Bryła sztywna. Matematyka Stosowana

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bryła sztywna. Matematyka Stosowana"

Transkrypt

1 Bryła sztywna Matematyka Stosowana

2 Prawdziwe obiekty fizyczne Można przesuwać (punkt materialny też!) Można obracać (punktu materialnego nie!) Można ściskać, rozciągać, skręcać, wyginać, Mechanika ośrodków ciągłych

3 Bryła sztywna Model prawdziwego obiektu fizycznego Elementy obiektu nie mogą się przemieszczać względem siebie Co może robić bryła sztywna? Przesuwać się w jednym z trzech kierunków Obracać się względem jednej z trzech osi Punkt materialny uproszczenie bryły sztywnej, założenie ruch obrotowy nie istotny

4 Środek masy (ciężkości) m 1 m 2 x 1 x śm x 2 x śm = m 1x 1 + m 2 x 2 m 1 + m 2 x śm = 1 M i m i x i x śm = 1 M xdm

5 Środek masy (ciężkości) Ԧr śm = m 1 Ԧr 1 + m 2 Ԧr 2 + m 3 Ԧr 3 + m 1 + m 2 + m 3 + = σ i=1 N m i Ԧr i σ N = 1 i=1 m i M m i Ԧr i i Ԧr śm = 1 M Ԧrdm

6 Analogia: średnia = środek ciężkości

7 Stabilność i środek masy Stabilność wzrasta: Niżej położony środek masy Większa podstawa Przedmiot przechylony przewróci się jeśli pionowa linia od jego środka ciężkości wypadnie poza jego podstawę.

8 Ruch środka masy r śm = 1 M i m i r i Ԧv śm = d Ԧr śm dt = 1 M d σ dt i=1 N m i Ԧr i = 1 σ M i=1 N Ԧv i m i d Ԧr i dt N N Ԧv śr = 1 M i=1 m i Ԧv i M Ԧv śm = m i Ԧv i = P i=1

9 Ruch środka masy r śm = 1 M i m i r i N Ԧv śr = 1 M i=1 N m i Ԧv i M Ԧv śm = i=1 m i Ԧv i = P Ԧa śm = d Ԧv śr dt N = 1 M i=1 d Ԧv i m i dt = 1 N M i=1 m i Ԧa i N M Ԧa śm = i=1 II zas. dyn III zas. dyn m i Ԧa i = ԦF i = ԦF zewn

10 Ruch środka masy Jeżeli na ciało (zbiór cząstek) działają siły zewnętrzne to środek masy porusza się tak, jakby skupiona w nim była cała masa i jakby działała na niego siła wypadkowa. UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

11 Ruch środka masy

12 Równanie Newtona dla środka masy ԦF zewn = M Ԧa śm = M d Ԧv śm dt = dm Ԧv śm dt = dp dt UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

13 Fosbury Flop (Flop) złoty medal na igrzyskach olimpijskich w Meksyku, 1968 (rekord 2,24 m) Dick Fosbury, 1947

14 Fizyka w sporcie dr hab. Adam Sieradzki

15 Obroty wokół osi Ustalona oś Kurczak rożnie Wiatrak Wskazówki Jak opisać ruch obrotowy? Śledź punkt P (x, y)? OP jest stałe dlaczego? Wystarczy θ UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

16 Jak zmierzyć kąt θ? Mierzymy kąt w radianach Wartość kąta w radianach: θ = s r Iloraz dwóch długości bezwymiarowy ( czysta liczba) 1 rad = π = = π rad UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

17 Prędkość kątowa Średnia prędkość kątowa: ω śr z = θ 2 θ 1 = Δθ t 2 t 1 Δt Prędkość kątowa: Δθ ω z = lim Δt 0 Δt = dθ dt UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

18 Przyśpieszenie obrotowe i liniowe v = rω dv dt = d(rω) dt a n = r dω dt a n = rα Przyśpieszenie dośrodkowe: a rad = v2 r = (rω)2 r α = rω 2

19 Prędkość liniowa i kątowa Konie na dole karuzeli przebywają dłuższy dystans niż te na górze Konie na dole karuzeli mają większą prędkość liniową niż te na górze Ale kątową prędkość mają taką samą!

