8. Właścwośc trmczn cał stałych W trakc zajęć będzmy omawać podstawow własnośc trmczn cał stałych, a szczgóln skupmy sę na cpl właścwym. Klasyczna dfncja cpła właścwgo wygląda następująco: C w Q (8.) m T Jak można zauważyć jst to dfncja dośwadczalna. Tortyczn wyprowadzn tj wlkośc fzycznj rozpocznmy od pwngo modlowgo przypadku - oscylatora harmonczngo, który jst całkm dobrym przyblżnm atomu drgającgo wokół położna równowagowgo. 8.. Cpło właścw oscylatora harmonczngo Wyprowadźmy cpło właścw dla oscylatora (tutaj mała uwaga - wszędz będzmy zakładać stałą objętość układu, co w przypadku nścślwych cał stałych jst bardzo dobrym przyblżnm). Wykorzystamy do tgo parę narzędz z fzyk statystycznj, któr jdnak n będą nam już dalj potrzbn. Na początk zapszmy wyrażn na nrgę oscylatora harmonczngo: n n gdzn 0,,... (8.) Zwróćmy uwagę, ż nawt dla n=0, wartość nrg jst nzrowa - jst to tzw. nrga drgań zrowych. Polczmy tzw. funkcję rozdzału, (sumę wszystkch stanów): xp n n Z xp xp... n0 n0 xp (8.3) Z dfncj, śrdna nrga oscylatora wynos: ln Z xp (8.4) x Z rozwnęca w szrg wmy, ż x, zatm (dla wysokch tmpratur, czyl nasz " x" 0 ): (8.5) Zgodn z dfncją cpła właścwgo: C w T k (8.6) Rozważalśmy oscylator jdnowymarowy, żby przjść na trzy wymary konczn jst dodan mnożnka 3. odatkowo rozważalśmy tylko pojdynczy atom, zatm cpło molow wynos:
J Cm 3N Ak 3R 4,93 mol K (8.7) Gdz: N A - lczba Avogadro Na podstaw powyższgo wyprowadzna, otrzymalśmy wartość cpła molowgo, która pownna charaktryzować cała stał. Jst to tzw. prawo ulonga-ptta. Wartość ta w wlu przypadkach daj bardzo dobrą zgodność z danym ksprymntalnym, np.: F - 5,; Mg - 4,9; Pb - 6,4; Au - 5,4, Cu - 4,47. Istnją jdnak równż lczn wyjątk od tj rguły, tak jak: amnt - 6,5; B - 6,4; Parafna - 900, S - 4,. Pamętajmy tutaj o przyblżnu któr zastosowalśmy w równanu (8.5): stała wartość cpła molowgo otrzymana w równanu (8.7) występuj przy wysokch tmpraturach, m nższa tmpratura tym mnjsza wartość cpła molowgo. 8.. Statystyk kwantow Aby móc kontynuować nasz rozważana, konczn jst wprowadzn (przypomnn) tzw. statystyk kwantowych, czyl rozkładów opsujących śrdną lczbę cząstk w danym stan kwantowym (o danj nrg). Istnj klka typów statystyk, ponżj zaprzntowano trzy najczęścj spotykan. Rys.8.. Obsadzn stanów nrgtycznych w różnych typach statystyk. Rozkład Boltzmanna jst opsm klasycznym, rozważamy w nm rozróżnaln cząstk, któr n obowązuj zakaz Paulgo. Statystyka Bos'go-Enstana (z którj będzmy korzystać) dotyczy bozonów, do których wlczamy mn. fotony, fonony czy gluony. Traktujmy tu cząstk jako nrozróżnaln, przy czym nadal n obowązuj j zakaz Paulgo: Gdz: n - lczba cząstk o nrg n (8.8) - potncjał chmczny (w przypadku fononów wynos 0) Ostatna statystyka - Frmgo-raca, dotyczy frmonów (kwark, lktrony, nutrna td.). Cząstk traktujmy jako nrozróżnaln, przy czym obowązuj j zakaz Paulgo:
n (8.9) 8.3. Cpło właścw - modl Enstna by'a Modl oscylatora harmonczngo, mmo ż pozwala na w marę poprawny ops cpła właścwgo w pwnych przypadkach, n jst jdnak modlm "doclowym". Lpszy ops umożlwają nco bardzj zaawansowan modl, np. modl Enstna by'a któr krótko omówmy. Zapszmy traz ogólny wzór na całkowtą nrgę wwnętrzną: max n d K, p K, p (8.0) K p 0 Gdz: K - wktory falow p - wskaźnk okrślający polaryzację - Lczba stanów (modów) przypadających na jdnostkowy przdzał częstośc (funkcja gęstośc stanów) Powyższy wzór jst sumą nrg po wszystkch rodzajach drgań w krysztal. Funkcja okrśla l fononów znajduj sę w przdzal częstośc od do d. 8.3.. Modl Enstna W modlu Enstna drgana sc złożonj z N atomów, rozpatrujmy jako N nzalżnych oscylatorów o dntycznj częstotlwośc E : Gdz: E - dlta raca N (8.) 3 E Rys.8.. Funkcja : szary kolor-przykładowa funkcja rzczywsta, czarny-przyblżn Enstna.
Z funkcj danj wzorm (8.) wynka, ż dla wszystkch wartośc ω nnych od ω E, przyjmuj ona wartość 0, podczas gdy dla ω=ω E jj wartość wynos 3Nω E. Podstawając do (8.0) otrzymujmy nrgę układu w modlu Enstna: Zgodn z dfncją (8.6) cpło właścw wynos: 3N (8.) Cw 3Nk (8.3) la wysokch tmpratur wartość cpła właścwgo dąży do wartośc przwdywanych przz prawo oulonga- Ptta. Słaboścą modlu Enstna jst stosunkowo słaba zgodność z wynkam ksprymntalnym w nskch tmpraturach (w stosunku do następngo modlu). 8.3.. Modl by'a W modlu by'a (który omawamy bardzo pobżn), możlw jst wyprowadzn funkcj gęstośc stanów o ogólnj postac: const 0 (8.4) Gdz: - częstość by'a (odcęca) Wykrs tj funkcj przdstawony jst na ponższym wykrs: Rys.8.3. Funkcja : szary kolor-przykładowa funkcja rzczywsta, czarny-przyblżn by'a. W modlu by'a zakładamy rlację dysprsj o postac (patrz zadan 7.): Gdz: v - prędkość dźwęku w cl stałym v K (8.5) okładn wyprowadzna pozwalają na otrzyman funkcj gęstośc stanów o postac:
V (8.6) 3 Gdz: V - objętość kryształu Pojawającą sę w wzorz (8.4) częstość by'a opsuj wzór: 3 6 N V v (8.7) Z modlm by'a zwązana jst jszcz jdna wlkość charaktrystyczna, tzw. tmpratura by'a, dana równanm: T k (8.8) Wlkość ta wyznaczana jst ksprymntaln dla różnych matrałów. Modl by'a można rozpsać na przypadk przyblżń wysoko- nsko-tmpraturowych, którym zajmmy sę na zajęcach, tmpratura by'a nformuj nas natomast, któr z nch możmy w danym przypadku zastosować.