II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1
Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku działania sił. Swobodne ciało sztywne ma 6 stopni swobody: 3 translacyjne, opisujące ruch wybranego punktu P np. jego środka masy, 3 rotacyjne, np. kąty Eulera, opisujące ustawienie ciała względem tego punktu U y r i z 0 P r j x Jan Królikowski Fizyka IBC
Ruchy ciała sztywnego Swobodne ciało sztywne ulega przesunięciu w kierunku działania siły zewnętrznej F gdy ten kierunek przechodzi przez środek masy ciała P S. W tej konfiguracji znika moment siły. P S F Gdy dowolny punkt ciała P jest unieruchomiony ciało dokonuje obrotu dookoła niego. r P F Obrót następuje wskutek działania momentu siły M = r F względem P: P Jan Królikowski Fizyka IBC 3
cd. Na ciało sztywne może działać wiele sił. Wypadkowa siła i wypadkowy moment względem pewnego punktu O dane są jako: F = F O O M = M = r F i i i i Jeżeli wypadkowa siła i wypadkowy moment dwóch zestawów sił są takie same mówimy o równoważnych układach sił. Układy równoważne mają jednakowe momenty względem dowolnego punktu. Jan Królikowski Fizyka IBC 4
cd. r. akad. 005/ 006 Układ sił działających na ciało sztywne możemy zawsze zastąpić przez układ sił równoważnych. Ruch ciała się nie zmieni. W ogólnym przypadku ruch bryły sztywnej składa się z ruchu postępowego i obrotu. Jan Królikowski Fizyka IBC 5
Twierdzenie o redukcji układu sił Dowolny układ sił działających na bryłę sztywną można zastąpić siłą wypadkową, równą sumie działających sił i zaczepioną na linii działania tej siły i jedną parą sił o momencie równym momentom sił działających względem punktu zaczepienia siły wypadkowej. Dowód: 1. Wypadkowa pary sił znika; para sił nie wnosi więc wkładu do ruchu postępowego.. Siła wypadkowa ma znikający moment względem swego punktu zaczepienia. Stąd moment całkowity jest równy momentowi pary sił. Tylko para sił zmienia moment pędu bryły. Jan Królikowski Fizyka IBC 6
II. Obroty bryły sztywnej dookoła ustalonej osi Jan Królikowski Fizyka IBC 7
Wielkości charakteryzujące obrót bryły sztywnej dookoła ustalonej osi m dm r d r Masa = = ρ( ) 3 Moment bezwładności względem ustalonej osi: ( ) I= r dm= ρ r r d3r Energia kinetyczna ruchu obrotowego względem ustalonej osi: O r r F ω E kobr, 1 = Iω Moment pędu bryły sztywnej: L =ω I Jan Królikowski Fizyka IBC 8
Równanie ruchu obrotowego dookoła ustalonej osi W tym szczególnym przypadku wektory M, L i ω skierowane są wzdłuż jednej prostej osi obrotu: d dω M = r F = L= I =ω=ε I I dt dt Równanie ruchu postępowego: dr F = ma= m dt Jan Królikowski Fizyka IBC 9
Momenty bezwładności Jan Królikowski Fizyka IBC 10
Jan Królikowski Fizyka IBC 11
cd. Jan Królikowski Fizyka IBC 1
Twierdzenie o osiach równoległych Twierdzenie Steinera pozwala przeliczać momenty bezwładności względem dwóch równoległych osi odległych o d. Niech O będzie środkiem masy. y ( ) P I = dmxʹ = dm x+ d = y I d dm x d dm O = + + = o = I + md P r d O r x Jan Królikowski Fizyka IBC 13
II.3 Równania ruchu bryły sztywnej. Tensor bezwładności Jan Królikowski Fizyka IBC 14
Równanie ruchu bryły sztywnej Środek masy bryły sztywnej: rdm rρ( r ) d3r R = = m m Całkowity pęd bryły sztywnej: = = P rdm mr = m bo r = r R + R r = r R + R = ( ) ; d ( ) dt ( ) ( ) ( r R) dm 0 =ω r R + R =ω r R + ω = U y r i z 0 R ŚM r j x Jan Królikowski Fizyka IBC 15
cd. Ruch postępowy: dp dt = F Ruch obrotowy: oś obrotu przechodzi przez wybrany punkt w układzie inercjalnym, np. przez O. Prędkość liniowa dowolnego punktu bryły jest dana wzorem: v = ω r. Obliczamy całkowity moment pędu: dl dt = M ( ) ( ) ( ) ( ) ( ) ( ) L t = L r dm= r ω r dm= ( ) = ω ω r dm r rdm L = I t ω t k kj j Jan Królikowski Fizyka IBC 16
Tensor bezwładności W ogólnym przypadku moment pędu bryły sztywnej nie jest równoległy do wektora prędkości kątowej: = ˆ L Iω ; L = I ω k Składowe tensora bezwładności obliczone w pewnym układzie odniesienia: Jan Królikowski Fizyka IBC 17 kj Lk = dm( r δkj rkrj) ω ( j ) I = dm r δ r r j ( ) ( ) I = dm y + z ; I = dm x + z ; 11 33 kj kj k ( ) I = dm x + y I = dmxy; I = dmxz; I = dmyz 1 13 3 j
cd. Tensor bezwładności jest tensorem symetrycznym: I kj = I jk Ma 6 niezależnych składowych: Momenty dewiacyjne ( dm y + z ) dmxy dmxz ( I= + ) dmxy dm x z dmyz dmxz dmyz dm x + y Momenty główne ( ) Jan Królikowski Fizyka IBC 18
cd.. Tensor bezwładności zawsze można zdiagonalizować tj. tak obrócić układ współrzędnych, żeby momenty dewiacyjne znikły i zostały tylko momenty główne. Mówimy, że sprowadzamy tensor bezwładności na osie główne Tensor bezwładności obliczany w układzie inercjalnym jest na ogół zależny od czasu m.in. dlatego, że bryła się obraca w UI. W układzie związanym z bryłą np. w jej układzie środka masy tensor bezwładności jest niezależny od czasu ale układ związany z bryłą jest na ogół układem nieinercjalnym. Jan Królikowski Fizyka IBC 19
Zdiagonalizowany tensor bezwładności Tensor w postaci diagonalnej: Ix 0 0 I= 0 Iy 0 0 0 Iz Wielkości I x, I y, I Ż nazywamy głównymi momentami bezwładności, a odpowiednie osie układu współrzędnychosiami głównymi. Dla ciał o symetrii sferycznej wszystkie główne m.b. są sobie równe. Dla ciał o symetrii obrotowej dwa z głównych m.b. są sobie równe. Jan Królikowski Fizyka IBC 0
Elipsoida bezwładności Obliczmy i zdiagonalizujmy tensor m.b w układzie środka masy bryły. W tym układzie zbudujmy elipsoidę o półosiach: a = 1 ; a = 1 ; a = 1 I I I 1 3 x Y Z Sposób znajdowania kierunku wektora L gdy dany jest kierunek wektora ω jest przedstawiony na rysunku. a O y L ω a 1 Pł. styczna x Jan Królikowski Fizyka IBC 1