20 Kąt i prędkość kątowa mogą być ujemne UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

21 Prędkość kątowa jako wektor Dotychczas obroty wokół osi z i składowa ω z Ogólnie ω = (ω x, ω y, ω z ) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

22 Skoro tak to musi tu gdzieś być iloczyn wektorowy ω = dφ dt, v = rω ω = v r Ale: v = vsinθ czyli: ω = vsinθ r To już trochę przypomina iloczyn skalarny. Pomnóżmy licznik i mianownik przez r: ω = vrsinθ r 2 ω = r v r 2

23 Przyśpieszenie kątowe Średnie przyśpieszenie kątowe: α śr z = ω 2z ω 1z t 2 t 1 Przyśpieszenie kątowe : Czyli: = Δ ω z Δt Δω z α z = lim Δt 0 Δt = dω z dt α z = dω z dt = d dt dθ dt = d2 θ dt 2 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

24 Przyśpieszenie kątowe jako wektor Gdy oś obrotu jest stała przyspieszenie kątowe i prędkość kątowa leżą wzdłuż tej osi Jeśli przyśpieszenie zgodne z prędkością przyśpiesza Jeśli przyśpieszenie przeciwne do prędkością zwalnia UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

25 Energia kinetyczna w ruchu obrotowym K = 1 2 m 1v m 2v = 1 2 i m i v i 2 K = 1 2 i m i r i ω 2 i = 1 2 ω2 2 m i r i i Moment bezwładności K = 1 2 Iω2 I = i m i r i 2

26 Moment bezwładności zależy od osi! UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

27 Twierdzenie Steinera (osie równoległe) Moment bezwładności zależy od osi obrotu I śm - moment bezwładności ciała o masie M dla osi przechodzącej przez środek masy I d - moment bezwładności dla osi równoległej oddalonej o d: I d = I śm + Md 2 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

28 Przykład: pręt I śm = 1 12 ML2 d = L 2 I d = I śm + Md 2 = 1 12 ML2 + M L 2 = 1 12 ML ML2 = 4 12 ML2 = 1 3 ML2 2 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

29 Dowód twierdzenia Steinera Dwie osie równoległe: Środek masy (cm) Punkt P I śm = m i x i 2 + y i 2 i I p = m i x i a 2 + y i b 2 i UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

30 Dowód twierdzenia Steinera I p = m i x i a 2 + y i b 2 = i m i x 2 i + a 2 2ax i + y 2 i + b 2 2by i = i m i x 2 i + y 2 i + a 2 + b 2 i i m i 2a m i x i 2b m i y i i i UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

31 Dowód twierdzenia Steinera I p = i m i x i 2 + y i 2 + a 2 + b 2 i m i 2a m i x i 2b m i y i i i = I śm + Md 2 2aMx śm 2bMy śm = I śm + Md 2 x śm = 1 M i m i x i y śm = 1 M i m i y i

32 Moment bezwładności I = i m i r i 2 I = r 2 dm = ρ = dm dv = r2 ρdv = ρ r 2 dv gęstość UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

33 Moment bezwładności wydrążonego walca I = ρ r 2 dv = ρ න R 2 R 2 r 2 2πrLdr = 2πρL න r 3 dr R 1 R 1 I = 2πρL 1 4 R 2 4 R 1 4 I = 1 2 πρl R 2 4 R 1 4 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

34 Moment bezwładności wydrążonego walca I = 1 πρl R R 4 1 = 1 πρl R R 1 R R 1 Objętość walca: V = πl R R 1 Masa walca: M = Vρ = πρl R R 1 I = 1 2 M R R 1 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

