą ć ąć ć ć ą ą ń ą ź ą ą ą ą ą ą ą ć ą ą ą ą ć Ź ą ń ą ą Ź ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą ą ć ą ć ć ą ą ń ą ń ń ń ć ą ą

Bardziej szczegółowo

ó Ż ó Ę ń ó ó ń ń ę ć Ś ż Ż Ż Ż ą ą ę ń Ś ń ą ń ń ż ń ó ó ó Ś ń ć ż ń ń ń Ś Ż ż ń ó ń ą ę ń ż ą ć Ś Łą ę ą ż ą Ż ó ó Ó Ą ó ń ń Ż ę Ś ć ę ż ę ń ż ą Ż ą ą ń Ż ź ń ń ń ń ń ż ó ó ż ń Łą ę ą ż ą ó ó ó ó

Bardziej szczegółowo

Ą ć ć ć ŁĄ ć Ę Ł ć ć ć ć ź ć ć Ą ć ć Ą ć ć ć ć Ę ć ć Ę ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć Ł Ś ć ć ź ć ć ć ć ć ć ź ć ź ć ź ć ź ć ć Ą ć ć Ę ź Ą ć ć ć ć ć ć ć ć ź Ę ć ć Ą ć ć ć Ł ć ć Ą ć ć ć ć ć Ę ź ć ć ć ć ć

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp

Bardziej szczegółowo

CALENBERG PODK AD PERFOROWANY 205. planmäßig elastisch lagern. Dopuszczalne naprê- enia do 25 MPa. - niezbrojony. - zbrojony stal¹

CALENBERG PODK AD PERFOROWANY 205. planmäßig elastisch lagern. Dopuszczalne naprê- enia do 25 MPa. - niezbrojony. - zbrojony stal¹ CALENBERG T PODK AD PEROROWANY 205 Dopuszczne nprê- eni do 25 P - niezrojony - zrojony s¹ - œizgowy podk³d perforowny pnmäßig esisch gern Spis reœci Sron Informcje ogóne 2 Rodzje produków 2 Wspó³czynnik

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x

Bardziej szczegółowo

Ę ą Ó Ó Ó Ż ę Ę Ę Ź ó ć Ń Ą ć Ę Ę ó ó ę Ź ą ą ą ź ó Ś ęć Ś Ć ęć ą ą ą Ę ć Ó ó Ż ó Ż ó Ź ęó ą Ś ęć ą ą Ć ć ć Ó Ś Ą ć ć ó ć Ą ó ó ć ć Ą ę Ę ą ęć Ż ó Ę Ę Ó Ę Ą Ń Ę Ą ę ą ęć ą ą ą ć ę ć ć ó Ó ó ó ę Ż Ę ęó

Bardziej szczegółowo

Ą Ę Ó ć ż ż ż ż ĘĆ Ą ź ć ż Ę ĘÓ Ł Ó Ś Ó ź ć ż ć ż ż ć ż ć ć ć ż ć ć ż ż ć Ę Ą Ó ć ż ć ż ć ż ć ć ć ż ć ć ć ż ć ć ż ć ż ć ć ć ż Ę ć ż ż ż ż ż ć ż ć ć ż ć ć ż ć ć ć ć ź ź ć Ł Ę Ó ź ć ż ż ć ć ż Ą ź ć ż ć ż

Bardziej szczegółowo

Momenty bezwładności figur płaskich - definicje i wzory

Momenty bezwładności figur płaskich - definicje i wzory Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł TRZECI SEMESTR LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRACA KONTROLNA Z MATEMATYKI ROZSZERZONEJ O TEMACIE: Liczby rzeczywiste i wyrżeni lgebriczne Niniejsz prc kontroln skłd się z zdń zmkniętych ( zdń)

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Wytrzymałość Materiałów I

Wytrzymałość Materiałów I Wytrzymłość Mteriłów I kierunek Budownictwo, sem. III mteriły pomocnicze do ćwiczeń oprcownie: dr hb. inŝ. Mrcin Kmiński TREŚĆ WYKŁADU Ro, podstwowe pojęci i złoŝeni orz zkres wytrzymłości mteriłów. Rozciągnie

Bardziej szczegółowo

ą ą ć ć Ż Ę ą ą ą ą ą Ę ą ą Ź ą ą ą Ż ć ą ć ć Ż ć ą Ź ć Ź ć ć ą ć ŚĆ ą Ś ć ą Ż ą ą ć Ą Ż ą Ó ą ć ą Ż Ą ą Ź ć ć ą ą Ź ą Ż ć ć Ś ą ą ć ą ą Ś Ą ć ą ą ć ć Ż ą Ę Ź ą Ź ą ć ą Ż ć ć Ż Ż Ź ą ą ć Ś ć ć ą ć ą ć

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8 Zinanie belek o przekroju prostokątnm i dwuteowm naprężenia normalne i stczne, projektowanie 8 Na rs. 8.1 przedstawiono belkę obciążoną momentami zinającmi w płaszczźnie x. oment nąceo dla tak obciążonej

Bardziej szczegółowo