35 Co jeśli oś obrotu się porusza? Ruch postępowy i obrotowy K = 1 2 Mv śm I śmω 2 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

36 Toczenie się bez poślizgu Koło obróciło się o kąt θ Środek masy przemieścił się o s s = θr Zróżniczkujmy po czasie ds dt = d Rdθ θr = dt dt Warunek: v śm = Rω Physics for Scientists and Engineers by Serway and Jewett

37 Złożenie ruchów postępowy i obrotowy Ruch postępowy wszystkie punkty poruszają się w prawo z taką prędkością jak śm Ruch obrotowy wszystkie punkty poruszają się po okręgu z prędkością kątową ω Ԧv i = Ԧv śm Ԧv i Ԧv j, ω i = ω j Ԧv i = 2 Ԧv śm Ԧv śm Ԧv śm = 0 Ԧv śm Ruch postępowy Translacje Ruch obrotowy Ruch postępowy + obrotowy

38 Wyścigi toczących się (bez poślizgu) ciał Takie same masy Bez poślizgu tarcie nie wykonuje żadnej pracy Na górze wszystkie ciała mają U 1 = Mgh, K 1 = 0 Na dole U 2 = 0, K 2 =? Walter Lewin, 4:56 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

39 Wyścigi toczących się (bez poślizgu) ciał K 1 + U 1 = 1 2 Mv śm I śmω 2 + U 2 Mgh = 1 2 Mv śm v 2 cmr2 śm R 2 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

40 Wyścigi toczących się (bez poślizgu) ciał Mgh = 1 2 Mv śm v 2 cmr2 śm R 2 Mgh = 1 2 Mv śm c v śm = 2gh 1 + c UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

41 Ruch bryły sztywnej ruch postępowy + obrotowy (analogie) Ruch postępowy Masa M Prędkość Ԧv = d Ԧr dt Przyśpieszenie Ԧa = dv dt Siła ԦF Ruch obrotowy Moment bezwładności I Prędkość kątowa ω = d Ԧθ dt Przyśpieszenie kątowe Ԧα = dω dt Moment siły Ԧτ = Ԧr ԦF

42 Przykład: prymitywne jojo Założenia: Nić nieważka, nierozciągła, bez poślizgu Jaka prędkość v śm po h? Bez poślizgu v śm = Rω Początkowo energia kinetyczna K 1 = 0 Moment bezwładności I = 1 2 MR2 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

43 Przykład: prymitywne jojo v śm = Rω, K 1 = 0, I = 1 2 MR2 K 2 = 1 Mv 2 śm I 2 śmω 2 = 1 Mv 2 śm MR2 v śm R 2 = = 1 2 Mv śm Mv śm 2 = 3 4 Mv śm 2 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

44 Przykład: prymitywne jojo v śm = Rω, K 1 = 0, I = 1 2 MR2 K 2 = 3 Mv 4 śm 2 Zasada zachowania energii: K 1 + U 1 = K 2 + U Mgh = 3 Mv 4 śm v 2 śm = 4 3 gh < 2gh Tak by było dla masy punktowej UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

45 Moment pędu C m Q Ԧr Q θ Ԧv Ԧp = m Ԧv Pęd - własność obiektu o masie m i prędkości Ԧv Moment pędu względem Q: L Q = Ԧr Q Ԧp = Ԧr Q Ԧv m L Q = mvr Q sinθ r Q r Q Zauważ, że L C = 0 dla każdego punktu na linii Ԧv Moment pędu nie jest własnością obiektu L Q zależy od punktu Q, względem którego liczymy

46 Przykład rzut ukośny t Ԧr(t) Q t = 0 Dla t = 0, L C = 0 Dla innej chwili t, L C 0 Moment pędu zmienia się w czasie Nic dziwnego prędkość też się zmienia w czasie

47 Przykład prędkość się zmienia, ale Ԧv t, Ԧv t = v = const C Ԧr C (t) L C = Ԧr C m Ԧv = mr C v sin π 2 = mr c v Q Moment pędu względem C jest stały! Względem Q się zmienia co gdy przechodzi przez Q? Tylko względem C jest stały! Jak to jest ogólnie?

48 Moment siły Ԧv t, ԦF G Ԧr C (t) C Ԧτ C = Ԧr C ԦF G = 0 L Q = Ԧr Q Ԧp dl Q dt = d Ԧr Q dt Ԧp + Ԧr Q d Ԧp dt dl Q dt = Ԧv Ԧp + Ԧr Q ԦF = Ԧτ Q 0 moment siły dl Q dt = Ԧτ Q, Ԧτ Q = Ԧr Q ԦF Jeśli nie ma momentu siły (Ԧτ Q = 0) to moment pędu zachowany: L Q = const

49 Moment pędu dysku obracającego się wokół środka masy C ω R C Ԧv i Ԧr i M m i Względem punktu C: L Ci = Ԧr i Ԧp i = m i (Ԧr i Ԧv i ) L Ci = m i r i v i = m i r i 2 ω L Cdysk = ω m i r i 2 = ωi C A i Jeśli nie ma momentu siły (Ԧτ Q = 0) to moment pędu zachowany: L Q = const Co jeśli liczymy względem punktu A?

50 Zachowanie momentu pędu Jeśli Ԧτ Q = 0 to L Q = ωi C = const Przybliżymy profesora ze złączonymi rękami przez M = 75kg, R = 20cm, m = 2kg, r = 90cm 23:15 Walter Lewin, 8.01x Lect 20 - Angular Momentum, Torques, Conservation I = 1 2 MR2 = 1.5 m r r m R I = 1 2 MR2 + 2mr 2 = 4.5 M I = 1 3 I UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

51 Co się dzieje dla układu obiektów? Planety oddziałujące grawitacyjnie Cząstki gazu się zderzają Wiele kulek na sprężynach Dowolne inne oddziaływania w układzie Dzięki za III zasadę dynamiki Newtona wewnątrz wszystko się kasuje! F 1 na 2 = F 2 na 1 1 F 2 na 1 i,j F i na j = F i na j σf wew = 0 στ wew = 0 2 F 1 na 2 dl Q dt = Ԧr Q ԦF zew = Ԧτ Qzew

52 Zachowanie pędu i momentu pędu II zasada dynamiki Newtona: d Ԧp dt = σ ԦF = σ ԦF wew + σ ԦF zew III zasada dynamiki Newtona: σ ԦF wew = 0 1 F 2 na 1 d Ԧp dt = σ ԦF zew 2 F 1 na 2 dl Q dt = σԧτ Qzew

53 Podsumowanie momentów ԦF Q Ԧr Q θ m Ԧv Ԧp Moment pędu względem Q: L Q = Ԧr Q Ԧp (1) Moment siły względem Q: Ԧτ Q = Ԧr Q ԦF (2) Moment siły prowadzi do zmiany momentu pędu: dl Q dt Qzew (3) Ԧτ Q = I Q α Q (4) L Q = I Q ω Q (5) Gdzie α Q = ሷ θ Q, ω Q = ሶ θ Q

54 Przykład Ziemia wokół Słońca ω C F Ԧv Ԧr C m L C = Ԧr C m Ԧv = mr C v = mr 2 C ω = mr 2 ω to z (1) ale możemy też liczyć z (5): L C = I C ω C = I C ω = mr 2 ω R Względem środka masy moment pędu jest zachowany! faktycznie zgadza się! Teraz możemy z (2): Ԧτ C = Ԧr C ԦF = 0 Czyli z (3) dl C dt = Ԧτ C = 0

55 Toczenie się bez poślizgu Q F N Wsinθ v Q = v = ωr czyste toczenie zawsze prawda Wcosθ a = v ሶ = ωr ሶ = αr Moment siły: Ԧτ = Ԧr ԦF, τ = rfsinα rf Jaki moment siły działa na punkt Q (środek masy)? Siły F N, W przechodzą przez punkt Q czyli ԦF Ԧr τ Q = 0 Siła tarcia Ԧf Ԧr Ԧτ Q = R Ԧf = Rf Druga zasada dynamiki dla ruchu obrotowego: RN τ Q = Rf = I Q α = I Qa R

56 Toczenie się bez poślizgu - walec Q F N Wsinθ a =? v Q = v = ωr czyste toczenie zawsze prawda Wcosθ a = v ሶ = ωr ሶ = αr Rf = I Qa 1 Nie znamy, f i a R ma = mgsinθ f (2) Teraz możemy już obliczyć a, z (1) f = I Q a/r 2 Czyli z (2): ma = mgsinθ f = mgsinθ I Qa R 2

57 Toczenie się bez poślizgu - walec Q F N Wsinθ a =? ma = mgsinθ I Qa R 2 Wcosθ a m + I Q R 2 = mgsinθ a = mgr2 sinθ mr 2 + I Q Dla pełnego walca I Q = mr2 2 a = 2 3 gsinθ Dla pustego walca I Q = mr 2 a = 1 2 gsinθ

58 Oś obrotu zmienna w czasie Stała oś obrotu karuzela, kurczak na rożnie, planety Oś obrotu przesuwa się, ale kierunek stały toczenie W wielu przypadkach kierunek osi się zmienia! Wiele nieintuicyjnych zjawisk precesja Wyobraź sobie, że jesteś w przestrzeni kosmicznej Co się stanie?

59 Oś obrotu zmienna w czasie Wyobraź sobie, że jesteś w przestrzeni kosmicznej Dodatkowo zakręć teraz kołem Co się stanie? Gdyby się obracała to co z zachowaniem momentu pędu? Tylko na początku moment siły, ale potem nie, czyli 22:09 Walter Lewin, 8.01x - Lect 24 Rolling Motion, Gyroscopes, 24:14 Walter Lewin, 8.01x - Lect 24 Rolling Motion, Gyroscopes,

60 Zasady zachowania w mechanice Zasada zachowania energii Zasada zachowania pędu Zasada zachowania momentu pędu Twierdzenie Noether (1918) prawa zachowania związane z symetriami Lagrangianu Lagrangian: L q k, qሶ k = E kin E pot, gdzie q k to współrzędne uogólnione (tyle co stopni swobody) Liczba stopni swobody s = n w (wszystkie - więzy) Równanie Lagrange a: d L q k, ሶ dt qሶ k q k L q k, qሶ k = 0 q k

61 Symetrie Lagrangianu Niezmienniczość względem przesunięć w czasie zachowanie energii Niezmienniczość względem przesunięć w przestrzeni zachowanie pędu Niezmienniczość względem obrotów zachowanie momentu pędu Przykład: r i r i + Ԧa nie zmienia własności układu Ԧa R L r i, rሶ i = L r i + Ԧa, rሶ i + Ԧa ሶ - pęd zachowany

62 Mechanika - podsumowanie Układy Punkt materialny Bryła sztywna Ośrodki ciągłe (płyny) Równania ruchu Równania Newtona Równania Lagrange a Równania Hamiltona Zasady zachowania Energii: niezmienniczość względem przesunięć w czasie Pędu: niezmienniczość względem przesunięć w przestrzeni Momentu pędu: niezmienniczość względem obrotów zachowanie momentu pędu

Układy cząstek i bryła sztywna. Matematyka Stosowana

Układy cząstek i bryła sztywna. Matematyka Stosowana Układy cząstek i bryła sztywna Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Niewiele wiemy zwykle o siłach Układy zachowawcze i dyssypatywne

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną! Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu

Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu Ruch obrotowy 016 Spis treści Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu bezwładności Ruch obrotowo-postępowy

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy

Bardziej szczegółowo

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych. Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej

Bardziej szczegółowo

Dynamika Newtonowska trzy zasady dynamiki

Dynamika Newtonowska trzy zasady dynamiki Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada

Bardziej szczegółowo

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Matematyki Stosowanej Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. σ F = 0 a = 0 (definicja układu inercjalnego)

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 9 1.X.016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moment bezwładności - koło Krążek wokół osi symetrii: M dm

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

MECHANIKA II. Dynamika układu punktów materialnych

MECHANIKA II. Dynamika układu punktów materialnych MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Wykład 5: Praca i Energia. Matematyka Stosowana

Wykład 5: Praca i Energia. Matematyka Stosowana Wykład 5: Praca i Energia Matematyka Stosowana Praca w codziennym życiu Czynności w codziennym życiu: Podnosisz pudło z książkami Popychasz zepsute auto Co dokładnie robisz? Działasz z pewną siłą Ciało

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności.

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Przygotowane częściowo na podstawie materiałów z roku akademickiego 2007/8. Literatura (wspólna dla wszystkich

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Zadanie na egzamin 2011

Zadanie na egzamin 2011 Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Ruch jednostajny po okręgu

Ruch jednostajny po okręgu https://www.slideserve.com/lala/ch5-uniform-circular-motion Ruch jednostajny po okręgu Przyspieszenie dośrodkowe Δx Z podobieństwa trójkątów: r = ΔV V ΔV a d = lim Δt 0 Δt Δθ Δx Δθ a d = V r lim Δt 0 Δx

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu

Bardziej szczegółowo

v p dr dt = v dr= v dt

v p dr dt = v dr= v dt Rozpędzanie obiektów Praca sił przy rozpędzaniu obiektów b W = a b F dr = a m v dv dt dr = k v p dr dt =v dr=v dt m v dv = m v 2 k 2 2 m v p 2 Wyrażenie ( mv 2 / 2 )nazywamy energią kinetyczną rozpędzonego

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej

Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron Wykład dla Matematyki Stosowanej Kim jestem? Prof. dr hab. Katarzyna Weron (Sznajd- Weron w nauce/pub) Fizyk teoretyk, układy złożone (bio,

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI: Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej Podstawy mechaniki 2018_2019 Równowaga bryły sztywnej Równowaga bryły sztywnej Ogólne warunki równowagi Przypadek płaskiego (dwuwymiarowego) układu sił Obiekty w równowadze Podpory i ich modele O czym

Bardziej szczegółowo

Symetrie i prawa zachowania Wykład 6

Symetrie i prawa zachowania Wykład 6 Symetrie i prawa zachowania Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/29 Rola symetrii Największym

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

Zadania z fizyki. Wydział PPT

Zadania z fizyki. Wydział PPT Zadania z fizyki Wydział PPT 9 Moment pędu; bryła sztywna Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Zadania (lub ich części) opatrzone gwiazdką są (zdaniem

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych Dynamika nieliniowa i chaos deterministyczny Fizyka układów złożonych Wahadło matematyczne F θ = mgsinθ Druga zasada dynamiki: ma = mgsinθ a = d2 x dt 2 = gsinθ Długość łuku: x = Lθ Równanie ruchu: θ ሷ

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie.

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Q1-1 Dwa zagadnienia mechaniczne (10 points) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Część A. Ukryty metalowy dysk (3.5 points) Rozważmy drewniany

Bardziej szczegółowo

Praca w języku potocznym

Praca w języku potocznym Praca w języku potocznym Kto wykonuje większą pracę? d d https://www.how-to-draw-funny-cartoons.com/cartoontable.html http://redwoodbark.org/016/09/1/text-heavy-hidden-weight-papertextbook-use/ https://www.freepik.com/free-photos-vectors/boy

Bardziej szczegółowo

Łamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe?

Łamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe? Łamigłówka p = mv p = 2mv p = mv przed mv = mv + 2mv po Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0 Jak to jest możliwe? Zastosowanie zasady zachowania pędu - zderzenia 2. Zderzenia elastyczne

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo